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Improving the full quantum eigensolver with exponentiated operators
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There has been an increasing research focus on quantum algorithms for condensed matter systems recently,
with a particular emphasis on calculating energy band structures. Here, we propose a quantum algorithm, the
powered full quantum eigensolver (P-FQE), by using the power of operators of the full quantum eigensolver.
This leads to an exponential increase in the success probability of measuring the target state in certain
circumstances where the number of generating elements involved in the power of operators exhibits a log poly-
nomial dependence on the number of orbitals. Furthermore, we conduct numerical calculations for the energy
spectrum of the Fermi-Hubbard model and band-structure determination of the twisted double-layer graphene.
We experimentally demonstrate the feasibility and robustness of the P-FQE algorithm using superconducting
quantum computers for graphene and Weyl semimetal. One significant advantage of our algorithm is its ability
to reduce the requirements of extremely high-performance hardware, making it more suitable for energy spectra
determination on noisy intermediate-scale quantum devices.
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I. INTRODUCTION

Feynman [1] pointed out that when classical computers
were used to simulate quantum systems, resource con-
sumption would exponentially increase. Nevertheless, by
developing computing systems that work according to the
laws of quantum mechanics, this difficulty can be avoided
in principle. Quantum computation has gained considerable
attention across various fields [2–10], harnessing its inher-
ent quantum advantages. Quantum chemistry has emerged
as one of the extensively studied applications, predominantly
focused on atomic and molecular systems [11–15]. However,
research efforts on more complex many-body systems such as
solid-state systems are comparatively limited.

In solid-state physics, the concept of an energy band is
fundamental, which describes the distribution of energy levels
available to electrons as a function of the wave vector within
the material [16,17]. Calculating energy band structures holds
paramount significance in understanding the electronic prop-
erties of materials, designing novel materials, and interpreting
material behaviors.

The prevailing quantum algorithms for calculating the elec-
tronic band structure use hybrid quantum-classical methods
such as a variational quantum eigensolver (VQE) [18–21] for
a ground state, and its modified versions for an excited state,
such as variational quantum deflation (VQD) [22–24] and
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a subspace-search variational quantum eigensolver (SSVQE)
[25,26]. These variational quantum algorithms (VQAs) are
studied vigorously for their low-depth circuits [4,27]. They
consist of parametrized quantum and classical optimizations.
The classical optimizations optimize the expectation values
measured from the quantum circuit to iterate parameters
in the quantum circuit. The parametrized quantum circuit
can be designed based on a problem-inspired ansatz or a
hardware-efficient ansatz [4]. However, there are still some
open questions concerning VQAs, such as the existence of
barren plateaus [28] and the ambiguity surrounding a quantum
advantage [29,30].

The full quantum eigensolver (FQE) algorithm was pro-
posed for quantum chemistry simulations [31]. It simulates
the objective Hamiltonian and performs gradient descent op-
timization entirely on a quantum computer. The parameters
of quantum circuits in the FQE remain fixed throughout the
iteration process and are determined by the objective Hamil-
tonian. With each iteration of the quantum gradient descent
circuit, the state vector becomes progressively closer to the
ground state. Moreover, the extended version of the FQE for
an excited state, called a full quantum excited-state solver
(FQESS), was proposed subsequently [32]. By utilizing the
measurement results of the lower energy levels obtained from
the quantum circuit, the Hamiltonian and the parameters in
the circuit can be updated to target the next energy level. The
ground state of the updated Hamiltonian corresponds to the
eigenvector associated with the next energy level. However,
the main drawback of these algorithms is that the success
probability decreases significantly with each iteration, which
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limits their applicability on noisy intermediate-scale quantum
(NISQ) devices. To address this issue, we propose an algo-
rithm here called the powered-FQE (P-QFE), which directly
implements multiple powers of the operator instead of ex-
ecuting multiple iterations of the operator on the quantum
computer. This approach can significantly reduce the actual
number of real runs, and in extreme cases it can achieve
convergence with just a single run.

This paper is organized as follows: In Sec. II, we present
the framework of the P-FQE. We then apply the P-FQE
to calculate the energy band structures of twisted double-
layer graphene, and we compare the numerical simulation
results with classical methods in Sec. III. In Sec. IV, we con-
duct experiments on two superconducting quantum computers
(Quafu and IBM quantum cloud platform) to compare and
validate the effectiveness and robustness of our algorithm.
Finally, we provide a conclusion in Sec. V.

II. METHOD

A. The Hamiltonian of a condensed-matter system

In solid-state physics, a many-body system contains a
collection of ion cores and a cloud of electrons interacting
with each other. In the nonrelativistic case, the corresponding
original Hamiltonian of the system can be expressed in first
quantization as

Hor = −
∑

i

∇2
Ri

2Mi
−

∑
i

∇2
ri

2
−

∑
i, j

Zi

|Ri − r j |

+
∑
i, j>i

ZiZ j

|Ri − Rj | +
∑
i, j>i

1

|ri − r j | (1)

in atomic units (h̄ = 1). Here, Ri, Zi, Mi, and ri represent the
positions, charges, masses of the ion cores, and the positions
of the electrons, respectively. The computational resources
needed to calculate the energy spectrum of a many-body
system scale exponentially with the number of ion cores and
electrons on a classical computer, making it intractable in
high-dimension.

Under the Born-Oppenheimer approximation, which as-
sumes the nuclei are stationary due to their much larger
mass compared to electrons, we obtain the following second-
quantized formulation of the Hamiltonian:

H =
∑

i j

hi jc
†
i c j + 1

2

∑
i jkl

hi jkl c
†
i c†

j ckcl + · · · , (2)

where c†
i (ci ) are the creation (annihilation) operators on the

site i. The parameters hi j and hi jkl are the one-particle and
two-particle integrals for a specific basis function φi. We
adopt the Jordan-Wigner (JW) transformation to map these
fermionic operators to qubit operators by the following rules
[33,34]:

c†
i = 1

2 Z1 ⊗ Z2 ⊗ Zi−1 ⊗ (Xi − iYi ) ⊗ Ii+1 ⊗ · · · ,

ci = 1
2 Z1 ⊗ Z2 ⊗ Zi−1 ⊗ (Xi + iYi ) ⊗ Ii+1 ⊗ · · · , (3)

where subscript i represents the single-particle state labeling.
After transformations, the qubit Hamiltonian can be expressed

as

H =
∑

i

αiPi, (4)

where Pi = σi1 ⊗ σi2 ⊗ · · · is a tensor product of Pauli matri-
ces, defined as a “Pauli word” with σ ∈ {I, X,Y, Z}. Since any
Hamiltonian can be decomposed into Pauli terms, this method
is universally applicable to a general system with interactions.

B. The quantum algorithm

1. Power iteration method

The power iteration method for computing eigenvalues and
eigenvectors is valuable for estimating the eigenvectors of
large and sparse matrices [35]. Assuming matrix A possesses
n eigenstates ui and the corresponding eigenvalues λi, the
eigenfunctions can be expressed as Aui = λiui. Due to the
completeness of the eigenfunctions of the Hermitian oper-
ator, an arbitrary initial state of this quantum system can
be fully described within the Hilbert space spanned by this
set of eigenfunctions. This description involves represent-
ing the state as a linear superposition of eigenstates: x(0) =∑n−1

i=0 aiui. Applying the t th power of A to x(0) yields

x(t ) = At x(0) = λt
0

[
a0u0 +

n−1∑
i=1

ai

(
λi

λ0

)t

ui

]
. (5)

t in At is referred to as the “exponent” or “power.” If
the absolute values of the eigenvalues satisfy the inequal-
ity constraints |λ0| � |λ1| � |λ2| · · · � |λn|, then we have
limt→∞(λi/λ0)t = 0. So if the exponent t is sufficiently large,
x(t ) will approach the ground state u0. This method can also be
interpreted from the perspective of quantum gradient descent,
as shown in Ref. [32], and we develop our quantum algorithm
based on above process.

