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Ensemble density functional perturbation theory: Spatial dispersion in metals
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We present a first-principles methodology, within the context of linear-response theory, that greatly facilitates
the perturbative study of physical properties of metallic crystals. Our approach builds on ensemble density
functional theory as formulated by Marzari, Vanderbilt, and Payne [Phys. Rev. Lett. 79, 1337 (1997)] to write
the adiabatic second-order energy as an unconstrained variational functional of both the wave functions and
their occupancies. Thereby, it enables the application of standard tools of density functional perturbation theory
(most notably, the 2n + 1 theorem) in metals, opening the way to an efficient and accurate calculation of their
nonlinear and spatially dispersive responses. We apply our methodology to phonons and strain gradients and
demonstrate the accuracy of our implementation by computing the spatial dispersion coefficients of zone-center
optical phonons and the flexoelectric force-response tensor of selected metal structures.
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I. INTRODUCTION

In modern condensed matter physics, density functional
perturbation theory (DFPT) has emerged as the method of
choice for accurately computing response properties of real
materials. One key advantage that sets DFPT apart from
alternative methods, e.g., the frozen-phonon technique [1],
is its unique ability to handle incommensurate lattice dis-
tortions with arbitrary wave vectors q without significantly
increasing the computational burden. Another important fea-
ture is related to the variational character of the Kohn-Sham
energy functional: its perturbative expansion in powers of
an adiabatic parameter λ rests on the well-known 2n + 1
theorem [2–4], enabling the calculation of, e.g., third-order
response properties with the sole knowledge of first-order
wave functions. Interestingly, by treating the wave vector q
as an additional perturbation parameter, the advantages of
the 2n + 1 theorem have recently been generalized to the
long-wavelength expansion of the energy functional at an ar-
bitrary order in the wave vector [5]. Successful application of
long-wave DFPT techniques for the calculation of first-order
spatial dispersion coefficients was demonstrated in several
contexts, including flexoelectric coefficients [5,6], dynamical
quadrupoles [5,6], natural optical activity [7], and generalized
Lorentz forces [8].

In the context of DFPT, metals have historically been over-
shadowed by insulators. One of the main obstacles one needs
to overcome when dealing with metals at zero temperature are
Brillouin zone (BZ) sampling errors coming from the Fermi
surface discontinuities. The most effective and widely used
strategy to deal with this issue at the ground-state level is
the smearing technique [9]. In the latter approach, the sharp
Fermi distribution, represented by the Heaviside step function,
is approximated by a smoother function that is a broadened
approximation of the former. The smearing approach was first
introduced in the context of DFPT by de Gironcoli [10], thus
enabling the computations of phonons in metals and, in turn,

of a number of thermodynamic properties that depend on
phonons and electron-phonon interactions (e.g., electrical and
thermal conductivity, or superconductivity) [11]. In spite of
its success, the formulation proposed by de Gironcoli lacks
a straightforward variational formulation. This limitation pre-
vents the application of the 2n + 1 theorem, which is key to
accessing to higher-order energy derivatives.

The motivation for obtaining a theoretical framework
that overcomes these obstacles is extensive, with significant
emphasis on nonlinear optics [12–17] and optical disper-
sion [18–22]. Notable physical manifestations thereof include
second-harmonic generation [23], the optical Kerr effect
[24], the gyrotropic or nonreciprocal birefringence [25], and
nonlinear plasmonics [26], which are of interest for new-
generation devices with enhanced functionalities [27] in a
number of areas, including optical signal processing and sen-
sors. Apart from very few examples, most of the calculations
that have been reported so far were based on semiclassical
or tight-binding models. While these approaches can provide
a reliable qualitative picture in many cases, their predictive
power at the quantitative level is limited. As the experimental
demand for reliable theoretical support is steadily growing in
these areas, so is the need for a first-principles method that
is free from the aforementioned drawbacks. A tentative road
map toward this ambitious goal necessarily faces some of
the long-standing technical obstacles that have slowed down
progress in this area over the years: (i) Most first-principles at-
tempts at calculating third-order (either nonlinear or spatially
dispersive) coefficients have relied on cumbersome summa-
tions over a large number of unoccupied bands, with an
obvious detrimental impact on both accuracy and computa-
tional efficiency. (ii) The effects of “local fields,” arising due
to the self-consistent screening of the external perturbations,
have seldom been accounted for, even if their potentially
dramatic impact on the response [7,28] is known. (iii) Actual
calculations are often plagued by the poorly conditioned na-
ture of the dynamical response in a metal, where exceptional
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care in the computational parameters is often needed to avoid
unphysical divergencies in the low-frequency limit.

In insulators, (i)–(ii) have been solved since the mid-1990s,
both at the static [29,30] and dynamical [31] level, and (iii)
does not pose any special issue as long as one works in the
transparent regime. Addressing (i)–(iii) in metals appears as
a daunting task, as they are all open problems in the con-
text of the third-order response. As a first key step, in this
work we shall focus on the issues (i)–(ii) in an adiabatic
(static) context, and leave the additional complications re-
lated to the dynamical nature of the optical response to a
future work. Note that, even within the adiabatic regime, a
plethora of outstanding physical phenomena exist that require
third-order energy derivatives for their correct treatment, e.g.,
phonon anharmonicity, nonlinear elasticity, or force-response
coefficients to strain gradients (flexocoupling coefficients, of
relevance to the so-called ferroelectric metals [32]).

To enable their first-principles calculation, here we develop
a general perturbative framework for metallic systems by us-
ing the ensemble density functional theory (DFT) formalism
of Marzari, Vanderbilt, and Payne (MVP) [33] as a conceptual
basis. The invariance of the latter with respect to unitary
transformations within the active subspace allows us to write
an unconstrained second-order energy functional at an ar-
bitrary q vector, which is stationary in the first-order wave
functions and in the first-order occupation matrix. Then, mim-
icking the well-established procedure that is employed with
insulators [5], the wave vector q is treated as a perturbation
parameter, which provides (via the 2n + 1 theorem) an ana-
lytic long-wavelength expansion of the second-order energy
functional at any desired order. Our methodology brings the
first-principles calculation of dispersion properties in metals
to the same level of accuracy and efficiency as in insulators;
i.e., only the knowledge of uniform field perturbations is re-
quired to access first-order dispersion coefficients.

This work is organized as follows. In Sec. II A we summa-
rize the fundamentals of ensemble density functional theory as
described in Ref. [33]. In Sec. II B we perform a perturbation
expansion of the ensemble-DFT energy functional of MVP,
obtaining an unconstrained second-order energy functional of
the first-order orbitals and occupation matrices at an arbitrary
wave vector q. In Sec. III, following the guidelines of Ref. [5],
we take the first-order long-wave expansion of the aforemen-
tioned second-order energy. In Sec. IV, we apply our general
formalism to phonons and strain gradients, and validate our
methodology by computing the spatial dispersion coefficients
of zone-center phonons and the flexoelectric force-response
tensor for a number of crystals, including the well-known fer-
roelectric metal LiOsO3. Finally, we provide a brief summary
and outlook in Sec. VI.

II. THEORY

A. MVP’s formulation of ensemble DFT

Here we recap the basics of ensemble DFT as pro-
posed by Marzari, Vanderbilt, and Payne [33], which can
be regarded as a generalization of Mermin’s formulation
of finite-temperature DFT [34]. The key assumption of
MVP consists of adopting a matrix representation for the

occupancies ( fi j) via the following energy functional [33],

E [{ψm}, { fmn}] =
M∑

m,n=1

fnm〈ψm|(T̂ + V̂ext )|ψn〉

+ EHxc[ρ] − σS[{ fmn}]

−
M∑

m,n=1

�mn(〈ψm|ψn〉 − δmn)

− μ(Tr(f ) − N ). (1)

Here T̂ is the kinetic energy operator, V̂ext refers to the atomic
pseudopotentials, and EHxc is the Hartree exchange and cor-
relation energy, which is a functional of the electron density,

ρ(r) =
M∑

m,n=1

fnm〈ψm|r〉 〈r|ψn〉. (2)

In Eq. (1), σ and S are, respectively, the smearing parameter
and the entropy. If the equilibrium distribution of the occu-
pancies is chosen to follow the Fermi-Dirac (FD) statistics,
σ plays the role of a finite (electronic) temperature, T . In
practice, using a smeared distribution function is primarily
aimed at accelerating the convergence with k-mesh density,
so non-FD forms are often preferred [9,35]. The Lagrange
multipliers �mn and μ enforce the orthonormality of the wave
functions and the particle number conservation, where N is the
total number of electrons. Sums are carried out for a number
M of active bands with nonzero occupancies. As long that
the occupancies of the highest energy states within this active
subspace (M) are vanishingly small, further increasing M
does not produce any change in the total energy or in any other
observable derived from Eq. (1).

