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We present a minimally entangled typical thermal state quantum impurity solver for general multiorbital
systems at finite temperatures. We introduce an improved estimator for the single-particle Green’s function
that strongly reduces the large fluctuations at long imaginary time and low temperature, which were a severe
limitation of the original algorithm. In combination with the fork tensor product states Ansatz, we obtain a
dynamical mean field theory (DMFT) quantum impurity solver, which we benchmark for single and three-band
models down to low temperatures, including the effect of spin-orbit coupling in a realistic DMFT computation
for the Hund’s metal Sr2RuO4 down to low temperatures.
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I. INTRODUCTION

Strongly correlated materials are a central topic in con-
densed matter physics. Understanding or predicting their
properties is a challenge that requires the development of
nonperturbative quantum many-body methods. An example of
such a method is the dynamical mean field theory (DMFT),
which has significantly advanced our understanding of these
systems [1–7]. DMFT maps the original lattice problem into
an effective impurity problem with a self-consistent bath.
Solving such impurity problems remains a central computa-
tional bottleneck in the ab initio study of strongly correlated
material with DMFT.

The most common method for solving DMFT quantum
impurity problems is quantum Monte Carlo (QMC) [2,8–13].
However, its application is hindered by the intrinsic fermionic
sign problem at low temperatures in many interesting cases,
e.g., systems with low symmetries or spin-orbit coupling.
Exact diagonalization [14–21] and numerical renormaliza-
tion group (NRG) [22–29] are free from the sign problem
but are constrained to a small number of orbital degrees
with high symmetries. Recently, the matrix product state
(MPS) [30–33] and its tree tensor network extensions have
emerged as successful many-body wave function Ansätze
for general impurity problems and have been successfully
employed as impurity solvers on both real and imaginary
axes [34–45]. However, these tensor network based impurity
solvers are originally restricted to zero-temperature calcula-
tions.

Within the tensor network framework, finite-temperature
computations can be conducted in two ways: (i) the minimal
entangled typical thermal state (METTS) [46–48], a Monte
Carlo sampling of states with low entanglement, and (ii) the
purification method [49–52], which accounts for both ther-
mal and quantum fluctuations by doubling the Hilbert space.

*xcao@flatironinstitute.org

Recently, a hybrid method was proposed that combines both
approaches [53,54]. It has been extended to the computation
of the single-particle Green’s function, in a single-orbital
Anderson impurity model [55]. However, in the algorithm
presented in Ref. [55], the Green’s function exhibits large
variance in the METTS sampling at long imaginary time (i.e.,
for τ ∼ β/2), which severely limits the capabilities of the
method as an impurity solver at low frequencies.

In this paper, we show how to reduce this variance sig-
nificantly using an improved estimator for Green’s function.
Combined with the fork tensor product state many-body wave
function Ansatz, we obtain an impurity solver for general
impurity problems at finite temperatures, which we show to
be efficient for three-band systems, down to very low temper-
atures, even in the presence of spin-orbit coupling (SOC).

The paper is organized as follows. In Sec. II, we introduce
our improved estimator for the computation of the imagi-
nary time Green’s function in the hybrid METTS/purification
method. In Sec. III A, we use single-band benchmarks to
demonstrate the efficiency of the improved estimator with
excellent agreement on the self-energy. In Sec. III B, we apply
our method to a realistic DMFT study of Sr2RuO4 and show
the effect of SOC in parameter regimes that are inaccessible
to QMC algorithms. Finally, we conclude in Sec. IV.

II. METTS IMPROVED ESTIMATOR FOR IMAGINARY
TIME GREEN’S FUNCTIONS

We consider a multiorbital Anderson impurity model cou-
pled to a finite bath defined by

Ĥ = Ĥloc + Ĥbath,

Ĥloc =
∑

α

εα1α2 d̂†
α1

d̂α2 +
∑

α

Uα1α2α3α4 d̂†
α1

d̂†
α2

d̂α3 d̂α4 ,

Ĥbath =
Nb∑

i=1

(∑
κ

εi
κ ĉ†

i,κ ĉi,κ +
∑
κα

V i
ακ d̂†

α ĉi,κ + H.c.

)
(1)
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where Ĥbath is the bath and Ĥloc is the local impurity with
its interactions, including the Coulomb interaction Uα1α2α3α4

and various intrasite effects εα1α2 . Here, α (resp. κ) denotes
the spin and orbital degrees of freedom of the impurity (resp.
bath), i is the bath site index, and Nb is the number of bath
sites per spin orbital. In this Hamiltonian representation, the
hybridization function reads

�α1α2 (iωn) =
Nb∑

i=1

∑
κ

V i
α1κ

V i∗
α2κ

iωn − εi
κ

. (2)

In the context of DMFT computation, where the hybridization
function � is the input of the impurity solver, � is fitted to
the finite bath form of Eq. (2) using a standard procedure
presented in Appendix A.

A. METTS and purification

The central quantity in solving DMFT self-consistency
equations is the single-particle Green’s function, defined as

Gα1α2 (τ ) = −〈T d̂α1 (τ )d̂†
α2

〉

= − 1

Z
∑

i

〈i|e−βĤT d̂α1 (τ )d̂†
α2

|i〉, (3)

where β = 1/T denotes the inverse temperature, T is the
time ordering operator, and Z = ∑

i〈i|e−βĤ |i〉 is the partition
function. The states {|i〉} represent a complete and orthonor-
mal basis. Using the cyclic property of the trace, the Green’s
function can be rewritten for τ > 0 as

Gα1α2 (τ ) = − 1

Z
∑

i

〈i|e−βĤ/2d̂α1 (τ )d̂†
α2

e−βĤ/2|i〉

= − 1

Z
∑

i

p(i)〈φi|d̂α1 (τ )d̂†
α2

|φi〉, (4)

defining the normalized states |φi〉 ≡ e−βĤ/2|i〉/√p(i) and the
probability p(i) ≡ 〈i|e−βĤ |i〉.

