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Many-body Chern insulator in the Kondo lattice model on a triangular lattice
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The realization of topological insulators induced by correlation effects is one of the main issues of modern
condensed matter physics. An intriguing example of correlated topological insulators is a magnetic Chern
insulator induced by a noncoplanar multiple-Q magnetic order. Although the realization of the magnetic
Chern insulator has been studied in the classical limit of the Kondo lattice model, research on the magnetic Chern
insulator in the original Kondo lattice model is limited. Here, we investigate the possibility of the many-body
Chern insulator with the noncoplanar triple-Q magnetic order in the Kondo lattice model on a triangular lattice.
Using the many-variable variational Monte Carlo method, we reveal that the triple-Q magnetic order becomes a
ground state at quarter filling in an intermediate Kondo coupling region. We also show that the many-body Chern
number is quantized to one in the triple-Q magnetic ordered phase utilizing the polarization operators. Our results
provide a pathway for the realization of the many-body Chern insulator in correlated electron systems.
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I. INTRODUCTION

The Kondo coupling [1]—magnetic interaction between
localized spins and conduction electrons—has been exten-
sively studied as a driving force for inducing several exotic
quantum phases originally in heavy-fermion systems [2–6].
The Kondo coupling leads to two main effects: the long-
range Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions
between the localized spins [7–9], and the formation of a sin-
glet between the local spins and the conduction electrons. The
competition between these two effects gives rise to a quantum
critical point at which the magnetic transition temperatures
become zero [10]. The study of spillover effects emergent
from the quantum critical points, such as non-Fermi liquid
behaviors and unconventional superconductivity, has been one
of the main topics in condensed matter physics [3–6].

Moreover, the Kondo coupling has been also found to man-
ifest various quantum phases, such as a ferromagnetic phase
via the double-exchange interaction [11–13], a charge-ordered
phase [14–16], a partial disordered phase [17,18], topolog-
ical orders [19], exotic superconductivity [20,21] including
topological superconductivity [22–24], and a skyrmion crys-
tal with a multiple-Q magnetic order [25–29]. In particular,
the emergence of a noncoplanar triple-Q magnetic ordering
has attracted significant interest since it can be regarded as
the magnetic topological insulators, i.e., the magnetic Chern
insulators [30–32], which show the quantum Hall effects with-
out magnetic fields [33–35]. However, previous theoretical
studies were primarily conducted for the classical limit of the
Kondo lattice models that ignore quantum effects. The quan-
tum effects were only discussed within the linear spin-wave
approximation to the ferromagnetic Kondo lattice model [36].

To clarify the topological nature of the triple-Q magnetic
ordered state, direct calculation of the many-body Chern num-
ber is necessary. For noninteracting systems, efficient methods
for calculating the Chern number [37,38] have been proposed
and applied to a wide range of systems. However, these

methods cannot be applied to interacting systems where wave
number is not a good quantum number. A pioneering work
by Niu et al. [39] shows that the many-body Chern number
can be calculated by regarding the twisted boundary condition
as an effective wave number. However, the numerical cost is
huge in this approach, since it requires integration over all
twisted boundary conditions. Recently, several efficient meth-
ods that do not require full integration have been proposed
[40–43]. Despite this theoretical progress, it remains a signif-
icant challenge to develop an efficient and flexible numerical
method that can calculate the many-body Chern number in a
wide range of interacting systems with large system sizes.

In this paper, we examine the stability of the triple-Q
magnetic ordered phase in a quantum spin 1/2 Kondo lat-
tice model on a triangular lattice by using the many-variable
variational Monte Carlo (mVMC) method [44–47], which can
take into account both spatial correlations and quantum fluc-
tuations efficiently. Our results demonstrate that the triple-Q
state is indeed realized in an intermediate Kondo coupling re-
gion at quarter filling. Furthermore, we show that the triple-Q
state has the nontrivial Chern number by explicitly calculating
the many-body Chern number based on Resta’s polarization
operator [42,43,48]. Our findings provide a theoretical basis
for understanding the emergence of magnetic topological in-
sulators induced by the Kondo coupling.

II. MODEL AND METHOD

The Kondo lattice model on a triangular lattice shown in
Fig. 1(a) is defined by

H = −
∑
i, j,σ

ti, jc
†
iσcc jσc + J

∑
i

Sc
i · Ss

i , (1)

where c†
iσc and ciσc are the creation and annihilation operators

of electrons with spin σ at the ith site on the conduction
layer, respectively. Sc/s

i denotes the spin 1/2 operator at the
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FIG. 1. (a) Schematic figure of the Kondo lattice model on the
triangular lattice. Top and bottom layers represents conduction and
localized spin layers, respectively. (b) Square lattice with next-
nearest hoppings deformed from the triangular lattice.

ith site on the conduction(c)/localized spin(s) layer, namely,
Sλ,α

i = ∑
σ,σ ′ c†

iσλσ
α
σ,σ ′ciσ ′λ/2 where σα is the Pauli matrix

for α = x, y, z. We set ti j = t for the nearest-neighbor sites
on the lattice and ti j = 0 for the others. We focus on the
antiferromagnetic Kondo lattice system, namely, J > 0. As
shown in Fig. 1(b), we map the triangular lattice onto the
square lattice with next-nearest hoppings. Both the conducting
electron and the localized spin layer have Ns = L × L sites
under the periodic-periodic boundary condition.