If a diagonal representation for the occupation matrix f is
enforced at all times, Eq. (1) reduces to the standard formu-
lation [36–38] of Mermin’s approach. As the system evolves
adiabatically in parameter space, however, the numerical inte-
gration of the resulting electronic equations of motion suffers
from severe ill-conditioning issues [37]. Indeed, whenever
level crossings occur near the Fermi surface, the orbitals need
to abruptly change in character (via a subspace rotation) along
the trajectory due to the explicit imposition of the Hamilto-
nian gauge. (Sharp symmetry-protected crossings are the most
catastrophic, as they imply a discontinuity in the adiabatic
evolution of the orbitals involved.) This is obviously not an
issue in insulators, where the energy is invariant with re-
spect to arbitrary unitary transformations within the occupied
manifold.

The breakthrough idea of MVP’s ensemble density func-
tional theory consists of allowing for nonzero off-diagonal
elements of the occupation matrix ( fi j), and to treat them to-
gether with the wave functions (ψi) as variational parameters.
By doing so, it is easy to prove that Eq. (1) is covariant under
any unitary rotation U of the following type [33],

f ′ = UfU†,

|ψm〉′ =
∑

n

U †
mn|ψn〉, (3)
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which implies that one is no longer forced to stick to the
Hamiltonian gauge. This way, the problematic [39,40] sub-
space rotations can be conveniently reabsorbed into fi j , which
means that the first-order variations of the wave functions are
automatically orthogonal to the active subspace, without the
need of imposing additional constraints.

B. Perturbation expansion

In the following, we assume that the system under study
evolves from its equilibrium state, which we describe by as-
suming a dependence of the Hamiltonian on some adiabatic
parameter λ. In the perturbative regime, we write

Ĥ (λ) = Ĥ (0) + λĤ (1) + 1

2
λ2Ĥ (2) + · · · . (4)

This parametric dependence propagates in a similar way to the
wave functions and the occupation matrix,

|ψm(λ)〉 = ∣∣ψ (0)
m

〉 + λ
∣∣ψ (1)

m

〉 + · · · ,

fmn(λ) = f (0)
mn + λ f (1)

mn + · · · . (5)

We now follow the guidelines of Refs. [2,3] to recast the
second-order energy as the constrained variational minimum
of a functional that depends on both the first-order wave
functions, |ψ (1)

m 〉, and the first-order occupation matrix, f (1)
mn .

(In the next section we recast this problem as the minimization
of an unconstrained energy functional, which poses great ad-
vantages in light of performing a long-wavelength expansion.)
We find

E (2)
con = 2

M∑
m,n=1

(
f (0)
mn

〈
ψ (1)

n

∣∣Ĥ (0)
∣∣ψ (1)

m

〉 − �(0)
mn

〈
ψ (1)

n

∣∣∣∣ψ (1)
m

〉) + 2
M∑

m,n=1

f (0)
mn

(〈
ψ (1)

n

∣∣Ĥ (1)
∣∣ψ (0)

m

〉 + c.c.
)

+ 2
M∑

m,n=1

f (1)
mn

〈
ψ (0)

n

∣∣Ĥ (1)
∣∣ψ (0)

m

〉 − σ

M∑
m,n,l,k=1

f (1)
mn

∂2S

∂ f (0)
nm ∂ f (0)

lk

f (1)
lk

+
∫

	

∫
ρ (1)(r)KHxc(r, r′)ρ (1)(r′)d3rd3r′ +

M∑
m,n=1

f (0)
mn

〈
ψ (0)

n

∣∣Ĥ (2)
∣∣ψ (0)

m

〉
, (6)

where c.c. stands for complex conjugate and the Lagrange
multipliers �(0)

mn are related to the matrix elements of the
ground-state Hamiltonian, �(0)

mn = f (0)
nm 〈ψ (0)

m |Ĥ (0)|ψ (0)
n 〉, with

f (0)
nm = fmδnm. (Note that the energy functional E (2) is defined

as the second derivative of the total energy; this convention
differs by a factor of 2 with respect to Refs. [2,3,5,41].) The
subscript “con” in Eq. (6) indicates that this energy functional
is minimized subject to certain constraints. In this case, we
impose that the ground-state wave functions are orthogonal to
the first-order wave functions,〈

ψ (0)
m

∣∣ψ (1)
n

〉 = 0, ∀m, n ∈ M, (7)

which is also known as the parallel transport gauge [3]. We
shall explain all the new terms appearing in Eq. (6) in the
following. The second derivative of the entropy with respect
to the occupation matrix appears in the second line of Eq. (6).
By assuming a diagonal representation for the unperturbed
occupation matrix, one can show that the following holds,

σ
∂2S

∂ f (0)
mn ∂ f (0)

kl

= δmkδnl

f̄mn
, (8)

where the matrix f̄mn ≡ G(εm, εn) is defined as [40]

G(x, y) =
⎧⎨
⎩

f (x)− f (y)
x−y , if x �= y,

1
2

(
∂ f (x)

∂x + ∂ f (y)
∂y

)
, if x = y.

(9)

[In the numerical implementation we set a finite tolerance
to test the equality of x and y, hence the need for the sym-
metrization in the second line; similar considerations apply to
Eq. (55) later on.] The third line in Eq. (6) contains the Hartree

exchange and correlation (Hxc) kernel,

KHxc(r, r′) = δVHxc(r)

δρ(r′)
= δ2EHxc

δρ(r)δρ(r′)
, (10)

and ρ (1)(r) is the first-order electron density, which depends
both on the first-order wave functions as well as on the first-
order occupation matrix,

ρ (1) = ∂ρ

∂ψ
ψ (1) + ∂ρ

∂ f
f (1). (11)

The stationary condition on the first-order occupation matrix
allows us to find a solution for f (1)

mn ,

δE (2)

δ f (1)
mn

= 0 −→ f (1)
mn = f̄mn

〈
ψ (0)

m

∣∣Ĥ(1)
∣∣ψ (0)

n

〉
, (12)

where the calligraphic Hamiltonian indicates that self-
consistent field terms have been included, Ĥ(1) = Ĥ (1) + V̂ (1),
with

V (1)(r) =
∫

KHxc(r, r′)ρ (1)(r′)d3r′. (13)

C. Unconstrained variational formulation

At this stage, in complete analogy with the insulating
case [5] and with the forthcoming goal of performing a
long-wavelength expansion of the energy functional, we can
write an unconstrained variational functional for E (2) as
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follows,

E (2) = 2
M∑

m=1

fm
〈
ψ (1)

m

∣∣(Ĥ (0) + aP̂ − ε (0)
m

)∣∣ψ (1)
m

〉 + 2
M∑

m=1

fm
(〈
ψ (1)

m

∣∣Q̂Ĥ (1)
∣∣ψ (0)

m

〉 + c.c.
)

+ 2
M∑

m=1

f (1)
mn

〈
ψ (0)

n

∣∣Ĥ (1)
∣∣ψ (0)

m

〉 − M∑
m,n=1

f (1)
mn

ε (0)
n − ε (0)

m

fn − fm
f (1)
nm

+
∫

	

∫
ρ (1)(r)KHxc(r, r′)ρ (1)(r′)d3rd3r′ +

M∑
m=1

fm
〈
ψ (0)

m

∣∣Ĥ (2)
∣∣ψ (0)

m

〉
, (14)

where a is a parameter with the dimension of energy that
ensures the stability of the functional [4,5], and the operators

P̂ =
M∑

m=1

∣∣ψ (0)
m

〉〈
ψ (0)

m

∣∣, Q̂ = 1 − P̂, (15)

are projectors onto and out of the active subspace, respec-
tively. These are also relevant in the first-order electron
density,

ρ (1)(r) =
M∑

m=1

fm
〈
ψ (1)

m

∣∣Q̂|r〉〈r∣∣ψ (0)
m

〉 + c.c.

+
M∑

m,n=1

f (1)
mn

〈
ψ (0)

n

∣∣r〉 〈r∣∣ψ (0)
m

〉
. (16)

(Note that, unlike in the insulating case, P̂ does not correspond
to the ground-state density operator.) The stationary condition
on the first-order wave functions, δE (2)/δ〈ψ (1)

m | = 0, leads to
a standard Sternheimer equation, as proposed by Baroni et al.
[4], (

Ĥ (0) + aP̂ − ε (0)
m

)∣∣ψ (1)
m

〉 = −Q̂Ĥ(1)
∣∣ψ (0)

m

〉
. (17)

D. Nonstationary formulas

Plugging the stationary conditions Eq. (12) and Eq. (17)
into Eq. (14) results in the following nonstationary (nonst)
expression for the second-order energy,

E (2)
nonst =

M∑
m=1

fm
〈
ψ (1)

m

∣∣Ĥ (1)
∣∣ψ (0)

m

〉 + c.c.