In FQE and FQESS algorithms, each iteration is essentially
the evolution of quantum states under the same operator, but
their probability of success decreases exponentially with the
number of iterations. Our algorithm is based on the idea of
reducing the number of iterations to improve the success prob-
ability, achieved by replacing the original evolution operator
with the power of the operator itself. We analyze the power
required and estimate the error in Appendix A. In our method,
there exists a tradeoff between the number of required itera-
tions and the power. For simplicity, we present our algorithm
by employing a single run.

2. Estimation of the number of expansion terms

Realizing our algorithm on a quantum circuit requires the
expansion of the evolution operator into a linear combination
of unitary operators [36–42]. To reduce circuit complexity
among other objectives, the specific form of the unitary ex-
pansion can be varied to suit the requirements of different
problems, thereby simplifying the expansion form. Without
a loss of generality, in this work the unitary expansion adopts
the form of Pauli operators. The underlying premise for our
algorithm’s advantage is that the quantum circuit complexity
related to the number of expansion terms does not increase
at the same rate as the operator’s exponent. Here we provide a
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method for preliminary estimation of the number of expansion
terms.

Since the coefficient K = {±1,±i} is not a concern, we
will work with the following Abelian Pauli group [43]:

P̃n = Pn/K = {I, X, Z, XZ}⊗n, (6)

which is the quotient group over K and contains 4n elements.
Any operator A on an n-qubit system can be decomposed into
a linear combination of Pauli operators:

A =
∑
σ∈P̃n

μσσ. (7)

Define S as the set of all terms with nonzero coefficient, S =
{σ ∈ P̃n | μσ �= 0}, and let G = 〈S〉 be the subgroup of P̃n

generated by S. It then follows that any power of A can be
decomposed into a linear combination of some subset of G.

To estimate the size of G, we utilize the isomorphic relation
P̃n

∼= F2n
2 , where F2n

2 is a 2n-dimensional linear space over
a binary field F2. The isomorphism M : P̃n ↔ F2n

2 can be
constructed as follows:

M : X x1
1 · · · X xn

n Zz1
1 · · · Zzn

n �→ (x, z), (8)

where x = (x1, . . . , xn) ∈ Fn
2 , z = (z1, . . . , zn) ∈ Fn

2 . Then
the multiplication in P̃n corresponds to the addition in F2n

2 ,
M(σ · ω) = M(σ ) + M(ω). Clearly, M maps G to a sub-
space spanned by the vector set M(S) = {M(σ )}σ∈S . If there
are l linearly independent vectors in M(S), then G is isomor-
phic to an l-dimensional subspace, implying the expansion
of any power of A has at most L = 2l terms. To minimize
algorithm complexity, it is desirable for l to be as small as
possible. We refer to the aforementioned method as the vector
encoding method.

For condensed-matter systems, due to the periodicity and
lattice symmetry, their Hamiltonians are likely to exhibit a
higher degree of symmetry. Therefore, it is reasonable to
assume that the number of Pauli words in the Pauli expansion
of the powers of their Hamiltonians increases slowly [44–46].
In Appendix B, we have selected six models and presented the
relationship between the powers of their Hamiltonians and the
number of terms in the Pauli expansion.

C. Quantum algorithm realization

For quantum chemistry and the band-structure problems,
we generally start with a linear combination of Pauli words as
shown in Eq. Eq. ( 4). When determining the band structure
of a crystal, given a certain wave vector 
k, we can express the
Hamiltonian as Hk = ∑Mk−1

i=0 α
(k)
i Pi, where Mk is the number

of Pauli words. The set of eigenvalues is denoted as {Ej,k}2n

j=1

with corresponding eigenstates {ϕ j,k}2n

j=1. In general crystal
systems, there are some bands with eigenvalues greater than
zero. To ensure that all eigenvalues are less than zero, a bias
term needs to be introduced, and the Hamiltonian is recon-
structed as

U1,k = Hk − λ0I⊗n(λ0 > max{0, E1,k, . . . , E2n,k}). (9)

Typically, the larger the bias parameter λ0, the more time-
consuming the algorithm becomes. Therefore, it is desirable
to minimize its value [32]. In general, the bias parameter

λ0 affects the one-norm of a reconstructed Hamiltonian and
should be chosen properly, because it affects the ratio of re-
constructed eigenvalues (Ei − λ0)/(E1 − λ0), which is related
to the convergence rate of the algorithm. If λ0 is significantly
larger than Ei, the convergence speed will decrease. Some
reduction technologies for the one-norm of a Hamiltonian can
be adapted to improve the algorithm’s performance [47,48].

The exponent required to obtain the ground state of U1,k is
assumed to be t1,k , and the operator U1,k raised to the power
of t1,k can be expanded as

Ut1,k

1,k =
L1,k−1∑

i=0

β
(1,k)
i Pi, (10)

where L1,k � 4n. The operator Ut1,k

1,k can be implemented in
a quantum circuit. As Appendix B shows, in many practical
physical systems, it is often observed that L1,k is significantly
smaller than 4n, and converges faster towards a relatively
small value as t1,k increases. The coefficients β

(1,k)
i for each

Pauli word can be obtained through simple classical calcu-
lations, and we now shift our focus to the quantum circuit
implementation of P-FQE.

The first step involves initializing the ancillary system
and the work system. We take the computational basis |i〉s

to represent the state of a quantum system. Here |0〉s de-
notes the initial state of ancillary system |0〉⊗l1,k , where l1,k =
�log2 L1,k� is the number of ancillary qubits. The ancillary
qubits are introduced to create a larger Hilbert space and are
initialized from |0〉s to a specific state

|ψ1,k〉 = 1

C

2l1,k −1∑
i=0

β
(1,k)
i |i〉s, (11)

where C =
√∑2l1,k −1

i=0 |β (1,k)
1 |2 is the normalization constant.

When initializing the work system, using an appropriate
basis set, such as a linear combination of atomic orbitals
(LCAOs) or orthogonalized plane waves (OPWs), can signif-
icantly improve the efficiency of our algorithm [49,50]. Here
we denote the trial initial state as |Φ (1,k)

0 〉. In complex systems,
the quantum random access memory (qRAM) method can be
utilized to prepare the initial states [51].