To analyze the Kondo lattice model on a triangular lattice
at quarter filling, we employed the mVMC method, which
enables us to obtain the accurate wave functions of ground
states in strongly correlated electron systems [44–47]. As a
trial wave function for the VMC method, we adopted the
generalized pair product wave function with the Gutzwiller-
Jastrow correlation factors, which are given as

|ψ〉 = PGPJ |φ〉, (2)

|φ〉 =
⎛
⎝∑

I,J

fIJc†
I c†

J

⎞
⎠

N/2

|0〉, (3)

PG = exp

⎛
⎝−

∑
λ=c,s

gλ
∑

i

ni↑λni↓λ

⎞
⎠, (4)

PJ = exp

⎛
⎝−

∑
i, j

vc
i j (nic − 1)(n jc − 1)

⎞
⎠, (5)

where niσλ = c†
iσλciσλ, niλ = ∑

σ niσλ, and N is the total
number of electrons and localized spins. Indices I and J in-
clude site, spin and layer indices, i.e., I = (i, σi, λi ) and J =
( j, σ j, λ j ). We treat gc, vc

i j and fIJ as the variational param-
eters. We fix gs to infinity to exclude the double occupation
on the localized spin layer. We use the stochastic reconfigu-
ration method to simultaneously optimize all the variational
parameters [49].

In this study, we consider four magnetic-ordered states
as candidates of the ground states, i.e., the triple-Q mag-
netic ordered state, the double-Q magnetic ordered state, the
stripe magnetic ordered state, and the ferromagnetic state.
Schematic pictures of these ordered states are shown in
Fig. 2(a). To obtain the triple-Q state and ferromagnetic state,
the generalized pairings fIJ are treated as the complex num-
bers. For the other states, we only optimize the real part of
fIJ . We note that gc and vc

i j are treated as the real numbers.

FIG. 2. (a) Spin configuration considered as initial states for the
mVMC calculations. (b) J dependence of the energy measured from
the triple-Q state, �e = (E − Etriple−Q)/Ns. Red symbols denote the
results for the ferromagnetic state. Blue symbols represent the energy
difference between the energy of the triple-Q state and the lowest
energy among the other magnetic states such as double-Q and stripe
states.

We impose the 1 × 1 and 2 × 2 sublattice structures on fIJ

to efficiently represent the ferromagnetic state and the other
magnetic states, respectively. We also assume that vc

i j has
the translational symmetry reflecting the lattice structure to
reduce the numerical costs.

III. RESULTS

A. Ground-state phase diagram

We examine the possibility of the triple-Q state in the
Kondo lattice model defined in Eq. (1). Figure 2(b) shows J
dependence of the energy measured from the triple-Q state for
L = 10, 12, and 16. We find that the triple-Q state becomes
the ground state for 2 � J/t � 3.5. We note that the triple-Q
state and the ferromagnetic state can always stabilize while
the optimization of the double-Q and stripe states tends to
be unstable and they sometimes converge to other magnetic
states such as the ferromagnetic state. Thus, in Fig. 2, we use
others to describe the magnetically ordered states other than
the triple-Q state and the ferromagnetic state.

For J/t < 2, because of the severe competition among the
magnetic-ordered states, we cannot identify the ground states
clearly within available system sizes. In this weak coupling
region, the long-period magnetic ordered state may be real-
ized. To examine the possibility of the long-period magnetic
ordered phases, it is necessary to extend the sublattice struc-
ture of the variational parameters. Since the numerical cost
for larger sublattice structures is very high, we leave this issue
for a future study. In the strong coupling region (J/t > 3.5),
we find that the ferromagnetic ordered phase becomes the
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FIG. 3. Doping dependence of the chemical potential μ of (a) the
triple-Q state for J/t = 3 and (b) the ferromagnetic state for J/t = 8.

ground state. This is consistent with the previous studies in
the classical limit [28].

