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Topological and magnetic properties of the interacting Bernevig-Hughes-Zhang model
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We investigate the effects of electronic correlations on the Bernevig-Hughes-Zhang model using the real-space
density matrix renormalization group (DMRG) algorithm. We introduce a method to probe topological phase
transitions in systems with strong correlations using DMRG, substantiated by an unsupervised machine learning
methodology that analyzes the orbital structure of the real-space edges. Including the full multi-orbital Hubbard
interaction term, we construct a phase diagram as a function of a gap parameter (m) and the Hubbard interaction
strength (U ) via exact DMRG simulations on N × 4 cylinders. Our analysis confirms that the topological
phase persists in the presence of interactions, consistent with previous studies, but it also reveals an intriguing
phase transition from a paramagnetic to a stripey antiferromagnetic topological insulator. The combination of
the magnetic structure factor, strength of magnetic moments, and the orbitally resolved density, provides
real-space information on both topology and magnetism in a strongly correlated system.
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I. INTRODUCTION

Topological insulators are symmetry-protected nontriv-
ial phases of matter featuring conducting edges or surface
states while remaining insulating in the bulk [1–3]. A prime
example is the quantum spin Hall insulator (QSHI) [4,5],
where the underlying time-reversal symmetry (TRS) protects
its counterpropagating helical edge modes against nonmag-
netic impurities [6–8]. Initially proposed for graphene [4,9],
the QSHI gained attention after its theoretical prediction
by Bernevig, Hughes, and Zhang (BHZ) [5] and subse-
quent experimental verification by Konig et al. [10] in
two-dimensional (2D) HgTe/CdTe quantum well systems.

While extensively investigated within the framework of
noninteracting models [1,2], correlation effects in these sys-
tems have drawn much attention recently [11], since the
interplay of nontrivial topology and electronic correlations
can unveil novel phases of matter. Particularly in the paradig-
matic BHZ model, the application of dynamical mean-field
theory (DMFT) to investigate correlation effects in the form
of interorbital and intra-orbital Hubbard interactions has re-
vealed an interaction-induced topological phase transition
[12] from a topologically nontrivial phase to a trivial insu-
lator. Another study using inhomogeneous DMFT combined
with iterative perturbation theory on BHZ ribbons [13] has
proposed a topological phase transition from a paramagnetic
topological insulating phase to an antiferromagnetic Mott in-
sulating phase. Subsequently, Budich et al. [14] provided the
first magnetic and topological phase diagram for the inter-
acting BHZ model using DMFT, where they considered a
Hund’s coupling along with inter- and intra-orbital Hubbard
interactions. They found that upon increasing interactions,
a noninteracting band insulating state undergoes two phase

transitions, identifying a QSH phase at intermediate interac-
tions and a Mott insulating phase in the strongly interacting
limit. The transition from the band insulating phase to the
QSH phase is of first order [15]. The BHZ model with on-site
Hubbard-only interaction has also demonstrated the presence
of an antiferromagnetic topological insulating (AFTI) phase
[16,17], while a DMFT study with strong local Coulomb
interactions has postulated the presence of this phase between
the QSH and the Mott insulating phases [18].

In addition to these interesting interaction effects, TRS-
broken BHZ systems have also attracted considerable interest
recently, where an in-plane Zeeman term introduced by a
ferromagnetic substrate can induce a multitude of topological
phenomena such as robust corner states [19,20], crystalline
Weyl semimetals [21], and quantum anomalous Hall effect
(QAHE) [22]. Additionally, BHZ model with long-range in-
teractions have also demonstrated the presence of QAHE [23].
Recent Monte Carlo studies have also revealed the presence
of a topological Mott insulating phase at quarter filling in
the generalized spin Hall models [24,25]. For 3D topological
insulators, renormalization group analyses have demonstrated
the presence of a topological phase transition into an axionic
insulator for strong interactions [26]. Moreover, the possibil-
ity of edge reconstruction in the BHZ model has also been
studied in [27–29]. Taken together, the diverse and interesting
phenomena exhibited by this relatively simple model of a
topological insulator combined with advances in the density
matrix renormalization group (DMRG) algorithm as applied
to quasi-2D systems [30–35] motivates revisiting with a more
exact treatment.

This paper explores the effects of electronic correlations
on the BHZ model using a real-space DMRG method on a
N × 4 cylindrical geometry. We employ the full multi-orbital
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FIG. 1. Geometry of the N × 4 square lattice cylinder, with
N = 6 unit cells along the x direction and four unit cells along the
y directions. Each unit cell consists of two orbitals, namely orbital
s and orbital p, marked here as red circles and blue squares, respec-
tively. The cyan arrows indicate the lattice vectors âx and ây. The
dotted curves are the periodic connections along the y direction.

Hubbard interaction term involving both inter- and intra-
orbital Hubbard repulsion, Hund’s coupling, and a pair
hopping term to study correlation effects [36–39]. Using
DMRG, we find that while the overall electronic density is
unchanged at the cylinder edges, we observe a characteristic
increase in p-orbital density accompanied by a reduction in
s-orbital density. This finding is consistent with large-scale
exact diagonalization studies on the corresponding noninter-
acting model (U = 0) where the topological phase can be
uniquely identify by the presence of zero energy states in
the electronic spectrum localized to the edges. While it is
computationally difficult to compute the electronic spectrum
in the interacting model with DMRG, orbitally resolved elec-
tronic densities are readily available and provide a unique
window into the presence of edges states and the accompany-
ing correlated topological phases. By combining this orbital

analysis with local and nonlocal magnetic properties we con-
struct a phase diagram as a function of gap parameter (m)
and Hubbard interaction strength (U ) for N × 4 cylinder (for
N = 4, 6, 8). Using orbital densities alone, an unsupervised
machine learning approach is sensitive to the existence of
two different topologically nontrivial phases, identified by
an inversion of the orbital polarity of edge densities. This
distinction is confirmed by an analysis of magnetic proper-
ties indicating both a paramagnetic and a topological phase
with stripey antiferromagnetic correlations. The paramagnetic
phase was previously identified in DMFT studies [13–15], and
here we confirm the presence of a stripey antiferromagnetic
topological phase intermediate between the paramagnetic
QSH and Mott insulating phases as postulated in [18]. To aid
in the comparison with previous foundational studies, we use
the same set of parameters considered in [14,15,18].