The second step of the quantum circuit involves entangling
the ancillary qubits with the work qubits using a series of
controlled gate operations. If the ancillary qubits is in state
|i〉s, then the corresponding controlled gate acting on the work
qubits would be Pauli word Pi. After entanglement, the entire
system evolves into the state (

∑L1,k−1
i=0 β

(1,k)
i |i〉sPi|Φ (1,k)

0 〉)/C.
The final step involves performing a wave combination and

measurement. By applying a Hadamard gate to each ancillary
qubit, we execute the wave combination, and the entire space
is transformed into

1

C
√

2l1,k

(
|0〉s ⊗

L1,k−1∑
i=0

β
(1,k)
i Pi

∣∣Φ1,k
0

〉 + 2l1,k∑
i=1

|i〉s ⊗ |�i〉
)

,

(12)

where |�i〉 is the state of the work system in the subspace
where the state of the ancillary system is |i〉s. The work system
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FIG. 1. The flow chart of P-FQE. Here J represents the highest energy band that needs to be determined, and it is generally adequate
to focus solely on the properties of the systems within the low-energy regime when tackling electronic structure problems. The right panel
illustrates the quantum circuit designed in our method, and XY Z represent Pauli measurements.

collapses to the approximate ground state |ϕ̃1,k〉 of Hk when
the ancillary system is measured as |0〉s.

The probability of successfully obtaining the tar-
get state is Ps = ‖Ut1,k

1,k |Φ (1,k)
0 〉‖/(C22l1,k ). While in the

FQE algorithm, the probability of success is Ps(FQE) =
[‖U1,k|Φ (1,k)

0 〉‖/(C22mk )]t1,k , and it declines exponentially

with the number of iteration steps t1,k with C =
√∑Mk−1

i=0 α2
i

[31,52], where mk = �log2Mk�. And the noise in each itera-
tion will further affect the probability of success. As long as
L1,k does not exhibit exponential growth with respect to Mk ,
we can conclude that our algorithm exponentially increases
the probability of success compared to FQE, or equivalently,
it exponentially reduces the measurement complexity.

We use Pauli measurements to estimate the approximate
eigenvalue Ẽ1,k corresponding to |ϕ̃1,k〉,

ε
(1,k)
i = 〈ϕ̃1,k|Pi|ϕ̃1,k〉, (13)

Ẽ1,k = 〈ϕ̃1,k|Hk|ϕ̃1,k〉 =
M1,k−1∑

i=0

α
(k)
i ε

(1,k)
i , (14)

where ε
(1,k)
i can be obtained by repeated measurements of

Pauli word Pi. To obtain the higher excited state and excited
energy of Hk , we use a procedure similar to FQESS and VQD
[22–24,32]. We update the original operator as

U2,k = Hk − Ẽ1,k|ϕ̃1,k〉〈ϕ̃1,k| − λ0I⊗n

=
Mk−1∑
i=0

(
α

(k)
i − Ẽ1,k

ε
(1,k)
i

2n

)
Pi − λ0I⊗n, (15)

whose ground state corresponds to the first excited state of
Hk . The new operator implemented in the quantum circuit is
Ut2,k

2,k = ∑L2,k−1
i=0 β

(2,k)
i Pi. The subsequent steps follow the same

procedure as described above. To obtain the energy spectrum
corresponding to a specific k-point, it is necessary to initialize
the work qubits in a state that has a nonzero overlap with
the target eigenstate for a specific energy level. For example,

we can use the superposition state of the computational basis
states

∑n
i=0

1√
n
|i〉 as the initial state of the work qubits to find

any energy level.
By iterating the aforementioned procedure, the entire en-

ergy spectrum for the Hamiltonian Hk can be obtained. By
systematically varying the values of k along high-symmetry
paths and obtaining the corresponding Hamiltonians, we can
repeatedly perform the previously described procedure to
determine the complete energy band structure of the target
crystal. The detailed steps of the P-FQE algorithm are illus-
trated in the algorithm flowchart shown in Fig. 1.

D. Complexity analysis

The complexity of the P-FQE algorithm consists of clas-
sical and quantum computation components. We take the
calculation of the energy spectrum Hk as an example. The
Pauli expansion of the operator, calculated on a classical
computer, involves multiplying the weight coefficients of each
Pauli word, with the coefficients below a certain threshold
being discarded during the process. The complexity of the
classical part is O(M log2 tk

k ), where Mk is the number of ex-
pansion terms of the original Hamiltonian, tk = max{t j,k}.
Moreover, we introduce another circuit updating method in
Appendix C, which can further reduce the complexity of con-
structing a quantum circuit for computing excited states.

For the complexity of the quantum computing part,
we consider gate complexity and measurement complexity.
According to Sec. II B 2, if there are lk linearly indepen-
dent vectors in M(Sk ), where Sk = {Pi ∈ P̃n | α

(k)
i �= 0}, let

max{Lj,k} = Lk , then Lk � 2lk . The maximum total num-
ber of basic gates needed to obtain the energy spectrum is
O(JLk log2 Lk ) [32,53–55], where J represents the highest
energy band that needs to be determined. The number of
work qubits required by P-FQE is �log2 D(Hk )�, the same
as in the FQE algorithm, where D(Hk ) represents the ma-
trix dimension of Hk . The maximum number of ancillary
qubits required by P-FQE is �log2 Lk�, while FQE requires
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�log2 Mk�. Due to the logarithmic relationship between the
number of ancillary qubits and the number of expansion
terms, the additional qubits required by P-FQE are relatively
few. Our method achieves an exponential reduction in mea-
surement complexity compared to the FQE method, on the
condition that Lk does not exhibit exponential growth with
respect to Mk . This condition is typically satisfied, as Lk is
subject to an upper limit constraint, and empirical results are
often better, as evidenced in Appendix B. In general, the
number of orbitals is polynomially related to the number of
terms in the Hamiltonian. Therefore, our method achieves
an exponential increase in the success probability of mea-
suring the target state when lk exhibits a log polynomial
dependence on the number of orbitals. The measurement
complexity is O(

√
Lk ) when the technique of quantum ampli-

tude amplification is employed to further enhance the success
probability [56,57].

III. NUMERICAL SIMULATION FOR THE
FERMI-HUBBARD MODEL AND ELECTRONIC

BAND STRUCTURE

A. Fermi-Hubbard model

In this section, we use our method to determine the
energy spectrum of the Fermi-Hubbard model. The Hamil-
tonian of the Fermi-Hubbard model in real space can be
described as

ĤFH = −J
∑
〈i j〉,σ

ĉ†
iσ ĉ jσ + U

∑
i

(
n̂i↑ − 1

2

)(
n̂i↓ − 1

2

)
−μ

∑
i

(n̂i↑ + n̂i↓) − h
∑

i

(n̂i↑ − n̂i↓), (16)

where ĉ†
iσ (ĉiσ ) are creation (annihilation) operators acting at

the ith site with spin σ , niσ = ĉ†
iσ ĉiσ is the number operator,

and 〈i, j〉 denotes adjacent sites on a square lattice. μ rep-
resents the chemical potential, and h represents the external
magnetic field.