Next, to clarify whether the obtained triple-Q state is in-
sulating or not, we calculate the chemical potential μ as a
function of the electron density n = Ne/Ns, which is defined as
μ(Ne + 1) = (E (Ne + 2) − E (Ne ))/2, where E (Ne ) denotes
the total energy with the number of electrons Ne. Figure 3(a)
shows μ-n plot of the triple-Q state for J/t = 3. From this
plot, we evaluate the charge gap as �c/t ∼ 0.6. This is quite
large compared with the gap arising from the spin-orbit in-
teraction, which is a driving force to open the charge gap in
conventional topological insulators. Note that, as shown in
Fig. 3(b), the ferromagnetic state does not have a finite charge
gap and thus is metallic.

Here, we examine magnetic properties of the ground
states. We calculate the Fourier-transformed magnetic mo-
ment Mλ

α (q) = 1
Ns

∑
i 〈Sλ,α

i 〉e−iq·riλ , where riλ = (xiλ, yiλ) is
the position vector at the ith site on λ layer. Figure 4 shows
Mλ

α (q) of the ground states. To enhance the visibility, we
plot 4Mc

α (Q) and −Ms
α (Q). Note that Ms

α (Q) has the opposite
sign of Mc

α (Q) since we consider the antiferromagnetic Kondo
coupling.

Figure 4(a) shows the size dependence of Mλ
α (Q) for J/t =

3, where Q represents an ordering wave vector. We also plot
the |Ms

α (q)| in the momentum space for L = 16 in the inset of
Fig. 4(a). We see that Ms

α (q) has sharp Bragg peaks for each
α, which signal long-range magnetic order at three different
Qs. We find that Qs are (π, 0), (0, π ) and (π, π ) for α = x, y
and z, respectively. As shown in Fig. 4(a), size dependence of

FIG. 4. Magnetic properties of the triple-Q state and the fer-
romagnetic state in the triangular Kondo lattice model. (a) Size
dependence of Mλ

α (q) of the ground state for J/t = 3. Circles and
squares represent the results for the magnetic moments Mc

α (q) and
Ms

α (q), respectively. Colors of the symbols denote the wave number
q and the direction of the spin operator α. Thin lines shows the linear
lines fitted from Mλ

α (q) for each q, α and λ. Inset shows the q depen-
dence of the magnetic moment on the localized spin layer |Ms

α (q)|
for J/t = 3. Red, green, and blue lines denote x, y, and z components
of the magnetic moment, respectively. (b) J dependence of magnetic
order parameters for L = 16. Squares and circles represent the results
of spin and conduction layers, respectively. We plot Mλ(q) of the
triple-Q state for J/t < 4 and the ferromagnetic state for J/t � 4.

Ms
α (q) and Mc

α (q) are small and they have finite values in the
thermodynamic limit. These results suggest that the ground
state for J/t = 3 is the triple-Q state.

Figure 4(b) shows J dependence of Mλ
α (Q). In the gray

region, we plot Mλ
α (q) of the triple-Q state for simplicity. For

J/t < 4, Mλ
α (Q) for α = x, y and z is finite at Q = (π, 0),

(0, π ) and (π, π ), respectively. This suggests that the triple-
Q state is indeed the ground state in the range of J/t . The
magnetic ordered moments of the localized spins decrease
by increasing J/t due to the Kondo screening. The reduction
of the magnetic moment, �M = 0.5 − |Ms|, is about 0.1 for
J/t = 3. This small reduction may be related to the fact that
the triple-Q state has the additional Z2 symmetry breaking of
the spin scalar chirality as discussed in the linear-spin wave
analysis [36].

Before the transition to the ferromagnetic phase (J/t � 4),
the magnetic ordered moments on the conduction layer show
the nonmonotonic J/t dependence. This behavior can be at-
tributed to the dual nature of the Kondo coupling: It can induce
both the magnetic ordered states and the singlet state. Similar
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nonmonotonic behavior is also found in the Kondo lattice
model on a square lattice at half filling [50].

Around J/t ∼ 4, we find that there is the first transition
from the triple-Q state to the ferromagnetic state. Since |Mc|
is much smaller than |Ms|, the net magnetization of ferro-
magnetic state is finite. For J/t > 4, the J dependence of the
magnetization is small. This result implies that nearly all the
conduction electrons contribute to the formation of the Kondo
singlets. The reduction of the magnetization of the localized
spins �M is about 0.2.