The organization of the paper is as follows. In Sec. II, the
real-space interacting BHZ model is presented along with the
DMRG methodology used in this study. Section III contains
the main numerical results obtained from DMRG calculations
of an N × 4 cylinder. Towards the end of this section, we
present a complete magnetic and topological phase diagram of
the interacting BHZ model using DMRG. Finally, in Sec. IV
we conclude and mention a number of implications for future
work.

II. MODEL AND METHOD

A. Noninteracting BHZ model

We begin our analysis by examining the real-space Hamil-
tonian of the BHZ model on a 2D square lattice, which is
derived from the inverse Fourier transform of the original
momentum-space BHZ model [5], with a specific focus on
the particle-hole symmetric case. The real-space Hamiltonian
[14,16,20] is given by the equation

H0 = B
∑
r,α,σ

[c†
r,α,σ (τ z )ααcr+x̂,α,σ + c†

r,α,σ (τ z )ααcr+ŷ,α,σ + H.c.] + m
∑

r

(nr,s − nr,p)

+ A

2

∑
r,α,β,σ

α �=β

[(−1)σ c†
r,α,σ (iτ x )αβcr+x̂,β,σ + c†

r,α,σ (−iτ y)αβcr+ŷ,β,σ + H.c.], (1)

where r = (rx, ry) represents the unit-cell vector with compo-
nents rx and ry along the lattice vectors âx and ây, respectively,
α and β denotes the orbital indexes within the unit cell r,
where α, β = s, p (see Fig. 1 for details), and σ =↑,↓ rep-
resents the z-axis spin projection of an electron with orbital
α in cell r. The operator c†

r,α,σ (cr,α,σ ) creates (annihilates)
an electron with spin projection σ in orbital α at unit cell r
and nr,α = ∑

σ c†
r,α,σ cr,α,σ is the local density of electrons for

orbital α at unit cell r. τ x, τ y, and τ z are the Pauli matrices.
The factor (−1)σ = −1(1) for σ =↑ (↓).

The noninteracting Hamiltonian in Eq. (1) is comprised
of three separate terms. The first term describes the orbital-
dependent nearest-neighbor (NN) intra-orbital hopping with
amplitude B. Figure 2(a) provides an illustration of these
connections, where the hopping amplitude is positive for
orbital s and negative for orbital p, for both spin-up and

spin-down particles. The second term is the on-site energy
term for the two orbitals, s and p. The on-site energy m
is positive(negative) for orbital s(p). The last term accounts
for the NN interorbital hopping, referred to as the orbital-
mixing term within this study. It contains spin-dependent
hopping between different orbitals and behaves similar to a
NN spin-orbit coupling term. Figure 2(b) demonstrates these
connections for spin-up particles along the x and y direc-
tions. Despite the presence of this pseudospin-orbit coupling
like term, the single-particle Hamiltonian in equation (1)
still commutes with the total Sz operator, i.e., [Ho, Sz

tot ] = 0,
making this model a promising candidate to study the in-
terplay of correlation and topology with techniques such
as DMRG.

In the remainder of this paper, we have adopted fixed
values for the hopping amplitudes, A = 0.3 and B = 0.5 to
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FIG. 2. (a) Depicts the nearest-neighbor intra-orbital hopping
connections along the x and y directions for both spin-up and spin-
down particles. The hopping connections are positive for orbital s and
negative for orbital p, respectively. (b) Shows the nearest-neighbor
interorbital hopping connections or orbital-mixing connections along
the x and y directions for both spin-up and spin-down particles.

aid comparison with DMFT calculations corresponding to this
specific parameter set [14,15,18].

B. Multi-orbital Hubbard interaction

In order to study the effects of electronic correlations, we
consider the more general multi-orbital Hubbard interaction
[36–39],

Hint = U
∑
r,α

nr,α,↑nr,α,↓ +
(

U ′ − JH

2

) ∑
r

α<α′

nr,αnr,α′

− 2JH

∑
r

α<α′

Sr,α · Sr,α′ + JH

∑
r

α<α′

(P†
r,αPr,α′ + H.c). (2)

Here, the first term represents the standard on-site Hubbard
repulsion U between spin ↑ and ↓ electrons, acting on the
same orbital within a unit cell. The second term describes
the on-site interorbital electronic repulsion between electrons
at different orbitals within the same unit cell. The third term
involves the Hund’s coupling JH that explicitly accompanies
the ferromagnetic character between the orbitals. The operator
Sr,α denotes the total spin of the orbital α at cell r. The
last term signifies the on-site interorbital electron-pair hop-
ping Pr,α = cr,α,↑cr,α,↓. We incorporate the standard relation
U ′ = U − 2JH and fix JH/U = 0.25 [14,15,18]. The choice
JH/U = 0.25 facilitates a direct comparison with existing
DMFT studies and is believed to be relevant for a wide range
of transition metal compounds, like the iron-based supercon-
ductors [37,38].