Considering a dimer lattice that accommodates one spin-up
electron and one spin-down electron, the Hamiltonian simpli-
fies to

ĤFH = −J (ĉ†
1↑ĉ2↑ + ĉ†

2↑ĉ1↑ + ĉ†
1↓ĉ2↓ + ĉ†

2↓ĉ1↓)

+U
(
n̂1↑ − 1

2

)(
n̂1↓ − 1

2

)
+U

(
n̂2↑ − 1

2

)(
n̂2↓ − 1

2

)
. (17)

As n↑ + n↓ is a conserved quantity, the simplified Hamilto-
nian is

ĤFH = −J (ĉ†
1↑ĉ2↑ + ĉ†

2↑ĉ1↑ + ĉ†
1↓ĉ2↓ + ĉ†

2↓ĉ1↓)

+Un̂1↑n̂1↓ + Un̂2↑n̂2↓. (18)

For d̂1 = ĉ1↑, d̂2 = ĉ2↑, d̂3 = ĉ1↓, d̂4 = ĉ2↓, we have

ĤFH = −J (d̂†
1 d̂2 + d̂†

2 d̂1 + d̂†
3 d̂4 + d̂†

4 d̂3)

−U (d̂†
3 d̂†

1 d̂3d̂1 + d̂†
4 d̂†

2 d̂4d̂2). (19)

(a)

(b)

FIG. 2. (a) The relationship between the number of terms in
the Pauli expansion and the exponent of the power of the Hamil-
tonian. (b) The numerical simulation results of the spectrum using
the P-FQE algorithm. We present the results for the first four energy
levels without considering degeneracy. The exact values obtained
by Hamiltonian diagonalization are plotted by dashed lines. The
numerical results plotted by solid lines converge to exact values as
the operators are raised to a higher power.

Letting J = 1.5, U = 2.3, after the JW transformation, we
have

ĤFH = 1.15I − 0.75X1X2 − 0.75Y1Y2 − 0.575Z1

+ 0.575Z1Z3 − 0.575Z2 + 0.575Z2Z4

− 0.75X3X4 − 0.75Y3Y4 − 0.575Z3 − 0.575Z4. (20)

From Fig. 2, it is evident that the number of terms in the
Pauli expansion of the power of the Hamiltonian of the Fermi-
Hubbard model rapidly converges to a smaller value as the
exponent increases. The numerical simulation results of the
P-FQE algorithm also converge to the exact spectrum after
raising the operators to a specific power.

B. Energy band calculation

For energy band calculations, we use a tight-binding (TB)
Hamiltonian as an example to demonstrate the efficiency
of our algorithms. In the TB approximation, only hopping
terms among nearest-neighbor sites need to be considered
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[58,59]. The total energy, comprising both the interaction
energy and the kinetic energy, can be consolidated into the
hopping term, while the potential energy term or on-site
energy simply adds a constant. In the second quantization for-
malism, the TB Hamiltonian of a crystal can be expressed as
H = ∑

〈i, j〉,m,n ti j,mnc†
i,mc j,n, where m and n represent atomic

orbitals, 〈i, j〉 denote pairs of nearest-neighbor lattice sites,
c†

i,m (ci,m) are the creation (annihilation) operators acting at the
orbital m and the site i, ti j,mn represents the hopping parameter
between corresponding orbitals and sites, and it can be calcu-
lated as ti j,mn = 〈Rmi|h(
r)|Rn j〉, where {Rmi} are the Wannier
functions. In the TB approximation, the Wannier functions
can be replaced with atomic orbital functions. Performing a
Fourier transform of the creation and annihilation operators in
the Wannier representation yields the TB Hamiltonian (Hk) in
the Bloch representation.

We use twisted double-layer graphene as the demonstration
model to numerically validate our algorithm. In double-layer
graphene, interlayer interactions modify the electronic band
structure, resulting in tunable electronic properties. Different
stacking structures can be achieved by adjusting the twist
angle between the layers. This composite structure gives rise
to a set of long-period patterns known as moiré patterns on the
underlying atomic lattice for certain twist angles [13,60,61].
Bistritzer and MacDonald [60] constructed a low-energy
continuum effective Hamiltonian for twisted double-layer
graphene, applicable to arbitrary translation vectors and twist
angles θ � 10◦, regardless of whether the structure is com-
mensurate. The Hamiltonian expanded around the K-point of
the Bistritzer-MacDonald model is

HK (r) =
(

−iνF σ · ∇ T (r)

T †(r) −iνF σ · ∇

)
, (21)

/vskip4ptwhere T (r) is the interlayer hopping term, and νF

is the Fermi velocity. We set the parameters to be the same
as those in Ref. [60] with lattice constant a0 = √

3×1.42 Å
and interlayer hopping energy w = 110 meV. The plane-wave
expansion method is employed to numerically solve for the
electronic spectrum, truncating the momentum-space lattice at
the third honeycomb shell. The size of the Hamiltonian matrix
is 196×196. Expanding the Hamiltonian for twisted bilayer
graphene with a twist angle of 1.05◦ and kx = ky = 0 in the
basis of Pauli words generates a total of 5440 terms. The Pauli
expansion terms with coefficients exceeding 0.1, rounded to
three decimal places, are listed below, with all “⊗” symbols
omitted,

H = 4.622I0I1I2I3I4I5I6Y7 + 1.413I0Z1I2I3I4I5I6Y7

+ 1.223Z0I1I2I3I4I5I6Y7 − 0.356I0Z1Z2I3I4I5I6Y7

− 0.234I0Z1I2I3Z4I5I6Y7 − 0.199Z0I1Z2I3Z4Z5I6Y7

+ 0.198Z0Z1Z2I3Z4I5I6Y7 − 0.191I0Z1Z2I3I4I5I6X7

− 0.171I0Z1Z2Z3Z4Z5I6Y7 + 0.170Z0Z1I2I3Z4Z5I6Y7

+ 0.164Z0Z1Z2Z3I4Z5I6Y7 − 0.164Z0I1Z2Z3Z4I5I6Y7

+ 0.164I0I1I2I3Z4Z5I6Y7 − 0.137Z0I1I2Z3I4I5I6Y7

− 0.137Z0I1I2Z3Z4Z5I6Y7 + 0.137I0I1Z2I3Z4Z5I6Y7

− 0.136I0Z1Z2I3I4Z5I6Y7 + 0.136Z0Z1I2Z3Z4I5I6Y7

+ 0.136Z0Z1I2Z3I4I5I6Y7 + 0.136I0I1Z2I3Z4I5I6Y7

− 0.130Z0I1Z2I3Z4I5I6Y7 + 0.129Z0Z1Z2I3I4Z5I6Y7

+ 0.129I0I1I2Z3I4Z5I6Y7 − 0.129I0Z1I2Z3I4Z5I6Y7

+ 0.129I0I1I2Z3Z4Z5I6Y7 + 0.129I0I1I2Z3Z4I5I6Y7

− 0.129I0Z1I2Z3I4I5I6Y7 − 0.129Z0I1Z2I3I4Z5I6Y7

+ 0.128Z0Z1Z2I3Z4Z5I6Y7 − 0.128Z0I1I2I3I4I5I6X7

+ 0.110I0I1Z2Z3I4Z5Z6Y7 − 0.108Z0Z1I2I3I4I5I6X7

− 0.102Z0I1I2I3Z4Z5I6Y7 − 0.102I0Z1Z2Z3I4Z5I6Y7

+ 0.102I0I1Z2Z3Z4I5I6Y7 + 0.102I0I1Z2Z3Z4Z5I6Y7

− 0.101Z0I1I2I3I4Z5I6Y7 + 0.101Z0Z1I2I3Z4I5I6Y7

+ 0.101I0I1Z2Z3I4I5I6Y7 − 0.101I0Z1Z2Z3I4I5I6Y7

+ 0.101Z0Z1I2I3I4Z5I6Y7 + 0.101I0I1Z2Z3I4Z5I6Y7 · · · .