+
M∑

m,n=1

f (1)
mn

〈
ψ (0)

n

∣∣Ĥ (1)
∣∣ψ (0)

m

〉

+
M∑

m=1

fm
〈
ψ (0)

m

∣∣Ĥ (2)
∣∣ψ (0)

m

〉
. (18)

Interestingly, the only difference between Eq. (16) and
Eq. (18) is that the first-order external perturbation, Ĥ (1),
appearing in the second-order energy is substituted with the
operator |r〉〈r| in the first-order electron density expression.
We can even achieve a more compact version of the above
by writing both the second-order energy and the first-order
electron density as a trace,

E (2)
nonst = Tr

(
ρ̂ (1)Ĥ (1) + ρ̂ (0)Ĥ (2)

)
(19)

and

ρ (1)(r) = Tr(ρ̂ (1)|r〉 〈r|), (20)

where the ground-state density operator is given by

ρ̂ (0) =
M∑

m=1

∣∣ψ (0)
m

〉
fm

〈
ψ (0)

m

∣∣, (21)

and we have defined the first-order density operator as

ρ̂ (1) =
M∑

m=1

∣∣ψ (0)
m

〉
fm

〈
ψ (1)

m

∣∣ + c.c. +
M∑

m,n=1

∣∣ψ (0)
m

〉
f (1)
mn

〈
ψ (0)

n

∣∣.
(22)

E. Relation to de Gironcoli’s approach

Our formalism naturally recovers de Gironcoli’s standard
expressions for metals. We start by defining the following
tilded first-order wave functions,

∣∣ψ̃ (1)
m

〉 = ∣∣ψ (1)
m

〉 + 1

2 fm

M∑
n=1

∣∣ψ (0)
n

〉
f (1)
mn . (23)

The first-order density matrix is then given by

ρ̂ (1) =
M∑

m=1

∣∣ψ (0)
m

〉
fm

〈
ψ̃ (1)

m

∣∣ + c.c., (24)

which, in turn, exactly reduces to our Eq. (22). The non-
stationary second-order energy and the first-order electron
density can then be expressed succinctly using this notation
as

E (2)
nonst =

M∑
m=1

fm
〈
ψ̃ (1)

m

∣∣Ĥ (1)
∣∣ψ (0)

m

〉 + c.c.

+
M∑

m=1

fm
〈
ψ (0)

m

∣∣Ĥ (2)
∣∣ψ (0)

m

〉
(25)

and

ρ (1) =
M∑

m=1

fm
〈
ψ̃ (1)

m

∣∣r〉 〈r∣∣ψ (0)
m

〉 + c.c., (26)

where this expression for the first-order electron density,
Eq. (26), coincides with Eq. (10) of Ref. [10]. Our tilded first-
order wave functions defined here can therefore be regarded
as the �φi(r) wave functions of de Gironcoli’s approach in
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Ref. [10]. Interestingly, Eq. (25) and Eq. (26) resemble the
expressions that are commonly used in insulators. Here, how-
ever, the tilded first-order wave functions take into account
the subspace unitary rotations in the active subspace, via the
second term on the right-hand side of Eq. (23); this term is
absent in insulators.

F. Parametric derivative of operators

Equation (22) can be regarded as a special case of a more
general rule for differentiating operators along adiabatic paths
in parameter space. We establish this rule in the following,
since it is key to the long-wave expansion of the second-order
energy functional that we perform in the next section.

Consider an operator in the following form,

Ô =
M∑

m=1

∣∣ψ (0)
m

〉
h
(
ε (0)

m

)〈
ψ (0)

m

∣∣, (27)

where h(ε (0)
m ) is a real and differentiable function of the eigen-

value ε (0)
m . The derivative of Ô with respect to an adiabatic

parameter λ is then given by

∂Ô

∂λ
=

M∑
m=1

∣∣ψ (0)
m

〉
h
(
ε (0)

m

)〈
ψλ

m

∣∣ + c.c.

+
M∑

m,l=1

G
(
ε

(0)
l , ε (0)

m

)∣∣ψ (0)
m

〉〈
ψ (0)

m

∣∣Ĥλ
∣∣ψ (0)

l

〉〈
ψ

(0)
l

∣∣, (28)

where G is defined as in our Eq. (9), only replacing f with
h therein. This result essentially corresponds to Eq. (20) of
Ref. [15], but recast in an ensemble DFPT form. Its proof rests
on the following two rules,

∂h(ε (0)
m )

∂λ
= ∂h(ε (0)

m )

∂ε
(0)
m

〈
ψ (0)

m

∣∣Ĥλ
∣∣ψ (0)

m

〉
, (29a)

∂
∣∣ψ (0)

m

〉
∂λ

= ∣∣ψλ
m

〉 + M∑
n=1
n �=m

|ψ (0)
n 〉

〈
ψ (0)

n

∣∣Ĥλ
∣∣ψ (0)

m

〉
ε

(0)
m − ε

(0)
n

, (29b)

where the term n = m is not included in the summation. Note
that, when applied separately, Eqs. (29) require that there be
no degeneracies in the spectrum; conversely, Eq. (28) is valid
in the general case. Whenever h corresponds to the occupation
function f , the operator Ô reduces to the ground-state density
operator and Eq. (28) becomes Eq. (22).

III. LONG-WAVE EXPANSION OF THE SECOND-ORDER
ENERGY FUNCTIONAL

A. Monochromatic perturbations

We now apply the formalism presented in the previous
subsection to the case of a monochromatic perturbation,
modulated at a wave vector q. By exploiting linearity, the first-
order Hamiltonian is conveniently written as a phase times a
cell-periodic part [5,41], such that

Ĥ (1)(r, r′) = eiq·rĤ (1)
q (r, r′), (30)

and the Kohn-Sham wave functions are expressed as

ψ
(0)
mk (r) = eik·ru(0)

mk(r), (31)

where u(0)
mk(r) are the cell-periodic Bloch functions. We can

now write the second-order energy functional as a stationary
(st) functional (with respect to the wave functions and the
occupation matrix) plus a nonvariational (nv) contribution,

Eλ1λ2
q = Eλ1λ2

st,q + Eλ1λ2
nv,q . (32)

For the sake of generality, we consider mixed derivatives with
respect to two arbitrary perturbations, λ1 and λ2. (Applica-
tions to the specific cases of phonons and strains are discussed
in Sec. IV.) The stationary part can be written as follows,

Eλ1λ2
st,q =

∫
BZ

[d3k]
(

Ēλ1λ2
k,q + Ēλ1λ2 ∗

k+q,−q + �Eλ1λ2
k,q

)

+
∫

	

∫
ρλ1∗

q (r)Kq(r, r′)ρλ2
q (r′)d3rd3r′, (33)

where the shorthand notation [d3k] = 	/(2π )3d3k is used for
the Brillouin zone (BZ) integration and

Kq(r, r′) = KHxc(r, r′)eiq·(r′−r) (34)

is the phase-corrected Coulomb and exchange-correlation ker-
nel. The second line of Eq. (33) explicitly depends on the
first-order electron densities,

ρλ
q (r) =

∫
BZ

[d3k]

[
M∑

m=1

(
fmk

〈
u(0)

mk

∣∣r〉 〈r|Q̂k+q
∣∣uλ

mk,q

〉

+ fmk+q
〈
uλ

mk+q,−q

∣∣Q̂k|r〉〈r
∣∣ u(0)

mk+q

〉)

+
M∑

m,n=1

〈
u(0)

mk

∣∣r〉 〈r∣∣u(0)
nk+q

〉
f λ
nk+q,mk

]
, (35)

where |uλ
mk,q〉 and f λ

nk+q,mk are the first-order trial wave func-
tions and occupation matrices, respectively. We shall name the
new symbols appearing in Eq. (33) as the wave function (Ē )
and occupation (�E ) contributions, which are given by

Ēλ1λ2
k,q =

M∑
m=1

fmk
〈
uλ1

mk,q

∣∣(Ĥ (0)
k+q + aP̂k+q − ε

(0)
mk

)∣∣uλ2
mk,q

〉

+
M∑

m=1

fmk
〈
uλ1

mk,q

∣∣Q̂k+qĤλ2
k,q

∣∣u(0)
mk

〉

+
M∑

m=1

fmk
〈
u(0)

mk

∣∣(Ĥλ1
k,q

)†
Q̂k+q

∣∣uλ2
mk,q

〉
(36)

and

�Eλ1λ2
k,q =

M∑
m,n=1

f λ1
mk,nk+q

〈
u(0)

nk+q

∣∣Ĥλ2
k,q

∣∣u(0)
mk

〉

+
M∑

m,n=1

〈
u(0)

mk

∣∣(Ĥλ1
k,q

)†∣∣u(0)
nk+q

〉
f λ2
nk+q,mk

−
M∑

m,n=1

f λ1
mk,nk+q

ε
(0)
nk+q − ε

(0)
mk

fnk+q − fmk
f λ2
nk+q,mk. (37)

It is useful to recall the following Hermiticity condi-
tions for first-order occupation matrices (fλ) and operators
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(Ĥλ, Ĥλ, or ρ̂λ),

f λ†
nk+q,mk = f λ

mk,nk+q, ρ̂
λ†
k,q = ρ̂λ

k+q,−q, (38)

which guarantees that the Fourier transforms of the response
functions defined here are real.