Equations (1) and (2) constitute our interacting BHZ
Hamiltonian, given by

H = H0 + Hint. (3)

To study this Hamiltonian numerically, we performed
extensive DMRG [40,41] simulations on 4 × 4 and 6 × 4
cylinders, that correspond to 16-site two-orbitals and 24-site
two-orbitals system, respectively, at half-filling. The fea-
tured systems possess open boundary conditions along the
x-direction and periodic boundary conditions along the y
direction. We employ the DMRG++ computer program devel-
oped by one of the authors (G.A.) [42]. To ensure proper
convergence of the DMRG calculations, we consider a min-
imum of 1500 states and a maximum truncation error of 10−5

throughout the finite algorithm sweeps. By adhering to these
criteria, we obtain essentially exact ground-state properties,
which are used to identify magnetic and topological features
and phases of the interacting BHZ model. A particular case of
the interacting BHZ model shown in (3) has also been studied
for spinless fermions in [43,44].

III. RESULTS

A. Noninteracting U = 0

To aid in the interpretation of interaction effects, we be-
gin by examining the real-space BHZ model at U = 0 at
half-filling on a N × 4 cylinder, evaluating key topological
properties via exact diagonalization. In the case of U = 0,
the system clearly shows a topological phase transition from
a nontrivial topological phase T1 to a trivial band insula-
tor phase BI, as depicted in Fig. 3(a) where we plot the
single-particle energy eigenvalues for a 20 × 4 cylinder. Here,
the topological phase T1 is characterized by the presence of
degenerate zero-energy modes for a range of m ∈ (0, 2], a
hallmark of the QSHI phase in HgTe/CdTe quantum wells
described by the BHZ model [5], whereas the band insulator,
BI, has a clear gap [with approximate size 2(m − 2)].

To understand how the energy spectrum corresponds to
physics at the sample boundary, Fig. 3(b) shows the edge
electronic charge density 〈ñi,α〉 of a 6 × 4 cylinder, which is
obtained by subtracting the average charge density of the bulk
from the charge density at each cell. More specifically we
compute

〈ñi,α〉 = 〈ni,α〉 − 1

Nb

∑
i∈bulk

〈ni,α〉, (4)

where Nb corresponds to the number of unit cells in the bulk of
the cylinder [as highlighted in Fig. 3(c)] and i = ry + Ly ∗ rx

is a flattened unit-cell index. The edge charge density will act
as a topological marker for the cylindrical system in both the
interacting and noninteracting case. The fundamental idea is
to examine the extent and character of the electronic charge
density on the edges in comparison to the bulk. In Fig. 3(b),
we plotted this quantity for two different values of m at U = 0.
The figure clearly illustrates that the edge charge density is
quite large for m = 1.75 (filled symbols), which lies in the
topological T1 phase, as compared to m = 3.0 (open sym-
bols), which lies in the nontopological BI phase. Moreover,
these densities are equal and opposite for both orbital s and
orbital p on either edges of the cylinder. The steps in density
observed for m = 1.75 are indicative of a physical edge states,
which possess decaying real-space wavefunctions [19,45,46].
The presence of a finite-edge density is indicative of the pres-
ence of the zero-energy modes, which we expect to be true
even in the presence of interactions where the bulk-boundary
correspondence still holds [47].

B. Interacting U > 0

Having understood the emergent real-space structure of
gapless edge states in the noninteracting model, we now dis-
cuss DMRG results of the interacting BHZ model on N × 4
cylinders.
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FIG. 3. (a) Plot of single-particle energy eigenvalues vs the on-
site energy m at U = 0 for a 20 × 4 cylinder. The figure illustrates
the presence of two phases: a nontrivial topological phase T1 and
a trivial band insulator BI at U = 0. (b) Reduced electronic charge
density Eq. (4) at half-filling plotted vs the cell-index (i) for 6 × 4
cylinder at m = 1.75 and m = 3.0 within the T1 phase and BI phase,
respectively, exhibiting the localization of zero-energy modes on
the edges in T1 phase. The cyan box indicates the bulk cells of
the cylinder. (c) Lattice geometry of the 6 × 4 BHZ cylinder with
numbered unit cells where the bulk cells are highlighted in cyan.

In the subsequent subsections, we present interaction re-
sults for both 8 × 4 and 4 × 4 cylinders. We begin by
demonstrating the consistency of results for both cylinder
sizes for a fixed value of the on-site energy m = 3.0, as
a function of increasing U . Next, we showcase results for
m = 1.75 in the context of a 4 × 4 cylinder. Owing to the
significant computational cost of N = 8 and the finite-size
convergence study presented in Appendix B, a majority of
results are confined to N = 4.

1. Charge and magnetic properties

We begin our analysis by focusing on more conventional
local and nonlocal charge and magnetic properties of the
system. We first fix m = 3.0, deep in the BI phase at U = 0,

FIG. 4. Charge and magnetic properties of the interacting BHZ
model with m = 3.0, U � 0 on a 8 × 4 cylinder. (a) Average orbital
occupation 〈nα〉 plotted vs U for both orbitals. The plot clearly
depicts a change in orbital occupation from a (0,2) band insulator
configuration to (1,1) Mott insulator (MI) configuration as interaction
strength is increased. (b) Average magnetic moment of an orbital
〈S2

α〉 and of the cell 〈S2
tot .〉 plotted vs U . The plot shows a magnetic

transition from a nonmagnetic (NM) phase to a magnetic phase at
U = 6.5. (c) Spin structure factor S(q) showing the transition from
NM to PM to AFM phase as we increase U . (d) Real-space spin-spin
correlations plotted vs the distance between spins.

and increase U from the weak to strong coupling regime on
a 8 × 4 cylinder. Local charge properties can be quantified
through the average occupation of orbitals,

〈nα〉 = 1

Nc

∑
r

〈nr,α〉, (5)

where Nc is the total number of unit cells. Figure 4(a) il-
lustrates the average orbital occupation versus the interaction
strength. The plot demonstrates that as we increase U from the
weak- to the strong-coupling regime, the system transitions
from a (ns, np) = (0, 2) configuration of a band insulator (BI)
towards a (1,1) Mott insulator (MI). Between these two insult-
ing phases, beginning near U = 6.5 we observe a (n, 2 − n)
configuration [48], which uniformly changes as we increase
the interaction strength until U = 9.0, where n is the aver-
age occupation of orbital s at interaction strength U . This is
consistent with previous DMFT results [14], where a similar
behavior in the average charge occupation was also observed.