(22)

The moiré band structures for three twist angles θ = 5◦,
1.05◦, and 0.5◦ obtained through numerical simulation of
P-FQE and the matrix diagonalization method are shown in
Fig. 3. For twist angles of 5◦, 1.05◦, and 0.5◦, the bias term
λ0 was set to 9.8, 2.3, and 1.2, respectively. We select a set
of randomly orthogonal basis states as the initial states for the
work qubits at each k-vector when computing different energy
bands. For convenience, we directly use the 400th power of
the initial Hamiltonian as the operator acting on the initial
state in the quantum circuit for θ = 0.5◦ and 1.05◦, and the
final counts of Pauli expansion terms are 62 694 and 63 939,
respectively. For θ = 5◦, we directly use the 230th power
of its initial Hamiltonian, yielding 63 730 Pauli terms after
expansion. The number of work qubits required for the three
models is �log2196� = 8 each. Furthermore, the quantum cir-
cuit for the model of θ = 0.5◦ requires �log262 694� = 16
ancillary qubits, and similarly, the other two also require
16 ancillary qubits. Thus, each of these three models re-
quires a total of 24 qubits. More details are elaborated on in
Appendix D.

The moiré bands in the first row represent the theoretical
results obtained through classical diagonalization, which are
consistent with those presented in the paper by Bistritzer and
MacDonald [60]. The moiré bands in the second row are the
numerical simulations obtained using our algorithm, which
show good agreement with the theoretical expectations. As the
twist angle decreases, the number of bands within a specific
energy range increases and the band separation decreases,
leading to a higher density of states. When θ = 1.05◦, the
Dirac-point velocity vanishes, resulting in a very flat band
that implies strong correlation effects. It is worth mentioning
that the spectrum results at points with smaller energy gaps
are more sensitive to the value of the exponent, leading to
less smooth results compared to other points under the same
parameter setup. This can be improved by increasing the
exponent or introducing suitable bias value. For our numer-
ical simulations with the P-FQE algorithm, we used matrix
multiplication with Python rather than a quantum computer
simulator.
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FIG. 3. The comparison of moiré bands in twisted double-layer graphene obtained from classical diagonalization (the first row) and
numerical simulations of our P-FQE algorithm (the second row). Here w = 110 meV, and twist angles θ = 0.5◦ (the first column), 1.05◦

(the second column), and 5◦ (the third column).

IV. RESULTS ON REAL QUANTUM DEVICES

In this section, we present two experimental demon-
strations of the P-FQE algorithm with different physical
systems (Weyl semimetal and graphene) on the supercon-
ducting quantum computing chips from Quafu/IBM quantum
cloud platforms. Details of the two chips can be found in
Appendix E, and we introduce the experimental process and
results below.

A. Weyl semimetal

The first model we chose is the Weyl semimetal, a spe-
cial topological material with a nontrivial band structure. In
Weyl semimetals, the valence band and conduction band in-
tersect at specific momentum space positions, forming Weyl
points [62–65]. The energy bands near these points exhibit

Dirac-like linear dispersion with relativistic features, forming
a cone-shaped Fermi surface known as the Weyl cone. Weyl
semimetals are of significant research interest in the field of
topological physics and hold great potential for applications
in novel electronic devices, optical materials, and topologi-
cal quantum computation. The Hamiltonian for the minimal
model of a Weyl semimetal is [66]

H = A(kx ∗ σx + ky ∗ σy) + [
M0 − M1

(
k2

x + k2
y + k2

z

)]
σz,

(23)

where parameters are set as M0 = M1 = A = 1, kx = ky = 0.
So the Hamiltonian can be reduced to Hkz = (1 − k2

z )σz, and
the energy spectrum is a function of kz. We set the bias pa-
rameter λ0 = 4, and the value of power t j,k = 20. Then the
operator implemented on the quantum circuit is (Hkz − 4I )20

for the ground energy band. After obtaining the ground energy
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FIG. 4. The quantum circuit used to obtain the energy bands of
the minimal model of a Weyl semimetal. This circuit requires only
one ancillary qubit and one work qubit, entangled via a controlled-Z
gate. The rotation angle θ in the Ry(θ ) gate is modified as a function
of energy levels and wave vector kz in the simulation.

E1,kz and corresponding ground state |ϕ1,kz 〉 for Hkz , we im-
plemented (Hkz − E1,kz |ϕ1,kz 〉〈ϕ1,kz | − 4I )20 on the circuit for
obtaining the excited energy band. This is a simple model
that can be executed with high fidelity on quantum devices,
with one qubit as an ancillary qubit and another one as a
work qubit. Due to the peculiar nature of the eigenstates of
the model, a Hadamard gate is applied to the work qubit to
initialize it in a superposition state of |0〉 and |1〉. The quantum
circuit is shown in Fig. 4.

Figure 5 presents the band spectrum of a Weyl semimetal
obtained from the classical calculation (solid lines), numer-
ical simulation of P-FQE (dashed line), and experimental
results of the P-FQE algorithm (error bar). The experiments
are conducted on the Quafu quantum cloud platform [67].
Seven values of kz ∈ −2,−1.4,−0.6, 0, 0.7, 1.3, 2 were used
in the experiment. For different kz values and energy bands,
the Hamiltonian changes, and the ancillary qubit rotates by a
different angle around the Y -axis, while the quantum circuit
remains unchanged. For each k-vector, we performed three
experimental trials, taking 40 000 samples per trial. The error
bars are plotted using the average, minimum, and maximum
values of the three trials. The experimental results of the
P-FQE algorithm show good agreement with the theoretical
values and numerical simulations. Two energy bands intersect
at symmetric points, forming a pair of Weyl points. Due to the

FIG. 5. Experimental results of the energy band structure for a
Weyl semimetal as a function of kz. Solid lines denote the classical
computation results, while dashed lines indicate the classical simula-
tion results of the P-FQE algorithm. Error bars show the experimental
results from the superconducting quantum computing platform.

FIG. 6. The initialization part of the quantum circuits for
calculating the band structure of single-layer graphene. The
ancillary qubits are initialized to the state of cos θ

2 |0〉 |0〉 −
sin φ sin θ

2 |1〉 |0〉 + cos φ sin θ

2 |1〉 |1〉.

simplicity of the model, the eigenstates can often be measured
accurately in experiments, resulting in very small or even zero
error bars.

B. Graphene

The second model for the experiments is single-layer
graphene [68–71], a two-dimensional crystal with a hexag-
onal honeycomb lattice structure composed of carbon atoms
exhibiting SP2 hybridization. This distinctive lattice arrange-
ment causes the conduction and valence bands of graphene
to intersect at the K point in the Brillouin zone, resulting in
its zero-band-gap semiconductor characteristics. The Hamil-
tonian can be expressed as

Hk =
(

2 cos
ky

2
√

3
cos

kx

2
+ cos

ky√
3

)
σx

+
(

2 sin
ky

2
√

3
cos

kx

2
− sin

k2√
3

)
σy. (24)

After introducing a bias term −4I , the Hamiltonian con-
tains three terms (I , σx, and σy). For any power n, we have
(Aσx + Bσy − 4I )n = aσx + bσy + cI , which does not change
the number of expansion terms. Therefore, we only need two
ancillary qubits (�log2 3�) and a single work qubit. Here we
consider the 25th power of the Hamiltonian.