B. Many-body Chern number

The triple-Q magnetic insulator is expected to have finite
Chern number [26,28]. To calculate the many-body Chern
number, we evaluate expectation values of Resta’s polariza-
tion operator with the flux insertion [42,43,48]. The procedure
is summarized as follows: we first introduce a flux in the hop-
ping terms along the x direction as ti j → ti j exp(−iθx(xic −
x jc)/L) defined in Eq. (1) and obtain the ground state of
the Hamiltonian with the flux. The normalized ground-state
wave functions is described as |ψ̄ (θx )〉. Then, we calculate
the expectation value of the polarization operator along the y
direction, which is defined as

Py(θx ) = 〈ψ̄ (θx )| exp

⎛
⎝2π i

L

∑
j

n jcy jc

⎞
⎠|ψ̄ (θx )〉. (6)

The many-body Chern number C is obtained as the slope of
the argument of Py(θx ), namely,

ϕy(θx ) = arg[Py(θx )], (7)

C = ∂ϕy(θx )

∂θx

∣∣∣∣
θx→0

. (8)

We note that the expectation value of the polarization operator
in Eq. (6) can be easily calculated by the VMC method since
it only includes the real-space diagonal operator n jcy jc. We
also note that it is pointed out that the thermodynamic limit
of Resta’s formula may need special care in more than two
dimensions [51].

Figure 5 shows θx dependence of ϕy(θx ) in the triple-Q state
for J/t = 3. In this state, we find that ϕ(θx ) linearly increases
as a function of θx and its slope is evaluated as 1.007(74) for
L = 14 by the linear regression. This result indicates that the
triple-Q state is the many-body Chern insulator with C = 1.
For comparison, we also calculate ϕ(θx ) for a nonmagnetic
Kondo insulator in the square lattice at half filling [50,52],
which is expected to be a topologically trivial insulator. As
a result, we find that the slope of ϕ(θx ) is almost zero in the
nonmagnetic Kondo insulator, which indicates that this state
is a trivial insulator.

IV. SUMMARY AND DISCUSSION

In summary, we have performed the mVMC calculations
for the Kondo lattice model on the triangular lattice at quar-
ter filling. We find that the triple-Q magnetic ordered phase
becomes the ground state in the intermediate coupling region.
By explicitly calculating the many-body Chern number, we

FIG. 5. (a) Schematic figure of the polarization operator along
the y direction (Py) and the flux θx along the x direction on the
torus. (b) Flux dependence of the argument of the polarization ϕy(θx )
in the triple-Q state at J/t = 3 (open symbols). For reference, we
calculate ϕy(θx ) for the nonmagnetic Kondo insulator in the Kondo
lattice model on the square lattice at half filling and J/t = 3 (closed
symbols). See Eq. (1) for the definition of the Kondo lattice model.
Note that the variational parameters in the pair product part fIJ are
treated as complex numbers in these calculations. As a guide for the
eye, we plot the thin line for ϕy(θx ) = θx + ϕy(0) and the dashed line
for ϕy(θx ) = ϕy(0).

show that the triple-Q state is indeed magnetic Chern insula-
tors with C = 1.

Here, we discuss the stability of the triple-Q state in the
Kondo lattice model. In the classical limit and the spin wave
analysis [28,29,36], the triple-Q magnetic order becomes the
ground states for 2.8 < J/t < 18, which is quite robust com-
pared with our results [53]. Our results indicate the quantum
effects significantly destabilize the triple-Q state. This desta-
bilization may be attributed to the absence of the effective
biquadratic term in the Kondo lattice model. In the classical
limit at quarter filling, it has been shown that the effective pos-
itive biquadratic terms derived by a perturbation theory play
an important role in inducing the noncoplanar spin configura-
tion [29]. It is also discussed that the positive biquadratic term
is significant in understanding the triple-Q state in itinerant
magnets [54–56]. However, this term does not exist in the
Kondo lattice model with spin 1/2 since it is equivalent to
the ferromagnetic Heisenberg interaction with an additional
constant term. This ferromagnetic Heisenberg interaction sta-
bilizes the collinear ferromagnetic state and does not induce
the noncoplanar triple-Q state. Nevertheless, we show that the
triple-Q state still survives in the Kondo lattice model. This
indicates that itinerant magnets including spin 1/2 localized
spins can have the triple-Q state. Furthermore, the triple-Q
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state with a large charge gap is expected to be more thermally
stable than other Chern insulators found in previous studies,
most of which are realized below about 20 K [56–58]. Thus
our results are expected to stimulate the exploration of the
triple-Q state at high temperatures and the resultant magnetic
Chern insulator in a wide range of correlated electron systems.
One of the possible candidates is a van der Walls heterostruc-
ture recently found in the experiment [56,59].

Lastly, we discuss how to further stabilize the triple-Q
state. One promising way to stabilize the triple-Q state is
adding the onsite Coulomb interaction to the conduction layer.
In the triangular Hubbard model at quarter filling, the mean-
field results suggest that the noncoplanar state becomes the
ground state in the intermediate coupling region [60]. The
recent mean-field study also shows that skyrmion crystals with
triple-Q spin structures emerge around quarter filling [61].
Analysis of such an extended Kondo lattice model on the

triangular lattice is an intriguing issue but is also left for future
study.
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