For local magnetic properties, we study the average mag-
netic moment of the individual orbitals and the average
magnetic moment of the entire unit cell,

〈
S2

α

〉 = 1

Nc

∑
r

〈Sr,α · Sr,α〉, (6)

〈
S2

tot.

〉 = 1

Nc

∑
r

〈Sr · Sr〉, (7)
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where Sr = ∑
α Sr,α . Figure 4(b) shows the average magnetic

moment of the individual orbitals as well as the total for
the unit cell as a function of interaction strength at m = 3.0.
The plot shows that the BI phase—present for U � 6.5—is
also nonmagnetic (NM), as the average magnetic moments
for both orbitals and the unit cell is vanishingly small. For
U > 6.5, the system attains magnetism, and upon increas-
ing interactions the average magnetic moment of the orbitals
smoothly increases until it saturates to 0.75 in the (1,1) con-
figuration of the Mott insulator for U > 9.0. Additionally, the
magnetic moment for both orbital s and orbital p fall directly
on top of each other for all values of U in Fig. 4(b); this feature
is observed to be true for all values of m.

Finally, to explore nonlocal magnetic properties, we com-
pute the real-space spin-spin correlation S(d ) defined as

S(d ) = 1

#(d )

∑
i

〈Si · Si+d〉, (8)

and the corresponding spin structure factor S(q),

S(q) = 1

4N2
c

∑
r,r′,α,β

e−iq·(r−r′ )〈Sr,α · Sr′,β〉, (9)

where #(d ) is the number of sites separated by the distance
d . The structure factor is shown in Fig. 4(c), and it provides
a clear picture of the magnetic phases in the system: (i) It
confirms the presence of the NM phase for U � 6.5, (ii) for
6.5 < U < 8.5 the system is paramagnetic (PM) as there is
no dominant magnetic ordering present; and (iii) for U � 8.5
the system is antiferromagnetic (AFM) with dominant (π, π )
ordering. Additionally, it is worth pointing out that the AFM
correlations appears before than the MI phase: AFM ordering
is observable at U = 8.5, while the MI appears for U > 9.0.
Note that the vertical-dashed lines in Figs. 4(a)–4(c) serve as
an indicator of a qualitative change in observed quantities and
do not represent a thermodynamic limit phase boundary.

Figure 4(d) presents a real-space picture of the magnetic
and nonmagnetic phases for fixed m = 3.0. The spin-spin
correlations also provides a confirmation of the paramagnetic
(PM) phase, where S(d ) lacks any signatures of long-range
ordering. Additionally, it highlights the onset of the antiferro-
magnetic (AFM) phase at U = 8.5. We note that the spin-spin
correlations are computed for the entire cells, and we have ob-
served a consistent behavior across individual orbitals for all
magnetic and nonmagnetic regimes within our calculations.
We note that interaction results, covering both the charge and
magnetic properties discussed in this section, as well as the
topological properties addressed in the subsequent section for
m = 3.0 in 8 × 4 cylinders are in alignment with those ob-
served for their 4 × 4 counterparts. The equivalent results
for the smaller cylinders are included in Appendix C for
completeness.

We next present analogous results for a smaller value of
m = 1.75 on a 4 × 4 cylinder in Fig. 5, where the noninteract-
ing model lies within the topological T1 phase at U = 0. By
increasing U , we explore the effects of interactions and find
that in contrast to the case of m = 3.0, for m = 1.75, there is
no evidence of a nonmagnetic BI phase. This can be observed
in panel (a), where the orbital densities are never saturated for
small U , and instead they continuously move towards the (1,1)

FIG. 5. Charge and magnetic properties of the interacting BHZ
model at m = 1.75, U > 0 on a 4 × 4 cylinder. (a) Average orbital
occupation vs U for both orbital s and orbital p. The orbital occu-
pation changes towards a (1,1) Mott insulator (MI) configuration
as U increases. (b) Average magnetic moment of orbitals and the
unit cell as a function of U showing the evolution of the moments
from paramagnetic (PM) phase to the MI phase. (c) Spin structure
factor S(q) vs U providing evidence of the magnetic phase transition
from PM to an antiferromagnetic Mott insulating (AFM MI) phase
as U increases. (d) Real-space spin-spin correlations plotted vs the
distance between spins.

occupations characteristic of the Mott insulating phase, which
develops near U = 6.0. The accompanying magnetic mo-
ments shown in panel (b) are also distinct from m = 3.0,
where the strictly nonmagnetic region is never observed with
〈S2

α〉 > 0 for all U � 0. Furthermore, an analysis of the spin
structure factor in panel (c) shows that the PM phase persists
until nearly U = 5.0. However, here we do observe a similar-
ity with m = 3.0 case, as a weak AFM phase develops, after
the PM phase, for U � 5.0, which continues until it merges
into the more robust antiferromagnetic Mott insulating phase
at U = 6.0. The resulting real-space spin-spin correlations in
panel (d) are also larger in the strong interaction limit.