The stationary conditions on 〈uλ1
mk,q| and f λ1†

nk+q,mk of this
second-order energy functional give us the finite-q counter-
parts of Eq. (12) and Eq. (17),(

Ĥ (0)
k+q + aP̂k+q − ε

(0)
mk

)∣∣uλ2
mk,q

〉 = −Q̂k+qĤλ2
k,q

∣∣u(0)
mk

〉
(39)

and

f λ2
nk+q,mk = fnk+q − fmk

ε
(0)
nk+q − ε

(0)
mk

〈
u(0)

nk+q

∣∣Ĥλ2
k,q

∣∣u(0)
mk

〉
. (40)

By plugging these two stationary conditions into the second-
order energy functional, we obtain the following nonstation-
ary expression,

Eλ1λ2
nonst,q =

∫
BZ

[d3k] Tr
(
Ĥλ1

k+q,−qρ̂
λ2
k,q

)
, (41)

where the integrand is written in a compact form as a trace,
and we have introduced the first-order density operator,

ρ̂
λ2
k,q =

M∑
m=1

(∣∣uλ2
mk,q

〉
fmk

〈
u(0)

mk

∣∣ + ∣∣u(0)
mk+q

〉
fmk+q

〈
uλ2

mk+q,−q

∣∣)

+
M∑

m,n=1

∣∣u(0)
nk+q

〉
f λ2
nk+q,mk

〈
u(0)

mk

∣∣. (42)

As outlined in Sec. II A, observable quantities must not
depend on the size of the active subspace. It can be readily
demonstrated that the second-order energy functional, Eλ1λ2

nonst,q,
is independent of M. The proof relies on the M independence
of the first-order density operator, ρ̂

λ2
k,q: if M changes, part of

the spectral weight is transferred from the first two lines to the
Kubo-like term in the third line of Eq. (42), but the overall sum
remains unchanged. In the limit where M tends to infinity, the
active space coincides with the entire Hilbert space; then, the
first two lines vanish and the entire operator is expressed in
a Kubo-like sum-over-all-states [third line in Eq. (42)] form
[42]. Conversely, in gapped systems at zero temperature, it
is common practice to restrict the active subspace to its bare
minimum (i.e., to the valence manifold). In this case �Eλ1λ2

k,q
vanishes identically, and the remainder contributions recover
the well-known DFPT expressions for insulators [4,43].

B. Time-reversal symmetry

The formulas presented in the previous subsection have the
drawback that they require, in principle, solving the Stern-
heimer problem simultaneously at q and −q. In the following,
we shall specialize our theory to crystals that enjoy time-
reversal (TR) symmetry, where this inconvenience can be
avoided. Indeed, assuming that both perturbations λ1 and λ2

are even under a TR operation, we have〈
r
∣∣u(0)

mk

〉 = 〈
u(0)

m−k

∣∣r〉, 〈
r
∣∣uλ

mk,q

〉 = 〈
uλ

m−k,−q

∣∣r〉, (43)

which implies

Ēλ1λ2 ∗
k+q,−q = Ēλ1λ2

−k−q,q → Ēλ1λ2
k,q . (44)

(Since the latter quantity must be anyway integrated over the
Brillouin zone, we are allowed to operate an arbitrary shift in
k space.) This allows us to write the stationary expression for
the second derivative of the energy as

Eλ1λ2
st,q =

∫
BZ

[d3k]
(
2Ēλ1λ2

k,q + �Eλ1λ2
k,q

)
+

∫
	

∫
ρλ1∗

q (r)Kq(r, r′)ρλ2
q (r′)d3rd3r′, (45)

with the first-order electron densities defined as

ρλ
q (r) =

∫
BZ

[d3k]

[
2

M∑
m=1

fmk
〈
u(0)

mk

∣∣r〉 〈r|Q̂k+q
∣∣uλ

mk,q

〉

+
M∑

m,n=1

〈
u(0)

mk

∣∣r〉〈r∣∣u(0)
nk+q

〉
f λ
nk+q,mk

]
. (46)

Note that the first-order wave functions at −q are no longer
needed. After imposing the stationary principles, Eqs. (39)
and (40), we arrive at an analogous nonstationary formula for
the second derivative,

Eλ1λ2
nonst,q =

∫
BZ

[d3k]

[
2

M∑
m=1

fmk
〈
u(0)

mk

∣∣(Ĥλ1
k,q

)†∣∣uλ2
mk,q

〉

+
M∑

m,n=1

〈
u(0)

mk

∣∣(Ĥλ1
k,q

)†∣∣u(0)
nk+q

〉
f λ2
nk+q,mk

]
. (47)

The use of TR symmetry in DFPT is, of course, well
established. The reason why we spell it out explicitly here is
related to an important subtlety, specific to the metallic case,
that is important to mention. The point is that, because of the
shift in k space that we have operated on the TR-rectified
“−q” terms, the integrands (i.e., the quantities in the square
brackets) in Eqs. (46) and (47) are no longer independent of
M: such property is restored only after integration over the
full BZ is performed. This observation has an undesirable
consequence when operating the parametric differentiation in
q (see next subsection): the accuracy of the result depends
on the vanishing of the total k derivative of Ēλ1λ2

k,0 . For this

requirement to hold, we need Ēλ1λ2
k,0 to be a differentiable

function of k, which is only true if the active subspace forms
an isolated group of bands (i.e., it must be separated from
higher unoccupied states by a gap).

In all our test cases we were fortunate enough to find
well-defined energy gaps in the conduction-band region of
the spectrum, and we could always choose M in such a
way that ε

(0)
Mk − ε

(0)
M+1k �= 0 over the whole BZ. Less fortunate

cases might require choosing a different M for distinct k
points, in order to avoid degeneracies between M and M +
1. (When such degeneracies are present, the linear-response
Sternheimer problem becomes ill-conditioned, which makes
it difficult or impossible to reach numerical convergence.)
Although in principle possible, doing so would require using
Eq. (33) in place of Eq. (45) as a starting point for the long-
wave expansion. As this would entail a significant revision
of the spatial-dispersion formulas already implemented in
ABINIT, we defer such developments to a future work.
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C. First order in q

In order to access spatial dispersion effects, our next task
consists of taking the analytical derivative of Eq. (32) with
respect to q. Here the key advantage of our unconstrained
variational formulation becomes clear, as it allows for a
straightforward application of the 2n + 1 theorem. At first
order, in particular, we have [5]

Eλ1λ2
γ = dEλ1λ2

q

dqγ

∣∣∣∣
q=0

= ∂Eλ1λ2
q

∂qγ

∣∣∣∣
q=0

. (48)

This means that the total derivative in q coincides with the
partial derivative of the second-order energy functional, where
the variables that are implicitly defined by the stationary prin-
ciple (in our case both the first-order wave functions, |uλ

mk,q〉,
and occupation matrices, f λ

mk,nk+q) are excluded from differ-
entiation. In other words, the time-consuming self-consistent
solution of the Sternheimer problem only needs to be

performed at q = 0, just like in the insulating case. The only
task we are left with consists of taking the derivatives of the
nonvariational quantities in Eq. (33) that explicitly depend
on q, i.e., the external potentials and the ground-state wave
functions. The final result for the q derivative of the stationary
part reads as

Eλ1λ2
st,γ =

∫
BZ

[d3k]
(

2Ēλ1λ2
k,γ

+ �Eλ1λ2
k,γ

)

+
∫

	

∫
ρλ1∗(r)Kγ (r, r′)ρλ2 (r′)d3rd3r′, (49)

where

Kγ (r, r′) = ∂Kq(r, r′)
∂qγ

∣∣∣
q=0

(50)

represents the first q gradient of the Hxc kernel. The wave-
function term is in the exact same form as in the insulating
case [5],

Ēλ1λ2
k,γ

=
M∑

m=1

fmk
〈
uλ1

mk

∣∣Ĥkγ

k

∣∣uλ2
mk

〉 − M∑
m,n=1

fmk
(〈

uλ1
mk

∣∣ukγ

nk

〉〈
u(0)

nk

∣∣Ĥλ2
k

∣∣u(0)
mk

〉 + 〈
u(0)

mk

∣∣(Ĥλ1
k

)†∣∣u(0)
nk

〉〈
u

kγ

nk

∣∣uλ2
mk

〉)