The quantum circuit is divided into three parts. The
first part initializes the ancillary register from |0〉 |0〉
to the superposition state cos θ

2 |0〉 |0〉 − sin φ sin θ
2 |1〉 |0〉 +

cos φ sin θ
2 |1〉 |1〉, corresponding to the terms I , σx, and σy,

respectively, as shown in Fig. 6. The second part involves
controlled operations on the work qubit (COX and CCY).
Since σy = iσxσz, the circuit can be simplified as shown in
Fig. 7. The C2(Z ) gate can be further decomposed into a series
of controlled-U gates. The third part is the measurement.
We only need to measure σx and σy results by applying the
Hadamard gate and Rx(π/2) gates before measuring in the
computational basis. To calculate the second energy band, the

FIG. 7. The left C2(Y ) − COX gate is equivalent to the right
circuit.
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FIG. 8. Quantum circuit for computing the band structure of single-layer graphene on the superconducting quantum computer ibm_nairobi.
The figure displays the circuit diagram for computing the first energy band and measuring the Pauli X. When computing the second energy
band, add an X gate to initialize the work qubit to the state |1〉. When measuring the Pauli Y, replace the Hadamard gate acting on the work
qubit before measurement with a rotation gate Rx (π/2).

work qubit is initialized to |1〉 by applying an X gate. The final
quantum circuit we run on the IBM cloud platform is shown
in Fig. 8, which is applied for the first band and measured
Pauli-X.

Due to the relatively high complexity of the second ex-
perimental model, requiring a deeper quantum circuit and
a larger number of control gates, it imposes higher hard-
ware requirements. Therefore, we choose the IBM quantum
chip ibm_nairobi as the platform for our second exper-
iment. We selected seven experimental points along the
high-symmetry path (K → � → M → K) in the reciprocal
space of graphene. In addition to the selected k-points � :
(
√

3π
9a , π

3a ), � : (0, 0), � : (0, π
3a ), and M : (0, 2π

3a ), we have
also chosen one k-point along each of the paths from �

to �, � to M, and M to K . These additional k-points are
(0, 3π

18a ), (0, π
2a ), and (

√
3π

9a , 2π
3a ). For the first two k-points, the

absence of the Pauli Y term in their Hamiltonian allows us
to perform the experiments using only two qubits in practice.
For each k-point, we conducted three trials and plotted error
bars, with each experiment consisting of 40 000 samples. As
shown in Fig. 9, the numerical simulation results of the P-FQE

algorithm align perfectly with the theoretical values. However,
there may be slight discrepancies in the experimental results,
but the overall trend remains consistent. The experimental
data for both experiments are presented in Appendix F.

V. CONCLUSIONS

In summary, the P-FQE algorithm addressed the issue of
exponential decay of the success probability with increas-
ing iterations in FQE by substituting the original operator
with its powers. Meanwhile, the P-FQE does not require a
lot of additional ancillary qubits. We use this algorithm to
study band-structure and energy spectrum calculations, and
it suits many kinds of Hamiltonian problems. Additionally,
we proposed the vector encoding method to estimate the
maximum number of expansion terms of the power of op-
erators, which can also be used to determine the truncation
order in a Taylor series as discussed in Ref. [57]. The P-FQE
algorithm is more suitable for current quantum computers
because of reducing the real runs. We conducted numerical
simulations on the Fermi-Hubbard model and double-layer
graphene model, alongside two experiments on different

FIG. 9. The energy band structure of single-layer graphene. (a) The Brillouin zone of single-layer graphene with the high-symmetry
k-points with � = (

√
3π

9a , π

3a ), � = (0, 0), � = (0, π

3a ), M = (0, 2π

3a ). (b) The energy bands depicted along the axis of high symmetry
(K → � → M → K) in the momentum space of graphene. The solid lines represent the energy bands obtained from classical computations,
while the dashed lines depict the results obtained through numerical simulation of the P-FQE algorithm. The error bars illustrate the
experimental measurements of the P-FQE algorithm conducted on ibm_nairobi chips.
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FIG. 10. The relationship between the number of terms in the Pauli expansion and the power of the Hamiltonian. (a) The minimal model
for a Weyl semimetal in Eq. (23) and kx = ky = kz = 0. (b) The model of one-layer graphene in Eq. (24) and kx = ky = 2π . (c) and (d) The
1D transverse-field Ising (TFI) models with five sites, h = 2, and six sites, h = 1 respectively. (e) The 1D antiferromagnetic Heisenberg (AFH)
model with six sites. (f) The model of twisted double-layer graphene with kx = 0, ky = 0 for a twist angle of 1.05◦. The size of the Hamiltonian
matrix is 196×196, while for a Hermitian matrix of the same dimension, the number of terms in the Pauli expansion can be 48 at most.

superconducting computers, to validate the effectiveness and
feasibility of the P-FQE algorithm. In the future, we will try
to find the optimal balance between the number of powers
and algorithm complexity to increase the efficiency of our
algorithm. Furthermore, we will try to establish a more precise
relationship between the power of Hamiltonians for various
physical systems and the number of terms in their expansion
using a linear combination of unitary operators.
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APPENDIX A: ERROR ESTIMATION
AND THE POWER ESTIMATION

In Sec. II B 1, we denote At x(0)√
x(0)†A2t x(0)

= |x(t )〉. Then the error
ε can be estimated,

ε = 〈x(t )|A|x(t )〉 − λ0

=
∑n−1

i=0 a2
i λ

2t+1
i∑n−1

i=0 a2
i λ

2t
i

− λ0

=
∑n−1

i=1 a2
i λ

2t
0

(
λi
λ0

)2t
(λi − λ0)∑n−1

i=0 a2
i λ

2t
0

(
λi
λ0

)2t

=
∑n−1

i=1 a2
i

(
λi
λ0

)2t
(λi − λ0)

a2
0 + ∑n−1

i=1 a2
i

(
λi
λ0

)2t

� (n − 1)a2
m

a2
0

(λn − λ0)

(
λ1

λ0

)2t

. (A1)

The error decreases exponentially with 2t (twice the expo-
nent). That means if we aim to achieve a preset precision ε,
the value of the exponent needs to be t = O(log n

ε
).

APPENDIX B: RELATIONSHIP OF THE NUMBER OF
TERMS IN THE PAULI EXPANSION AND THE POWER

OF THE HAMILTONIAN

Figure 10 illustrates the relationship between the number
of terms in the Pauli expansion and the exponent of the
power of the Hamiltonian for six different Hamiltonian mod-
els. Model (a) is the minimal model for a Weyl semimetal
in Eq. (23). With kx = ky = 0, the Hamiltonian simplifies to
include only the Pauli Z term. Raising the Pauli Z to any power
yields either the identity or the Pauli Z operator, thus maintain-
ing the number of terms. Model (b) is the model of one-layer
graphene in Eq. (24) and kx = ky = 2π . The Hamiltonian in-
cludes components involving Pauli-X and Pauli-Y terms, with
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their exponentiation resulting in either the identity operator or
a combination of Pauli-X and Pauli-Y terms.

We also consider the transverse-field Ising (TFI) model and
the antiferromagnetic Heisenberg (AFH) model [72]. Model
(c) and model (d) are 1D TFI models, with their Hamiltonian
forms

HTFI = −h
∑

i

Xi −
∑

i

ZiZi+1. (B1)

We consider five sites and set h = 2 in model (c), while
we consider six sites and h = 1 in model (d). Theoretically,
they can each have a maximum of 45 = 1024 and 46 = 4096
expansion terms after exponentiation, respectively.