2. Topological properties

Motivated by our analysis for the noninteracting BHZ
model with U = 0, we employ the edge electronic charge
density defined in Eq. (4) as a key property for the char-
acterization of the topological phases with interaction. In
Fig. 6(a),we illustrate this quantity for three different values of
U = 1.0, 7.0 and 8.5 at m = 3.0 for a 8 × 4 cylinder. The in-
teraction U = 1.0 (open symbols) falls in the band insulating
region, as discussed previously. The edge electronic charge
density at this parameter value is almost negligible supporting
the conclusion that the band insulator is trivial. Conversely, for
U = 7.0 (solid points/lines), the system is in the paramagnetic
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FIG. 6. Topological properties of the interacting BHZ model at
m = 3.0 for a 8 × 4 cylinder. (a) Edge electronic charge density
vs the cell index i for U = 1.0, 7.0, 8.5. The plot shows that the
parameter point U = 1.0 is nontopological or trivial, whereas the
parameter points U = 7.0 and 8.5 are topological. Additionally, the
polarity of the edge density for orbital s(p) are negative (positive) and
positive (negative) at U = 7.0 and 8.5, respectively, suggesting two
different topological phases T1 and T2. (b) Averaged edge density
for orbital s and the difference of edge and bulk magnetic moments
plotted vs the interaction strength U . The plot shows the change
in polarity of the edge density at U ≈ 8.2 as it moves from the T1

to T2 topological phase. The plot also depicts that the T1 phase is
dominated by the bulk magnetic moments, while the T2 phase is
dominated by the edge magnetic moments.

region and exhibits finite-edge density, indicating a nontrivial
topology. The polarity of the edge-electronic charge density
(relative signs of 〈ñi,s〉 < 0 < 〈ñi,p〉 for i ∈ edge) at U = 7.0
is consistent with the T1 phase from our noninteracting results.
More interestingly, accompanying the onset of antiferromag-
netic order near U = 8.5 (solid points, dashed lines), we
observed nontrivial topological behavior in the edge electronic
density, but with opposite orbital polarity as compared to
the T1 phase at U = 7.0. i.e. 〈ñi,p〉 < 0 < 〈ñi,s〉 for i ∈ edge.
We use this polarity inversion to infer the existence of a
topological T2 phase, which exhibits a stripey AFM order as
characterized by an asymmetry in the structure factors S(0, π )
and S(π, 0).

This inversion is quantified in Fig. 6(b), where we have
computed the edge density for the orbital s, averaged over
all the unit cells situated on the edges (Ne) of the cylinder
and plotted it versus the interaction strength U . The result
clearly illustrates a distinct polarity change, transitioning from

negative to positive, in the edge density of orbital s as the
system magnetically transforms from the paramagnetic region
towards the onset of antiferromagnetic order. We take this as
evidence indicative of a T1 to T2 topological phase transition.

This change is also accompanied by a difference in mag-
netic moments of the edge and bulk, which follows the same
pattern as the averaged edge electronic charge density. This
can be quantified by defining

�S = 〈
S2

edge

〉 − 〈
S2

bulk

〉
(10)

where 〈
S2

edge

〉 = 1

Ne

∑
i∈edge

〈
S2

i

〉
, (11)

〈
S2

bulk

〉 = 1

Nb

∑
i∈bulk

〈
S2

i

〉
. (12)

�S is shown as a function of interaction strength in Fig. 6(b),
where we observe that the T1 phase is dominated by the
magnetic moments of the bulk, in contrast to the T2 phase,
which exhibits larger magnetic moments along the edges. This
can be intuitively understand by appealing to a real-space
picture, as the antiferromagnetism first develop on the edges
and then moves towards the bulk as U increases, and even-
tually reach a saturation in the Mott insulating region [18].
The presence of the antiferromagnetic ordering and topology
has previously been explored at the mean-field level in these
systems [16–18]. We note that this subtle yet finite feature
has a one-to-one connection with the edge electronic density
as depicted in the figure. Similar to the case of charge and
magnetic properties for m = 3.0, we also find a consistency
in the topological properties between the 8 × 4 and 4 × 4
cylinders depicted in Appendix C.

Figure 7 presents these topological quantities for the case
of m = 1.75 on a 4 × 4 cylinder. Similar to the observations
made for the case of m = 3.0, we first identify the T1 topo-
logical phase within the paramagnetic region, followed by
the emergence of T2 topological phase during the onset of
antiferromagnetic order. The difference in magnetic moments
of the edge and bulk also follows the same behavior as shown
previously for the case of m = 3.0, that is, the paramagnetic
T1 region is dominated by the bulk moments whereas the an-
tiferromagnetic T2 phase is dominated by the edge moments.
Moreover, our results also illustrate that the edge electronic
charge density in the antiferromagnetic Mott insulating region
are negligible, implying that this region is nontopological.

3. DMRG phase diagram of the interacting BHZ model

Utilizing the analysis presented in the preceding two sub-
sections for the identification of the magnetic and topological
phases, we have generated a DMRG phase diagram of the
interacting BHZ model. The result, presented in Fig. 8 shows
the phases as a function of the gap parameter m and the
interaction strength U for N × 4 cylinders with N = 4, 8.