+
M∑

m=1

fmk
(〈

uλ1
mk

∣∣Ĥλ2
k,γ

∣∣u(0)
mk

〉 + 〈
u(0)

mk

∣∣(Ĥλ1
k,γ

)†∣∣uλ2
mk

〉)
, (51)

and the occupation term, specific to metals, reads as

�Eλ1λ2
k,γ

=
M∑

m,n=1

f̄mnk
(〈

u(0)
mk

∣∣(Ĥλ1
k )†

∣∣u(0)
nk

〉〈
u(0)

nk

∣∣Ĥλ2
k,γ

∣∣u(0)
mk

〉 + 〈
u(0)

mk

∣∣(Ĥλ1
k,γ

)†∣∣u(0)
nk

〉〈
u(0)

nk

∣∣Ĥλ2
k

∣∣u(0)
mk

〉)

+
M∑

m,n=1

f̄mnk

(〈
u(0)

mk

∣∣(Ĥλ1
k

)†∣∣u(0)
nk

〉〈
u

kγ

nk

∣∣Ĥλ2
k

∣∣u(0)
mk

〉 + 〈
u(0)

mk

∣∣(Ĥλ1
k

)†∣∣ukγ

nk

〉〈
u(0)

nk

∣∣Ĥλ2
k

∣∣u(0)
mk

〉)

+
M∑

m,n,l=1

Fmnlk
〈
u(0)

mk

∣∣(Ĥλ1
k

)†∣∣u(0)
nk

〉〈
u(0)

nk

∣∣Ĥkγ

k

∣∣u(0)
lk

〉〈
u(0)

lk

∣∣Ĥλ2
k

∣∣u(0)
mk

〉
. (52)

The proof of Eq. (52) rests on the rules for the differentiation
of operators outlined in Sec. II F, which we apply here to the
case λ = qγ and h(ε (0)

mk+q) = G(ε (0)
nk , ε

(0)
mk+q).

The new symbols appearing in Eq. (51) and Eq. (52) are
the d/dkγ wave functions, |ukγ

mk〉, the velocity operator,

Ĥ
kγ

k = ∂Ĥ (0)
k+q

∂qγ

∣∣∣
q=0

, (53)

and

Ĥλ
k,γ = ∂Ĥλ

k,q

∂qγ

∣∣∣
q=0

. (54)

The calligraphic symbol Fmnlk ≡ F (εmk, εnk, εlk ), which is
invariant under any permutation of the three band indices, is
defined as [40]

F (x, y, z) =
⎧⎨
⎩

G(x,y)−G(x,z)
y−z , y �= z,

1
6

(
∂2 f (x)

∂x2 + ∂2 f (y)
∂y2 + ∂2 f (z)

∂z2

)
, x = y = z.

(55)
[See the parenthetical comment after Eq. (9).] We have care-
fully tested that our implementation of the function F (x, y, z)
is continuous and smooth in the critical x � y � z region.
To illustrate the qualitative differences between F and G, in
Fig. 1 we present two filled contour plots of the functions
G(x, y) and F (x, y, 0): their respective symmetric and anti-
symmetric nature under the interchange of the two arguments
is clear. In close analogy to the finite-q case, �Eλ1λ2

k,γ
vanishes

in insulators if the active manifold is restricted to the occu-
pied states; the present formalism reduces then to the already
established results [5].

245116-7



ASIER ZABALO AND MASSIMILIANO STENGEL PHYSICAL REVIEW B 109, 245116 (2024)

FIG. 1. Two-dimensional contour plots (in arbitrary units) of the
F and G functions as defined in Eq. (55) and Eq. (9), respectively.
The upper panel shows F (x, y, 0) and the lower panel G(x, y).

D. Treatment of the q → 0 limit (Fermi level shifts)

Long-wave expansions generally require some care, as
the Coulomb potential diverges in the q → 0 limit. In insu-
lators, this divergence results in a nonanalytic contribution
to the response that is due to long-range electric fields. In
metals, such fields are screened by the redistribution of the
free carriers, which tends to enforce local charge neutrality.
The requirement of charge neutrality becomes strict at q = 0,
where it needs to be taken care of explicitly, via the holonomic
constraint on particle number in Eq. (1).

At second-order in the perturbations, this constraint prop-
agates to the second-order energy functional as μλTr(fλ),
where μλ plays the role of a first-order Lagrange multiplier
[3]. By imposing the stationary condition on the fλ ma-
trix, one readily obtains the so-called “Fermi level shifts”

contribution,

f λ
nmk = f̄nmk

(〈
u(0)

nk

∣∣Ĥλ
k

∣∣u(0)
mk

〉 − δmnμ
λ
)

= f̄nmk
〈
u(0)

nk

∣∣(Ĥλ
k − μλ

)|u(0)
mk〉. (56)

A closed expression for μλ can be obtained by imposing that
the trace of fλ should vanish,

μλ =

∫
BZ

[d3k]
M∑

m=1

f ′
mk

〈
u(0)

mk

∣∣Ĥλ
k

∣∣u(0)
mk

〉
∫

BZ
[d3k]

M∑
m=1

f ′
mk

, (57)

where f ′
mk = ∂ f (ε)

∂ε
|
ε=ε

(0)
mk

.
It is important to stress that the Fermi-shift-corrected

second-order energy at � is the exact q → 0 limit of the
second-order energy calculated at a small but finite q; in the
latter, the diverging G = 0 term in the Coulomb kernel is still
present, and therefore, no correction is needed. Note that the
limit is the same regardless of the direction, which is equiv-
alent to observing that adiabatic response functions in metals
at finite electronic temperature are always analytic functions
of q. This means that, unlike in insulators, the long-wave
expansion of the force-constant matrix can be carried out on
the whole response function, without the need of artificially
suppressing the macroscopic electric field contribution prior
to differentiation.

This also implies that special care is needed at correctly
differentiating such macroscopic electrostatic term with re-
spect to q in Eq. (32). The macroscopic (mac) electrostatic
contributions are originated from three different sources: the
first contribution comes from the nonvariational term, the sec-
ond contribution originates from the second line of Eq. (33),
where the Coulomb kernel appears with the first-order elec-
tron densities, and the third term arises from the first line of
the occupation term, Eq. (52). All the divergences nullify each
other, yielding an additional contribution that is proportional
to the Fermi level shifts (μλ) produced by the perturbations.
For the phonon case,

E
τκατκ′β
mac,γ � iδαγ Zκμ

τκ′β − iδβγ μτκα Zκ ′ , (58)

where Zκ is the bare nuclear pseudocharge of sublattice κ .
(More details can be found in Appendix A.)

Since there is no need to remove the (ambiguous) macro-
scopic fields contributions prior to the long-wave expansion,
the adiabatic spatial dispersion coefficients are well-defined
bulk properties in metals. In other words, the far-away sur-
faces cannot contribute electrostatically to the bulk response,
and the problematic potential energy reference [6] issue inher-
ent to spatial dispersion in insulators is absent in metals.

IV. APPLICATION TO PHONONS AND STRAIN
GRADIENTS

Up to now, our theory has been presented in a completely
general form, and is valid as it stands for any pair of pertur-
bations λ1 and λ2. For a numerical validation of the formal
results presented thus far, in the following we shall focus our
attention on phonon and strain gradients. These applications,
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while primarily intended as a numerical illustration of our
methodology, have an obvious practical relevance as well,
given the ongoing interest in ferroelectric metals.

The basic ingredient for what follows is the force-constant
(FC) matrix,

�
q
κα,κ ′β =

∑
l

�l
κα,κ ′βeiq·(Rl +τκ′ −τκ ),

�l
κα,κ ′β = ∂2E

∂u0
κα∂ul

κ ′β
, (59)

defined as the second derivative of the total energy E with
respect to monochromatic lattice displacements of the type

ul
κα = uαeiq·Rl

κ , (60)

where uα represents the deformation amplitude and Rl
κ =

Rl + τκ , where Rl is a Bravais lattice vector of the lth cell,
and τκ represents the equilibrium position of the sublattice κ

within the unit cell; α and β are Cartesian directions. We write
its long-wave expansion in a vicinity of q = 0 as [44,45]

�
q
κα,κ ′β � �

(0)
κα,κ ′β − iqγ �

(1,γ )
κα,κ ′β − qγ qδ

2
�

(2,γ δ)
κα,κ ′β, (61)

where �(0) is the zone-center FC matrix, and �(1) and �(2)

describe its spatial dispersion at first and second order in the
momentum q. We shall discuss their physical relevance (and
their relation to the theory developed insofar) separately in the
following.