Model (e) is the 1D AFH model with six sites, and its
Hamiltonian is

HAFH =
∑

i

XiXi+1 + YiYi+1 + ZiZi+1. (B2)

It can be observed in the figure that the number of expansion
terms stabilized at 544 after exponentiation, which is signif-
icantly fewer than the potential 4096. For models (c), (d),
and (e), the number of expansion terms does not significantly
increase with increasing powers, and it may even stabilize at a
considerably lower count than the theoretical prediction. This
phenomenon could be attributed to cancellations occurring
among the expansion terms during exponentiation.

For model (f), we consider twisted double-layer graphene
with kx = 0 and ky = 0 for a twist angle of 1.05◦. Terms with
coefficients smaller than 10−3 are neglected after expansion.
We can always disregard terms with coefficients substantially
smaller than others, thereby significantly reducing the number
of expansion terms and simplifying the exponentiation pro-
cess.

From the figure, we observe three scenarios: rapid con-
vergence, fluctuation, or a slow increase in the number of
terms in the Pauli expansion with increasing powers of the
Hamiltonian. These scenarios are often applicable to other
physical systems as well.

APPENDIX C: ANOTHER CIRCUIT UPDATING METHOD

Considering a Hamiltonian H = ∑M
i=1 αiPi (Pi is Pauli

word), which has n eigenvalues {λi}n
i=1 and corresponding

orthogonal eigenstates {|ψi〉}n
i=1. Then any quantum state

within the same Hilbert space can be expressed as a lin-
ear combination of these eigenstates: |�〉 = ∑n

i=1 ai|ψi〉.
We have(

Ht − λt
1|ψ1〉〈ψ1|

)|�〉
= (

Ht − λt
1|ψ1〉〈ψ1|

)
(a1|ψ1〉 + a2|ψ2〉 + · · · an|ψn〉)

= (
a1λ

t
1|ψ1〉 − a1λ

t
1|ψ1〉

) + a2λ
t
2|ψ2〉 + · · · + anλ

t
n|ψn〉

= λt
2

[
a2|ψ2〉 +

n∑
i=2

ai

(
λi

λ2

)t

|ψi〉
]
. (C1)

When the absolute values of the eigenvalues satisfy
the inequality constraint |λ1| � |λ2| � |λ3| · · · � |λn|,

ALGORITHM 1. The P-FQE algorithm.

Input: Hamiltonian H = ∑M
i=1 αiPi, State |�0〉, Exponent t ,

The highest energy level needed to be determined: J
Output: Eigenvalues {λ̃i}J

i=1, Eigenstates {|ψ̃i〉}J
i=1

1: Pauli expansion of the power of the Hamiltonian:
U1 = Ht = ∑L1

i=1 β
(1)
i Pi

2: while j � Jdo
3: Apply circuit once to |�0〉, having |ψ̃ j〉 = Uj |�0〉;
4: Pauli measure ε

( j)
i = 〈ψ̃ j |Pi|ψ̃ j〉;

5: return λ̃ j = ∑M
i=1 αiε

( j)
i , |ψ̃ j〉〈ψ̃ j | = ∑L j

i=1
ε

( j)
i
2n Pi;

6: Reconstruct circuit Uj+1 = Uj − λ̃ j
t |ψ̃ j〉〈ψ̃ j | =∑L j+1

i=1 β
( j+1)
i Pi

7: end while

then

lim
t→∞

(
λi

λ2

)t

= 0. (C2)

That is, when the exponent t is sufficiently large, we will
obtain the first excited state of the Hamiltonian. (Ht −
λt

1|ψ1〉〈ψ1|)|�〉 has the same result as (H − λ1|ψ1〉〈ψ1|)t |�〉,
which is illustrated in Sec. II B. λ1 and the Pauli expansion
of |ψ1〉〈ψ1| can be obtained from Pauli measurement as de-
scribed in Sec. II C. The quantum circuit operator required to
calculate the jth excited state is

Uj = Ht − λ̃1
t |ψ̃1〉〈ψ̃1| − λ̃2

t |ψ̃2〉〈ψ̃2| − · · ·
− λ̃ j−1

t |ψ̃ j−1〉〈ψ̃ j−1|
= Uj−1 − λ̃ j−1

t |ψ̃ j−1〉〈ψ̃ j−1|

=
L j∑

i=1

β
( j)
i Pi. (C3)

Compared to the circuit updating method described in
Sec. II C, this method eliminates the need for operator ex-
ponentiation when constructing quantum circuit operators for
computing excited states, further reducing algorithmic com-
plexity. We present the P-FQE algorithm using this circuit
updating method in Algorithm 1.

APPENDIX D: A SUPPLEMENT
OF NUMERICAL SIMULATION

We examined double-layer graphene models at twist an-
gles of 0.5◦, 1.05◦, and 5◦, respectively, using two k-points
as an example. For each of these six models, we assessed
the convergence of the first 10, 30, and 60 energy levels as
the exponent of the power of operators increased using our
method. As we can see in Fig. 11, convergence becomes
slower with higher energy levels, as solving for higher en-
ergy levels requires prior solutions for all preceding energy
levels.

We also calculated the corresponding fidelity or average
error, which decreases as the exponent increases, as shown
in Fig. 12. For the twisted double-layer graphene models at
three different twist angles, we focused on the simulation
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(a) (b)

FIG. 11. Convergence with the power of the Hamiltonian. The horizontal lines represent the theoretical values. With a sufficient value of
the exponent, the simulated values will converge to the theoretical values.

error at k = (0, 0) for a demonstration. The formula employed
for computing the average error is (

∑J
1

|Esimu−Etheo|
Etheo

)/J , where
Esimu denotes the simulation value and Etheo represents the
theoretical value, respectively.

As shown in Fig. 12, for a twist angle of 1.05◦ and k =
(0, 0), if we want the average error of the first 60 energy levels
to be less than 0.1, we just need less than 40th power. If we
want the average error of the first 10 energy levels to be less
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(c) (d)

(e) (f)

FIG. 11. (Continued.)

than 0.01, we need less than 100th power. And if we want the
average error of the first 60 energy levels to be less than 0.01,
we need about 300th power. When it comes to solving for
more energy levels, more power is needed to meet this preci-
sion requirement. For convenience, we directly took the 400th
power of the Hamiltonian in the main text. And the analysis
of the other two double-layer graphene models at twist angles
of 0.5◦ and 5◦ is similar. However, in practical applications,
we can certainly use less power of the Hamiltonian at lower
energy levels and gradually increase the power as we continue
solving for higher energy levels.

APPENDIX E: QUAFU QUANTUM CLOUD PLATFORM
AND IBM QUANTUM

Quafu is an open quantum computing cloud platform [67],
connected to a 136-qubit quantum computer and two other
18- and 10-qubit superconducting quantum computers. In the
experiment of Weyl semimetal, we use the first two qubits
of the 18-qubit processor called ScQ-P18, with an idle qubit
frequency of 4.590 and 5.016 GHz, and up to 97.5% aver-
age fidelity of CZ gates. The device parameters are listed in
Table I.
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FIG. 12. The average error of simulation. At a specific k-point (0,0), the average error for the first J energy levels is calculated when
performing numerical simulations using P-FQE.