For increasing interaction strength U and gap parameter
m � 2, the sequence of phases is similar. Starting with weak
interactions, now there is a nonmagnetic band insulating phase
(green), which undergoes a transition to a paramagnetic topo-
logical phase T1 (red) followed by a narrow region of stripey
antiferromagnetic topological T2 phase for intermediate
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FIG. 7. Topological properties of the interacting BHZ model at
m = 1.75 for a 4 × 4 cylinder. (a) Edge electronic charge density
vs the cell index i for different values of U (= 1.0, 5.0, 10.0). The
plot illustrates that paramagnetic point U = 1.0 lies in T1 topological
phase, whereas U = 5.0 lies in the T2 topological phase. Addition-
ally, the point U = 10.0, which lies in the Mott insulating region is
nontopological. (b) Plot of averaged edge density for orbital s and
the difference of edge and bulk magnetic moments vs the interaction
strength U . The T1 phase covers the entire paramagnetic region
and transitions to the T2 phase along with the onset of antiferro-
magnetic order. The entire Mott insulating region is observed to be
nontopological.

coupling strengths. Lastly, there is an antiferromagnetic Mott
insulating phase in the strong coupling regime. On the other
hand, for 0 < m < 2 the nonmagnetic band insulator at weak
coupling is not observed. Here, with increasing interaction
strength, we find a paramagnetic topological insulating T1

region, followed by a narrow region of stripey antiferromag-
netic topological insulating T2 phase, which turns into a robust
antiferromagnetic Mott insulator for strong interactions. In
Fig. 8, the phase boundaries separate measured points in dis-
tinct phases. The overall distinction between topological and
nontopological phases is consistent with a previous DMFT
study [14]. However, here the DMRG allows us to resolve
the stripey AFM correlations in the topological phase near the
boundary to the AFM Mott insulator.

To compute the phase diagram, we adhered to the conver-
gence criteria outlined in our method Sec. II. The majority
of our DMRG simulations (indicated as small solid/empty
circles) are for 4 × 4 cylinders; however, we have verified the
robustness of the observed phases for larger 8 × 4 cylindrical
systems (highlighted with with gray shading). Details of our
finite-size scaling analysis are included in Appendix B. It is

FIG. 8. Magnetic and topological phase diagram (m vs U ) of
the interacting BHZ model for the N × 4 cylinder, using DMRG.
The green region is the nonmagnetic trivial band-insulating phase,
the red region is the paramagnetic topological T1 phase, the blue
region is the topological T2 phase with stripey antiferromagnetic
correlations, and the magenta region is the nontopological AFM
MI phase. Circles represent simulations for 4 × 4 cylinders, gray
squares and the entire strip at m = 3.0 were performed for 8 × 4
cylinders. Solid points indicate DMRG results fully satisfying the
convergence criteria detailed in Sec. II, while open circles are for
parameters where achieving complete convergence of all observables
is challenging.

important to note that the solid circles indicate well-converged
DMRG points, while the empty circles signify points that did
not converge effectively.

4. Verification of the phase diagram using
unsupervised machine learning

As our analysis of topological properties was made without
direct access to the energy spectrum, we further verify the
phase diagram in Fig. 8 through an unsupervised machine
learning approach. We constructed a data set from each point
on the phase diagram, where we assign a concatenated array
of the edge electronic charge density 〈ñi,α〉 at each cell index
for both the s and p orbitals. Principal component analysis
(PCA) [49–52] can be used to reduce the dimensionality of the
data by identifying the mutually orthogonal directions along
which the data varies the most through a linear combination of
the original coordinates. We use the SCIKIT-LEARN package in
Python [53] to identify the direction of variation with the most
variability. Figure 9 depicts each point on the phase diagram
colored according to the value of its first principal compo-
nent, or position along the primary axis. Radial basis function
interpolation is used to extrapolate the remaining segments
of the phase diagram. Our analysis revealed that, while the
band and Mott insulating phases exhibit similar alignment

245115-7



RAHUL SONI et al. PHYSICAL REVIEW B 109, 245115 (2024)

FIG. 9. Unsupervised machine learning phase diagram (m vs U )
of the interacting BHZ model on a N × 4 cylinder colored by the
value of the first principal component obtained from principal com-
ponent analysis of the edge electronic charge densities. The green
regions are comprised of the band and Mott insulating phases while
the region with the red and blue points correlates with the topolog-
ical phases in Fig. 8. Radial basis function interpolation is used to
extrapolate the remainder of the diagram. Dotted lines are the same
phase boundaries inferred from Fig. 8.

along the axis, the first principal component is clearly able
to identify different signatures of the two topological phases,
corresponding to a strong positive or negative signal. The use
of spatially resolved raw orbital density data as input strongly
supports their correlation with topological properties.

IV. CONCLUSIONS

This paper has addressed the challenge of incorporating
electron-electron interactions into models of topological in-
sulators. In particular we have proposed and carried out a
simulation and analysis method to understand the effects of
electronic correlations on the Bernevig-Hughes-Zhang model
on a N × 4 cylinder, using a numerically exact real-space
density matrix renormalization group (DMRG) algorithm. By
combining conventional magnetic order parameters and re-
sponse functions with a real-space investigation of orbitally
resolved densities, we describe the interplay between topolog-
ical order and pronounced interaction effects emerging at the
sample boundary. The observed signature of topological order,
manifest in the electronic orbital polarization near the edge,
opens a route for the study of strongly interacting topological
systems via DMRG. This analysis is supplemented via an un-
supervised machine learning approach considering unlabelled
spatial orbital occupancies as features.

Our approach, which includes the full multi-orbital Hub-
bard interaction term, unveils a rich magnetic and topological
phase diagram as a function of gap parameter (m) and

interaction strength (U ). At half-filling, our phase diagram
reaffirms the existence of various magnetic and topological
phases under the influence of interactions, in agreement with
prior DMFT studies [14], but also provides evidence for the
presence of a more subtle antiferromagnetically ordered topo-
logical insulator [16–18].