A. Phonons

�
(1,γ )
κα,κ ′β has to do with the force produced on sublattice

κ along α by a displacement pattern of the sublattice κ ′
that is linearly increasing in space along rγ . If the lattice
Hamiltonian were local (i.e., if the atomic lattice behaved
like an array of noninteracting harmonic oscillators), such
force would trivially correspond to Rκ ′γ �(0); �(1) describes
the correction to that value that is due to the nonlocality of
the interatomic forces. Historically, �(1) was first introduced
in the context of bulk flexoelectricity, where it mediates an
indirect contribution to the lattice response to a macroscopic
strain gradient [6,45]. Such a contribution is relevant when-
ever the crystal allows for Raman-active lattice modes, e.g.,
in diamond-structure crystals (bulk Si or C) and tilted per-
ovskites like SrTiO3 or LiOsO3. More recently, its importance
was pointed out in ferroic crystals, where it acquires a central
place in the context of nonlinear gradient couplings (most
notably, in the form of antisymmetric Dzyaloshinskii-Moriya-
like terms [46]) between lattice modes. In chiral crystals such
as α-HgS, the main physical consequence of �(1) consists of
the appearance of chiral phonon modes with opposite angular
momentum that disperse linearly along the main crystal axis
[47]. Such an effect can be regarded as the phonon counterpart
of the natural optical activity [48].

Based on the theory developed thus far, in combination
with the established methodology that was already developed
for the insulating case [6], we calculate �(1) as

�
(1,γ )
κα,κ ′β = −Im

(
E

τκατκ′β
st,γ + E

τκατκ′β
Ew,γ

)
. (62)

The stationary part is straightforwardly obtained by sub-
stituting λ1 = τκα and λ2 = τκ ′β into Eq. (49), while the
nonvariational contribution acquires the form of the first q
derivative of the ionic Ewald (Ew) energy, whose explicit
expression can be found in Appendix A of Ref. [6].

B. Strain gradients

�(2) [third term on the right-hand side of Eq. (61)], on
the other hand, is directly related to the forces on individual
sublattices produced by a strain gradient, i.e., the so-called
flexoelectric force-response tensor. Its type-I representation,
indicated by the square bracket symbol, can be written as

[αβ, γ δ]κ = −1

2

∑
κ ′

�
(2,γ δ)
κα,κ ′β. (63)

(A type-II strain gradient refers to the gradient of a sym-
metrized strain, while its type-I counterpart describes the
response to an unsymmetrized strain gradient.) Switching
from type-I to type-II representation (and vice versa) is
straightforward, through the subsequent rearrangement of the
indices [44,45],

C̄κ
αγ ,βδ = [αβ, γ δ]κ + [αδ, βγ ]κ − [αγ , βδ]κ , (64)

where the “bar” symbol indicates that we are studying the
response at the clamped-ion level. One of the most notable
physical manifestation of the latter is the flexocoupling tensor,
which accounts for the forces on the zone-center polar modes
of the system produced by the applied strain gradient, and can
be expressed in the following way,

fαλ,βγ =
∑
κ,ρ

√
M

mκ

P(α)
κρ C̄κ

ρλ,βγ , (65)

where mκ is the mass of the sublattice κ , M = ∑
κ mκ is the

total mass of the unit cell, and P(α) is a normalized polar
eigenvector of the zone-center dynamical matrix. (The factor√

M/mκ in Eq. (65) follows the convention of earlier works
[32,49,50].)

Directly applying the formulas of Sec. III C to the cal-
culation of �(2) is not possible, as they exclusively target
first-order terms in q. However, note that Eq. (63) only
requires the sublattice sum of the �(2) coefficients, which
physically corresponds to the force-response to an acoustic
phonon perturbation. Acoustic phonons can be conveniently
recast, via a coordinate transformation to the comoving frame
[51], to a metric-wave perturbation [52]. This allows us to
write the flexoelectric force-response coefficients as first-
order dispersion of the piezoelectric force-response tensor [6].
In light of this, the whole story boils down to applying the
theory developed in Sec. III C to the case in which λ1 = τκα

and λ2 = ηβδ , where η denotes the uniform strain perturbation
[53]. In practice, the type-II representation of the flexoelectric
force-response tensor exhibits the following formulation [6],

C̄κ
αγ ,βδ = E τκαηβδ

st,γ + E τκαηβδ

nv,γ . (66)

(Our notation slightly differs from Refs. [5,6], where (βδ) is
used instead of ηβδ .) Remarkably, the nonvariational contribu-
tion takes the exact same form found in insulators [6], the only
difference being that, instead of assuming that all the active
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states are completely filled (this is the case in insulators as the
active subspace is usually restricted to the valence manifold),
the occupation function fmk must be taken into account for
each band m and k point. The stationary part is given by

E τκαηβδ

st,γ =
∫

BZ
[d3k]

(
2Ē τκαηβδ

k,γ
+ �E τκαηβδ

k,γ

)
+ i

∫
	

∫
ρτκα∗(r)Kγ (r, r′)ρηβδ (r′)d3rd3r′, (67)

where ηβδ represents a uniform strain perturbation, as formu-
lated by Hamann et al. (HWRV) [53].

C. Sum rules

In order to validate our computational strategy for the cal-
culation of the �(1) and C̄

κ
tensors, it is useful to recall the

following well-established relationships [44],

�κ
αβγ =

∑
κ

�
(1,γ )
κα,κ ′β + fκβδαγ (68)

and

C̄HWRV
αγ ,βδ = 1

	

∑
κ

C̄κ
αγ ,βδ + 1

2
(δγβSαδ + δγ δSαβ

− δαβSγ δ − δαδSγ β + 2δαγ Sβδ ), (69)

where �κ
αβγ and C̄HWRV

αγ ,βδ are, respectively, the piezoelectric
force-response tensor and the clamped-ion macroscopic elas-
tic tensor, which are routinely computed in standard DFT
codes with the metric-tensor formulation as proposed by
HWRV [53]. fκβ represents the atomic force on the sublat-
tice κ along the Cartesian direction β and Sαδ is the stress
tensor, which is symmetric under the exchange α ↔ δ. While
the sum rules provided by Eqs. (68) and (69) were initially
established for insulators [6], in Sec. V we numerically prove
their validity in metal materials, demonstrating that no ad-
ditional modifications are required. (Unless otherwise stated,
we shall assume that the system under study is at mechanical
equilibrium; i.e., forces and stresses tend to zero.)

V. RESULTS

A. Computational parameters

We shall consider two different crystal structures. First,
we shall study the zinc-blende-type structure metals TiB and
SiP, which constitute valuable theoretical models for testing
our implementation. The selection of the face-centered cubic
(fcc) structures for TiB and SiP, which belong to the space
group F 4̄3m and contain two atoms per unit cell, is motivated
by their high symmetry and their structural resemblance to
zinc blende, an extensively studied compound. A schematic
representation of the TiB crystal is given in Fig. 2(b). Second,
we shall draw our attention to LiOsO3, a polar metal that
has been attracting a lot of interest over the last few years,
particularly after its experimental observation in 2013 [54].
For simplicity, we shall restrict our analysis to the cubic phase.
A cartoon representing its unit cell is depicted in Fig. 2(a).

Our first-principles calculations are performed with the
DFT and DFPT implementations of the open-source ABINIT

FIG. 2. Structures of (a) cubic LiOsO3 and (b) TiB. Gray arrows
indicate the crystallographic directions that form the Cartesian axes.

[55,56] package with the Perdew-Wang [57] parametriza-
tion of the local density approximation (LDA). To facilitate
a comparison with earlier works, we also employed the
Perdew-Burke-Ernzerhof (PBE) [58] parametrization of the
generalized gradient approximation (GGA) for lithium os-
mate. Our long-wave ensemble DFPT expressions for the
computation of dispersion properties in metals, Eqs. (49) to
(52), are incorporated into the ABINIT package after minor
modifications to the recently implemented long-wave mod-
ule. Norm-conserving pseudopotentials from the Pseudo Dojo
[59] website are used as input to the ONCVPSP [60] software,
in order to regenerate them without exchange-correlation non-
linear core corrections. All our first-principles calculations are
carried out with a plane-wave cutoff of 60 hartrees, a Gaussian
smearing of 0.01 hartrees, and the BZ is sampled with a dense
Monkhorst-Pack mesh of 20 × 20 × 20 k points. The crystal
structures are relaxed until all the forces are smaller than
0.5 × 10−7 hartrees/bohr, obtaining a unit cell parameter of
a = 9.176 bohrs for TiB and a = 9.879 bohrs for SiP. For
LiOsO3, we obtain a relaxed cell parameter of a = 7.132
bohrs with LDA and a = 7.253 bohrs with GGA.