In the experiment to compute the energy band of graphene,
we selected the quantum backend ibm_nairobi on the IBM
quantum cloud platform, a superconducting quantum chip
with seven qubits. The basis gates of ibm_nairobi are CX,
ID, RZ, SX, and X, and the median errors for the CNOT

gate, SX gate, and readout are 9.360×10−3, 2.894×10−4, and
2.500×10−2. The first three qubits are used in our circuits,
with work frequencies of 5.26, 5.17, and 5.274 GHz. The
topological maps of ScQ-P18 and ibm_nairobi are shown in
Fig. 13.

TABLE I. Device parameters. T 1 and T 2 represent the decoherence time of the qubit energy and the qubit phase. η corresponds to the
anharmonicity of the qubit. ωi represents the idle frequency of the qubit. ωr corresponds to the resonant frequency of the qubit during readout.
TCZ represents the CZ (controlled-Z) gate duration. Connection shows the connected two qubits that form the CZ gate. FCZ represents the
fidelity of the CZ gate formed by the connected qubits, which is obtained by randomized benchmarking. F0 and F1 are the readout fidelity of
the qubit in |0〉 and |1〉.

Qubit T 1 (μs) T 2 (μs) η/2π (GHz) ωi/2π (GHz) ωr/2π (GHz) TCZ (μs) Connection FCZ F0 F1

Q0 57.564 4.239 0.205 4.590 6.776 30 Q1-Q0 0.975 0.953 0.853
Q1 27.885 3.699 0.192 5.016 6.760 30 Q2-Q1 0.909 0.978 0.905
Q2 41.442 4.835 0.203 4.620 6.737 30 Q3-Q2 0.964
Q3 40.102 2.299 0.198 4.965 6.713 30 Q4-Q3 0.951
Q4 28.994 5.690 0.205 4.542 6.693 30 Q5-Q4 0.945
Q5 23.602 2.203 0.194 5.030 6.676 30 Q6-Q5 0.954
Q6 26.839 3.420 0.204 4.615 6.650 30 Q7-Q6 0.964
Q7 19.760 2.438 0.200 5.000 6.634 30 Q8-Q7 0.969
Q8 23.219 3.534 0.206 4.640 6.625 30 Q9-Q8 0.962
Q9 27.308 1.325 0.200 5.056 6.648 30 Q10-Q9 0.962
Q10 41.155 2.779 0.205 4.685 6.665 30 Q11-Q10
Q11 28.119 1.494 0.198 4.993 6.693 30
Q12 45.117 2.953 0.206 4.509 6.705 30
Q13 29.795 1.568 0.198 4.869 6.725 30
Q14 45.117 5.467 0.204 4.578 6.751 30
Q15 37.279 3.068 0.196 5.048 6.771 30
Q16 40.837 5.153 0.203 4.682 6.788 30
Q17 41.428 3.116 0.197 5.125 6.807 30
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FIG. 13. The topological maps of superconducting quantum
chips ScQ-P18 and ibm_nairobi. Each qubit is coupled with its
nearest neighbors. (a) The topological map of backend ScQ-P18 on
Quafu. (b) The topological map of backend ibm_nairobi on IBM
Quantum.

APPENDIX F: EXPERIMENTAL DATA

Tables II and III are the results of experiments con-
ducted on two superconducting quantum computers. The

error is calculated by (average value − theoretical value)/
theoretical value, where the average value is the average of
three trial results. The Hamiltonian of the Weyl semimetal
used in experiments only involves the Pauli-Z term. Therefore,
we only need to perform Pauli-Z measurement, which reduces
errors in principle. For the Quafu platform, we implemented
a readout correction for the superconducting quantum hard-
ware. We denote the probability of reading out qubit Qj in
|0〉 (|1〉) when it is prepared in a |0〉 (|1〉) state as F j

0 and
F j

1 , respectively. The readout correction matrix of Qj can be
written as

Mj =
(

F j
0 1 − F j

1

1 − F j
0 −F j

1

)
. (F1)

After applying M−1
j to the final state |φ j〉, we obtain |ψ j〉. We

take |ψ j〉 as the readout result, which helps to further reduce
errors. As a result, some of our experimental results indicate
zero errors.

TABLE II. The experimental results of Weyl semimetal on the Quafu quantum cloud platform using an 18-qubit chip (ScQ-P18).

k-point Energy level Trial 1 Trial 2 Trial 3 Average value Theoretical value Error
(kx = ky = 0) n (eV) (eV) (eV) (eV) (eV) (%)

kz = −1.4 n = 1 −0.9328 −0.9600 −0.9398 −0.9442 −0.9600 −1.645
n = 2 0.9600 0.9600 0.9600 0.9600 0.9600 0.000

kz = −0.6 n = 1 −0.6400 −0.6400 −0.6400 −0.6400 −0.6400 0.000
n = 2 0.5647 0.6400 0.6211 0.6086 0.6400 −4.910

kz = 0 n = 1 −1.0000 −1.0000 −1.0000 −1.0000 −1.0000 0.000
n = 2 0.8935 0.9159 0.9806 0.9300 1.0000 −6.999

kz = 0.7 n = 1 −0.5100 −0.5100 −0.5100 −0.5100 −0.5100 0.000
n = 2 0.4567 0.5100 0.5041 0.4903 0.5100 3.872

kz = 1.3 n = 1 −0.6900 −0.6877 −0.6821 −0.6866 −0.6900 −0.491
n = 2 0.6900 0.6900 0.6900 0.6900 0.6900 0.000

kz = 2 n = 1 −2.7315 −3.0000 −2.9241 −2.8852 −3.0000 −3.827
n = 2 2.9787 3.0000 3.0000 2.9929 3.0000 0.237

TABLE III. The experimental results of single-layer graphene on the IBM Quantum using the chip ibm_nairobi.

k-point Energy level Trial 1 Trial 2 Trial 3 Average value Theoretical value Error
(kx, ky ) n (eV) (eV) (eV) (eV) (eV) (%)

(
√

3π

9a , π

3a ) n = 1 −1.5886 −1.6339 −1.6324 −1.6183 −2.0000 −19.080
n = 2 1.7945 1.8008 1.8040 1.7998 2.0000 −10.010

(0,0) n = 1 −2.4149 −2.4513 −2.4221 −2.4294 −3.0000 −19.019
n = 2 2.6940 2.7135 2.7079 2.7051 3.0000 −9.829

(0, 3π

18a ) n = 1 −2.0679 −2.1165 −2.0137 −2.0660 −2.7979 −26.158
n = 2 2.1502 2.1970 2.0870 2.1447 2.7979 −23.345

(0, π

3a ) n = 1 −1.6400 −1.5467 −1.6052 −1.5973 −2.2361 −28.568
n = 2 1.6833 1.7637 1.7509 1.7326 2.2361 −22.515

(0, π

2a ) n = 1 −1.0591 −1.0491 −1.1572 −1.0885 −1.4736 −26.136
n = 2 1.1220 1.1112 1.0810 1.1047 1.4763 −25.170

(0, 2π

3a ) n = 1 −0.7552 −0.7755 −0.7557 −0.7621 −1.0000 −23.786
n = 2 0.7357 0.7791 0.7635 0.7594 1.0000 −24.057

(
√

3π

9a , 2π

3a ) n = 1 −0.5303 −0.5332 −0.5230 −0.5288 −0.7321 −27.767
n = 2 0.5662 0.5308 0.5206 0.5392 0.7321 −26.348
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