While understanding the influence of interactions in topo-
logical matter remains a considerable challenge, the DMRG
framework presented here may enable further theoretical and
experimental exploration of strongly correlated topological
insulators.

All data, code, and analysis scripts that support the findings
of this study can be found online [54].

The DMRG++ code used in this study is available on
GitHub [55].
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APPENDIX A: SINGLE-CELL PICTURE
OF THE INTERACTING BHZ MODEL

The effective Hamiltonian of an interacting unit cell with
two orbitals (s and p) is expressed as

Heff = m(ns − np) + U (ns,↑ns,↓ + np,↑np,↓)

+
(

U ′ − JH

2

)
nsnp − 2JH (Ss · Sp)

+ JH (P†
s Pp + H.c). (A1)

This single-cell picture of the interacting BHZ model can
be analyzed to obtain an intuition and understanding of the
origin of the magnetic phases present in the interacting phase
diagram in Fig. 8. While Eq. (A1) does not have any hopping
connections, nor does it have any reference point to identify
a paramagnetic or antiferromagnetic phase, the Hamiltonian
does still provide relevant information about the roles played
by individual terms.
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FIG. 10. Eigenvalues of an interacting unit cell vs interaction
strength U for m = 3.0. The red and cyan lines represent the two-
band insulating states |B1〉 and |B2〉, respectively. The purple and
green lines depict the spin-triplet and singlet states, respectively. The
plot shows the transition of the ground state from a nonmagnetic
band-insulating state to a magnetic spin-triplet state at U � 8.5 also
indicated with a vertical-dashed line.

At half-filling, one can write the matrix form of this ef-
fective Hamiltonian using the following spin-basis |s, p〉 :=
{| ↑,↓〉, | ↓,↑〉, | ↑↓, 0〉, |0,↑↓〉} as

(Heff ) =

⎛
⎜⎜⎝

U ′ −JH 0 0
−JH U ′ 0 0

0 0 U + 2m JH

0 0 JH U − 2m

⎞
⎟⎟⎠. (A2)

Now let us understand the components of the Hamilto-
nian individually. The gap term alone (U = JH = 0) favors
the (ns, np) = (0, 2) configuration and thus dominates in the
weakly interacting regime, whereas the Hubbard term by it-
self favors the (1,1) configuration and takes over for strong

FIG. 11. Edge electronic charge density vs the relative distance
along the cylinder (i/Lx) for 8 × 4 (filled) and 4 × 4 (open symbols)
systems using DMRG at U = 7.0 and m = 3.0. Parameters are cho-
sen such that the system lies within the paramagnetic T1 phase. A
finite-orbital occupancy at the edge persists for the largest systems
measured.

FIG. 12. Finite-size scaling analysis of the edge density for
(U, m) = (0.0, 1.75) (system sizes up to 24 × 4), (U, m) =
(1.0, 1.75) (systems up to 8 × 4), and (U, m) = (7.5, 3.0) (systems
up to 8 × 4) all of which lies in the paramagnetic T1 topological
phase. The plot is obtained by taking the average area under curve
of the edge electronic density, 〈ñrx ,s〉 = ∑

ry
〈ñrx ,ry,s〉/Ly and depicts

robustness of the edge signals of orbital s as we move towards larger
system sizes.

interactions. It is then the competition that occurs between the
U ′, which explicitly pushes the system towards a mixed band
insulator of (0,2) and (2,0) configuration, and the Hund’s cou-
pling and pair hopping term, which forces the system towards
the (1,1) configuration that governs the magnetic transitions
in the intermediate interacting regime [14].

The eigenvalues and corresponding eigenvectors of the ma-
trix Hamiltonian in (A2) are

EB1 = U −
√

J2
H + 4m2, |B1〉 = γ | ↑↓, 0〉 + δ|0,↑↓〉,

EB2 = U +
√

J2
H + 4m2, |B2〉 = δ| ↑↓, 0〉 − γ |0,↑↓〉,

ES = U − JH , |S〉 = 1√
2

[| ↓,↑〉 − | ↑,↓〉],

ET = U − 3JH , |T 〉 = 1√
2

[| ↓,↑〉 + | ↑,↓〉],
(A3)

where |B1〉 and |B2〉 are two band insulating states formed
by the linear combinations of (ns, np) = (0, 2) and (2,0)
configurations, with coefficients γ = −JH and δ = 2m +√

J2
H + 4m2. The states |S〉 and |T 〉 are the spin-singlet and

triplet states with Sz
tot = 0, formed by the (1,1) configurations.

Other than the triplet state all three states have zero magnetic
moments and thus are nonmagnetic.

In Fig. 10, we plot the above four eigenvalues for m = 3.0.
The plot clearly demonstrates that, from weaker to intermedi-
ate values of U the ground-state lies in the nonmagnetic band
insulator phase in form of the |B1〉 state, and as it reaches the
intermediate interacting regime it transitions to the magnetic
triplet state |T 〉, which continues to the strongly interacting
regime. The transition from the |B1〉 state to |T 〉 state occurs
at U = 2

√
2m, for m = 3.0 it happens at U = 8.485 (�8.5).
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FIG. 13. Charge and magnetic properties of the interacting BHZ
model with m = 3.0, U > 0 on a 4 × 4 cylinder. (a) Average orbital
occupation vs U for both s and p orbitals, revealing a change in
orbital occupation from a (0,2) BI configuration to (1,1) MI config-
uration with increasing interaction strength. (b) Average magnetic
moment of a orbitals and of the entire cell are plotted vs U , show-
casing a magnetic transition from a NM phase to a magnetic phase at
U = 6.5. (c) The spin structure factor plot demonstrating the transi-
tion from NM to PM to AFM phase as we increase U . (d) Real-space
spin-spin correlations vs the scalar distance between spins. These
findings are consistent with our results at the same parameters for an
8 × 4 system shown in Fig. 4.