The active subspace is chosen to be either M = 10 or
M = 14 for TiB, M = 8 for SiP, and M = 20 for LiOsO3.
These choices guarantee that the active subspace forms an
isolated group of bands in all cases, following the observations
in the last paragraph of Sec. III B. (Using two different values
for M in the case of TiB allows us to test the consistency of
our implementation, and more specifically the independence

TABLE I. Linearly independent components of the flexoelectric
force-response tensor (in eV) and the clamped-ion elastic tensor (in
GPa) for TiB and SiP. The latter is computed via the sublattice sum
of C̄κ

αγ ,βδ as indicated by Eq. (69), and with the standard HWRV
implementation.

xx, xx xx, yy xy, xy

TiB C̄Ti
αγ ,βδ 5.503 10.373 7.110

C̄B
αγ ,βδ 10.225 12.163 6.428

C̄αγ ,βδ 88.108 126.250 75.843
C̄HWRV

αγ ,βδ 88.069 126.186 75.812

SiP C̄Si
αγ ,βδ 8.542 14.861 7.034

C̄P
αγ ,βδ 1.572 7.911 3.676

C̄αγ ,βδ 45.373 102.162 48.049
C̄HWRV

αγ ,βδ 45.615 102.223 48.260
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TABLE II. A comparison between φ and λ, in 10−3

hartrees/bohr units [see Eq. (70)]. φ is computed with our long-wave
ensemble DFPT formalism presented in this work and λ with the
standard HWRV implementation.

φ λ

TiB 224.360 224.368
SiP 287.126 287.340

of the converged results on the dimension of the active sub-
space.)

B. TiB and SiP

We shall start by testing our implementation with the two
simple metals TiB and SiP. The symmetries of the materials
substantially reduce the number of independent components
of �(1) and C̄

κ
. For example, Eq. (68) reduces to φ = λ, since

[6]

�
(1,γ )
κα,κ ′β = (−1)κ+1(1 − δκκ ′ )φ|εαβγ |,
�κ

αβγ = (−1)κ+1λ|εαβγ |, (70)

where εαβγ is the Levi-Civita symbol. In Table I we show the
independent components of the (type-II) flexoelectric force-
response tensor, and Table II shows the only independent
component of �(1) (�), indicated as φ (λ). The sum rules
Eq. (68) and Eq. (69) are validated to a remarkably high level
of accuracy. As an additional test of our implementation, we
show in Fig. 3 the computed φ parameter for TiB as a function
of the k-point mesh resolution. Furthermore, in order to prove
that results remain unaltered irrespective of variations in the
parameter M (size of the active subspace), we show a compari-
son between M = 10 and M = 14. The obtained results reveal
a high level of agreement, which corroborates the robustness

FIG. 3. Convergence of the φ parameter [see Eq. (70)] for TiB as
a function of the k point mesh resolution, for M = 10 and M = 14.
This is a numerical validation that, as long as the highest states
considered in the calculation have vanishing occupations, all the
observables that can be extracted from the energy functional are
independent of the size of the active subspace, M. Solid lines are
a guide to the eye.

TABLE III. Independent components of the piezoelectric force-
response tensor of distorted TiB, computed with the standard HWRV
implementation and with the sum rule of Eq. (68). The prime
symbol indicates that the contribution coming from the interatomic
forces has not been taken into account. Values are given in 10−3

hartrees/bohr.

HWRV [Eq. (68)]′ Eq. (68)

�Ti
xxx 64.420 35.140 64.417

�Ti
xyy −104.004 −104.876 −104.876

�Ti
xzy −221.380 −220.530 −220.530

�Ti
yxy −49.769 −78.171 −48.894

�Ti
yzx −231.073 −231.070 −231.070

of our implementation. [The discrepancies between the results
obtained with M = 10 and M = 14 in Fig. 3 for small k-point
samplings can be attributed to the shift in k space that we
discussed in Sec. III B. Had we adhered to Eq. (33), instead
of utilizing Eq. (45), the results in Fig. 3 would have aligned
perfectly, regardless of the number of k points employed in
the calculation.]

To conclude with the zinc-blende structures and in order
to validate the sum rules Eqs. (68) and (69) in the presence
of nonvanishing forces and stresses, we apply a displacement
of 0.3 bohrs along the x Cartesian direction to the B atom in
TiB. The resulting crystal structure belongs to the space group
Imm2 and we obtain, in absolute value, maximum interatomic
forces of 3 × 10−2 hartrees/bohr and stress components of
3.5 × 10−4 hartrees3/bohr. Tables III and IV show selected
tensor elements of �(1) and C̄, respectively.

C. Cubic LiOsO3

In the cubic phase of LiOsO3 all the atoms sit at in-
version centers, resulting in a vanishing �(1) tensor. This
system represents, however, the ideal scenario for testing
our implementation in the context of strain gradients, as

TABLE IV. Selected clamped-ion elastic tensor coefficients of
distorted TiB, computed with the standard HWRV implementation
and with the sum rule of Eq. (69). The prime symbol indicates that
the contributions coming from the stress have not been taken into
account. Values are given in GPa units.

C̄HWRV
αγ ,βδ [Eq. (69)]′ Eq. (69)

xx, xx 78.258 76.822 78.293
xx, yy 122.877 125.366 122.943
xx, yz 19.023 29.251 19.038
xy, xy 71.972 70.060 72.007
xy, xz 17.575 12.478 17.584
yx, xy 71.972 73.958 72.011
yx, xz 17.575 22.695 17.589
yy, xx 122.877 121.470 122.941
yy, yy 87.762 90.233 87.810
yy, yz 31.655 41.900 31.687
yy, zz 135.424 137.935 135.512
yz, yy 31.655 21.449 31.662
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TABLE V. Linearly independent components of the flexoelectric
force-response tensor (in eV), the clamped-ion elastic tensor (in
GPa), and the flexocoupling tensor (in eV) for cubic LiOsO3. Values
are obtained either with the Perdew-Wang parametrization of the
LDA or with the PBE parametrization of the GGA.

xx, xx xx, yy xy, xy

Atom LDA GGA LDA GGA LDA GGA

Li 0.95 0.75 10.22 9.99 0.30 0.32
Os 62.97 58.18 24.77 22.67 16.02 15.90
O1 −1.08 −0.99 −2.80 −2.44 −3.28 −3.37
O2 −1.08 −0.99 9.84 10.13 −0.63 −0.01
O3 85.00 71.51 6.17 5.07 1.54 2.70

C̄αγ ,βδ 437.42 364.05 143.67 128.73 41.57 44.04
C̄HWRV

αγ ,βδ 437.44 364.19 143.31 128.63 41.83 44.16
Ref. [32] . . . 364.7 . . . 129.5 . . . 44.3

fαγ ,βδ −14.10 −14.24 49.65 47.56 3.69 3.33
Ref. [32] . . . −13.8 . . . 49.3 . . . 3.3

the flexocoupling coefficients of cubic lithium osmate have
been previously computed in Ref. [32]. Table V presents
the calculated independent components for the flexoelectric
force-response tensor, along with the numerical validation of
Eq. (69). Additionally, the last two rows of Table V display
the independent components of the flexocoupling tensor, com-
puted by means of Eq. (65). The penultimate row shows the
numerical values obtained in the present work, whereas the
last row corresponds to the results from Ref. [32].

The agreement between the present results with those of
Ref. [32] is remarkable, especially considering the different
computational strategy employed therein. (In Ref. [32], the
flexocoupling coefficients were calculated via lattice sums of
the real-space interatomic FCs, as opposed to the analytical
long-wave approach presented here.) Regarding the effect
of different schemes for the exchange-correlation functional,
we observe that the equilibrium volume slightly differs be-
tween LDA and GGA, following the expected trends: we
obtain 	 = 362.756 bohr3 and 	 = 381.532 bohr3, respec-
tively. In general, the calculated values for the flexoelectric
force-response tensor and the flexocoupling coefficients show
only a small dependence on the choice of the exchange and
correlation model. It is also worth mentioning that the lim-
itations of the long-wave module as implemented in the v9
version of ABINIT prohibit the use of pseudopotentials that
include nonlinear core corrections. The small disparities for
the elastic constants and the flexocoupling tensor obtained
with the PBE parametrization of the GGA between Ref. [32]
and this work can be largely attributed to the differences in the
pseudopotentials.

VI. CONCLUSIONS

By combining the virtues of ensemble density functional
theory as formulated by MVP [33] and density functional
perturbation theory [4], we have established a general and
powerful first-principles approach for higher-order derivatives
of the total energy in metals. We have focused our numerical

tests on the calculation of the flexoelectric coupling coef-
ficients, where our formalism offers drastic improvements,
both in terms of accuracy and computational efficiency, com-
pared to earlier approaches. Thereby, our method will greatly
facilitate the first-principles-based modeling of polar and fer-
roelectric metals, which are currently under intense scrutiny
within the research community. This work also opens numer-
ous exciting avenues for future work; we shall outline some of
them in the following.