Moreover, this transition point is consistently close to our
DMRG phase boundary between the paramagnetic and anti-
ferromagnetic phase in Fig. 8.

APPENDIX B: FINITE-SIZE SCALING

To explore the robustness of DMRG results on finite
cylinders, we conducted a finite-size scaling analysis of the
observed topological phases. Figure 11 presents the edge elec-
tronic charge density for 8 × 4 and 4 × 4 cylinders at U = 7.0
and m = 3.0, which correspond to the paramagnetic T1 phase.
The results clearly show that the edge density signal in the
8 × 4 cylinder are consistent and more robust as compared to
the 4 × 4 case. This consistency establishes the reliability of
our topological marker as well as the separation between edge
and bulk properties.

To obtain more systematic information on finite-size
effects for the edge densities, we calculated 〈ñrx,s〉 =∑

ry
〈ñrx,ry,s〉/Ly, for three different set of parameters (U, m) =

(0.0, 1.75), (1.0, 1.75), (7.5, 3.0) from the PM T1 phase with
the results shown in Fig. 12. The plot illustrates that the
signal at (U, m) = (0.0, 1.75) saturates to a finite value as
we increase the size of the cylinder along the x axis. More
importantly, we observe a similar behavior in the presence

FIG. 14. Topological properties of the interacting BHZ model at
m = 3.0 for a 4 × 4 cylinder. (a) The plot of edge electronic charge
density vs the cell index i for different values of U = 1.0, 7.5, 8.5.
The plot shows that the parameter point U = 1.0 is nontopologi-
cal or trivial, whereas the parameter points U = 7.5 and U = 8.5
corresponds to the T1 and T2 topological phases, respectively. (b) Av-
erage edge density for orbital s and the difference of edge and bulk
magnetic moments vs U , depicting a change in polarity of the edge
density as distinguishing the T1 and T2 topological phases. The find-
ings are consistent with our topological results at the same parameter
for 8 × 4 system in Fig. 6.

of interactions for both (U, m) = (1.0, 1.75) and (U, m) =
(7.5, 3.0) where DMRG calculations are computationally
costly.

APPENDIX C: 4 × 4 RESULTS AT m = 3.0

For the case of m = 3.0, we have performed DMRG simu-
lations for both 8 × 4 and 4 × 4 cylinders over all interaction
strengths. We observed that in both cases, the magnetic and
topological properties are remarkably consistent, indicating
the reliability of our DMRG determined phase diagram

This can be clearly illustrated through Figs. 13 and 4,
which depict the charge and magnetic properties of a 4 × 4
and 8 × 4 cylinders, respectively, at m = 3.0. In both cases,
the presence of different magnetic phases, and their or-
dering and transitions as we increase U , are consistent
with each other. Similarly for the topological properties, a
side-by-side comparison between Fig. 14(b) and Fig. 6(b)
confirms the persistence and robustness of the T1 and T2

topological phases, across both cylinder sizes, within the
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framework of our DMRG calculations for the interacting
BHZ model.

APPENDIX D: ENTANGLEMENT SPECTRUM

The entanglement spectrum of the system can be obtained
from the Schmidt decomposition of the many-body ground
state |
〉 = ∑

α λα|L, α〉 ⊗ |R, α〉, where |L, α〉(|R, α〉) cor-
responds to the left(right) partitions of the system and λ2

α are
the eigenvalues of the spatially reduced density matrix ρL =
TrR|
〉〈
| of the partition [56]. Analyzing the eigenvalues
can facilitate distinguishing between topological and nontopo-
logical phases, as demonstrated previously in 1D systems
[57]. However, it is not a universal indicator for characterizing
distinct phases [58]. Figure 15 shows a plot of the low-level
entanglement spectrum with m = 3.0 on an 8 × 4 cylinder for
various values of U , corresponding to different phases. The
entanglement levels are obtained by diagonalizing the reduced
density matrix for a center cut dividing the cylinder in two,
where the cut is acting like an edge in the y direction. In the
band insulator spectrum seen in panel (a) for U = 1.0, we
observe a single low-lying eigenvalue corresponding to the
entanglement in the ground state separated by a large gap to
several fourfold degenerate excited states. In case of the PM
T1 and SAFM T2 phase, which are plotted for U = 7.0 and
U = 8.5 as panels (b) and (c) we observe a doubly degenerate
excited level corresponding to the helical nature of edge states.
In panel (d), the emergence of long-range antiferromagnetic
order breaks time-reversal symmetry and leads to a splitting
that is seen in the nondegenerate excited entanglement levels.

FIG. 15. The low-level entanglement spectrum on an 8 × 4
cylinder at a fixed m = 3.0 is illustrated for different values of U ,
corresponding to various phases in our study. In (a) we present
the entanglement spectrum for U = 1.0 for the band insulator, (b)
U = 7.0 from the paramagnetic topological T1 (Paramagnetic T1)
phase, (c) displays the entanglement spectrum for U = 8.5 from the
SAFM T2 (stripey-antiferromagnetic T2) phase, and (d) depicts the
entanglement spectrum for U = 11.0 from the AFM MI (antiferro-
magnetic Mott insulator) region. The y axis on the left pertains to
panel (a), while the right y axis applies to panels (b)–(d). The plot
highlights the presence of degenerate density matrix eigenvalues in
the first excited state of the spectrum: fourfold degenerate in the BI
phase, twofold in both the T1 and T2 phases, with the MI phase
showing nondegeneracy.
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