First, the advantages of the approach presented here can
be immediately extended to other adiabatic spatial dispersion
properties via minor modifications to our formulas. For ex-
ample, by combining the phonon perturbation with a scalar
potential one in Eq. (49), our method would yield the “adia-
batic Born effective charges” as defined in Refs. [61,62]. The
present approach works directly at the � point, and hence
avoids the need for cumbersome numerical fits. On the other
hand, by targeting the adiabatic response to a static (but spa-
tially nonuniform) vector potential field, the present theory
could be used to generalize the theory of orbital magnetic
susceptibility of Ref. [63] to metals.

Second, note that the scopes of our work go well beyond
the specifics of long-wavelength expansions. One of our main
conceptual achievements consists of generalizing the 2n + 1
theorem [4], one of the mainstays of DFPT in insulators,
to metallic systems. This result opens exciting opportunities
for calculating not only spatial dispersion effects, but also
nonlinear response properties in metals, with comparable
advantages at the formal and practical level. The study of
nonlinear optics appears as a particularly attractive topic in
this context, although its inherent dynamical nature would
require generalizing the formalism presented here to the nona-
diabatic regime. We regard this as a promising avenue for
future developments of our method.

Note added. Recently, we became aware of an independent,
simultaneous work by Gonze and co-workers [64] describing
a variational approach to DFPT in metals that bears many
similarities to ours.
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APPENDIX: TREATMENT OF THE MACROSCOPIC
ELECTROSTATIC TERM IN THE q → 0 LIMIT

1. Long-wave limit of external potentials

We shall start by reviewing the long-wavelength behavior
of the external potentials, highlighting the differences between
insulators and metals.
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a. Insulators

The external potential at first order in response to an atomic
displacement perturbation is usually expressed as a sum of a
local plus a separable part [5,41]. For our scopes, the latter
can be omitted, as no divergences associated with the separa-
ble part are present in the long-wave limit. The macroscopic
component (G = 0) of the local part is given by [41]

V loc,τκα

q (G = 0) ∼ −i
qα

	

(
−4πZκ

q2
+ F ′′

κ

2

)
, (A1)

where F ′′
κ is the second derivative in q of Fκ (q) = q2vloc

κ (q),
with vloc

κ (q) ∼ −4πZκ/q2, and Zκ is the bare nuclear pseu-
docharge. The Hartree potential, on the other hand, is given
by

V H,τκα

q = 4π

q2
ρq

τκα
, (A2)

where the lower terms in the Taylor expansion of the first-
order electron density (in powers of q) are given by

ρq
τκα

∼ −iqγ ρ (1,γ )
κα − qγ qδ

2
ρ (2,γ δ)

κα + · · · . (A3)

The sum of the local and Hartree potentials then reads as (we
omit terms that vanish in the q → 0 limit)

V loc+H,τκα

q � 4π

	

(
iqγ Z (γ )

κα

q2
+ qγ qδ

2q2
Q(γ δ)

κα

)
, (A4)

where the tensors Z (γ )
κα and Q(γ δ)

κα are, respectively, the screened
(short-circuit electrical boundary conditions are assumed)
“Born effective charges” and “dynamical quadrupoles,”

Z (γ )
κα = Zκδαγ − 	ρ (1,γ )

κα ,

Q(γ δ)
κα = −	ρ (2,γ δ)

κα . (A5)

As a consequence, as long as the “Born effective charges”
do not vanish, in an insulator the potential given by Eq. (A4)
diverges as O(q−1), corresponding to the well-known Frölich
term in the scattering potential.

b. Metals

As we already declared in Sec. III D, in metals the po-
tential should be an analytic function of the wave vector q,
which implies that the divergences that we have encountered

in Eq. (A4) should disappear. This involves

Z (γ )
κα = 0, 	ρ (1,γ )

κα = δαγ Zκ . (A6)

In addition, the quadrupoles must be isotropic,

Q(γ δ)
κα = δδγ Qκα. (A7)

We reach the conclusion that in a metal, the first-order electron
density in response to an atomic displacement acquires the
following form,

	ρq
κα ∼ −iqαZκ + q2

2
Qκα. (A8)

When summing the local and the Hartree potential terms,
the divergencies cancel out and, at leading order in q, the
scattering potential tends to a direction-independent constant,

V loc+H,τκα

q ∼ 2π

	
Qκα, (A9)

which is uniquely determined by the charge neutrality of the
unit cell and corresponds to the Fermi level shifts defined in
Sec. III D,

2π

	
Qκα = −μτκα . (A10)

2. The macroscopic electrostatic energy

a. Phonons

We want to take the first q derivative of the three terms that
contribute to the macroscopic electrostatic energy in metals,
within the framework of variational spatial dispersion theory.
To this end, we shall write down the finite-q expressions and
we shall take the q → 0 limit once the divergencies coming
from all the three terms have been properly treated.

The first contribution to the macroscopic electrostatics
comes from the ion-ion Ewald (Ew) term,

E
τκατκ′β
Ew,q (G = 0) = ZκZκ ′

4π

	

qαqβ

q2
e− q2

4�2

� ZκZκ ′
4π

	

(
qαqβ

q2
− qαqβ

4�2
+ · · ·

)
, (A11)

where � is a range-separation parameter that can assume any
value in order to accelerate convergence [43], and the dots
stand for an analytic sum of higher-order terms containing
even powers of q. Its partial derivative with respect to the wave
vector qγ is

E
τκατκ′β
Ew,γ �

[
4π

	

ZκZκ ′

q2
(δαγ qβ + δβγ qα ) − 8π

	
ZκZκ ′

qαqβqγ

q4

]
q=0

. (A12)

In Eq. (A12) and in the following derivations, we omit terms that vanish in the q = 0 limit, and we also exclude the G = 0 label
in order to keep the notation as simple as possible.

The second contribution comes from the second line of Eq. (33), which we shall refer to as the “elst” term, and can be
equivalently written in reciprocal space as

E
τκατκ′β
elst,q = 	(ρq

κα )∗Kqρ
q
κ ′β, (A13)

where Kq = 4π/q2 is the Coulomb kernel. The partial derivative of Eq. (A13) with respect to qγ , within the context of our
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variational spatial dispersion theory, i.e., excluding the partial q derivatives of the first-order electron densities, is given by

E
τκατκ′β
elst,γ = [

	
(
ρq

τκα

)∗
Kγ ρ

q
κ ′β

]
q=0

� 1

	

(
iqαZκ + q2

2
Qκα

)(
−8πqγ

q4

)(
−iqβZκ ′ + q2

2
Qκ ′β

)∣∣∣∣
q=0

�
[
−8π

	
ZκZκ ′

qαqβqγ

q4
+ 2

(
iδαγ Zκμ

τκ′β − iδβγ μτκα Zκ ′
)]

q=0
. (A14)

In order to compute the third and last contribution to the macroscopic electrostatic energy, which comes from the local (loc)
potentials in the first line of the occupation term, Eq. (52), we need the first q derivative of the local part of the pseudopotential
given in Eq. (A1),

V loc,τκα

γ � 4π i

	

[
Zκ

δαγ

q2
− 2Zκ

qαqγ

q4

]
q=0

. (A15)

This leads to

E τκατκβ

loc,γ =
[
	

(
ρq

κα

)∗
V

loc,τκ′β
γ + 	

(
V loc,τκα

γ

)∗
ρ

q
κ ′β

]
q=0

�
[(

iqαZκ + q2

2
Qκα

)
4π i

	

(
Zκ ′

δβγ

q2
− 2Zκ ′

qβqγ

q4

)
− 4π i

	

(
Zκ

δαγ

q2
− 2Zκ

qαqγ

q4

)(
−iqβZκ ′ + q2

2
Qκ ′β

)]
q=0

�
[
−4π

	

ZκZκ ′

q2

(
δαγ qβ + δβγ qα

) + 16π

	
ZκZκ ′

qαqβqγ

q4
+ iδβγ μτκα Zκ ′ − iδαγ Zκμ

τκ′β

]
q=0

. (A16)

When the three contributions are treated together, all the di-
vergences cancel out, and we are left with the following final
result,

E
τκατκ′β
mac,γ = E

τκατκ′β
Ew,γ + E

τκατκ′β
elst,γ + E

τκατκ′β
loc,γ

� iδαγ Zκμ
τκ′β − iδβγ μτκα Zκ ′ , (A17)

which is Eq. (58) of the main text.

b. Strain gradients

It is also interesting for our scopes to analyze the contri-
butions coming from the macroscopic electrostatics at second

order in q. By following the same strategy as in Sec. IV B,
second derivatives in q can be avoided by treating the acoustic
phonon perturbation in the comoving frame as a metric-wave
perturbation. The final result for the macroscopic electrostatic
contribution reads as

E τκαηβδ

mac,γ = E τκαηβδ

elst,γ + E τκαηβδ

loc,γ

� −δαγ Zκμ
ηβδ , (A18)

where μηβδ is the Fermi level shift produced by a uniform
strain.
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