When {|i〉} are chosen to be unentangled states, |φi〉 are
minimally entangled typical thermal states or “METTSs”
and p(i) is the un-normalized probability weight of each
METTS [46,47]. In general, a METTS |φi〉 is a many-
body state whose entanglement grows smoothly from zero at
smaller β. For large β, each METTS approaches the ground
state. METTS states can be importance sampled using an
algorithm where each METTS is “collapsed” into a prod-
uct state that generates the next METTS [46,47]. Thus the
METTS approach is a quantum Monte Carlo algorithm in-
volving entangled rather than classical configurations.

To represent each METTS wave function, we adopt a ten-
sor network with a “fork” structure, where each interacting
impurity site has its own separate chain of bath degrees of
freedom attached to it. Such a fork tensor product state Ansatz
has been demonstrated to efficiently capture the entangle-
ment structure of states of multiorbital models [43,45,56]. To
perform the imaginary time evolution necessary to construct
each METTS, we use the time-dependent variational principle
(TDVP) combined with a global basis expansion [45,57–60],
which has been demonstrated capable of providing highly
accurate results for impurity problems. Tensor operations are

implemented using the ITENSOR library [61,62]. Further im-
plementation details can be found in Appendix B.

A possible drawback of the METTS approach is that it
can require a large number of samples to achieve desirable
precision. One method that has been proposed to reduce the
number of samples is to “purify” a subset of the sites of
the initial state generating each METTS [53–55]. To purify
a site, one introduces a new corresponding “ancilla” site and
prepares the purified site to be maximally entangled with the
ancilla site before time evolving the state, i.e.,

|i〉 = ⊗
x∈Ip

[
1√
2

(|0〉Px |1〉Ax + |1〉Px |0〉Ax )

]
⊗

y 
∈Ip

|sy〉,

where Ip represents the set of purified site indices. Px and
Ax subscripts indicate the physical and auxiliary degrees of
freedom of site x, respectively. |sy〉 ∈ Hy ≡ {|0〉y, |1〉y} is a
state in the local Hilbert space of site y, where |0〉y and |1〉y

denote the empty and occupied state, respectively. In the limit
of purifying all of the sites, only a single sample would be
required. This limit is known as the “purification method,” and
while requiring no sampling, it has a rather high cost in the
low-temperature limit.

The optimal choice of which and how many sites to purify
turns out to be delicate and model dependent, as detailed in
Refs. [53,55], and one aims to balance a reduction in the
number of samples against an increase in the growth of en-
tanglement. A more detailed discussion on the dependence of
the sampling efficiency and bond dimension growth on the
number of purified sites, Np, is presented in Appendix D. In
this paper, we choose to purify the bath sites that fluctuate
most by purifying the first Np bath sites which have the lowest
absolute on-site potential |εi|, while keeping impurity degrees
of freedom unpurified. With this purification scheme, we an-
ticipate sampling primarily the impurity degrees of freedom,
as fluctuations related to the bath degrees of freedom are
mainly addressed through purification.

B. Improved estimator

By generating a sufficiently large number of NS sam-
ples through Monte Carlo sampling as described above, the
Green’s function Gα1α2 (τ ) in Eq. (3) can be computed as the
average of estimators measured on each sample i as

Gα1α2 (τ ) = 1

NS

NS∑
i=1

{
gi>

α1α2
(τ ), for 0 � τ � β/2

gi<
α1α2

(τ ), for β/2 � τ � β
,

gi>
α1α2

(τ ) ≡ −〈φi|d̂α1 (τ )d̂†
α2

|φi〉,
gi<

α1α2
(τ ) ≡ −〈φi|d̂†

α2
d̂α1 (τ − β )|φi〉. (5)

Here, gi>
α1α2

(τ ) and gi<
α1α2

(τ ) are referred to as the greater and
lesser estimator, respectively. The splitting of the estimator
into gi>

α1α2
(τ ) for τ � β/2 and gi<

α1α2
(τ ) for τ > β/2 serves to

prevent the overflow of the norm during the imaginary time
evolution and reduce the computational cost by reusing states
generated during calculating |φi〉 [55].

However, as observed in Ref. [55] and as shown in
Figs. 1(a) and 1(c), the above estimators exhibit significant
variance as τ approaches β/2. This large variance arises
from a mismatched importance sampling between the METTS
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FIG. 1. The single-particle Green’s function of DMFT solution
of the single-orbital Hubbard model from (a) the original estimator
and (b) the improved estimator at βD = 400. The cyan line is the
CTHYB quantum Monte Carlo result, using the implementation
Ref. [64], and the gray lines are the estimators measured on each
sample. (c) The METTS variance defined in Eq. (7) of the original
estimator (orange line) and improved estimator (green line). In both
cases, NS = 240, Np = 4, and Nb = 8.

states |φi〉 sampled at a temperature β and the overlaps of the
states [〈φi|d̂α1 (τ )][d̂†

α2
|φi〉] or [〈φi|d̂†

α2
][d̂α1 (τ − β )|φi〉] which

are not necessarily small when the probabilities p(i) are small.
In order to mitigate this issue, we rewrite the decompo-

sition of G differently. Using the notation τ̃ = β − τ , we
introduce improved estimators ḡ such that

Gα1α2 (τ ) = 1

NS

NS∑
i=1

{
ḡi>

α1α2
(τ ), for 0 � τ � β/2

ḡi<
α1α2

(τ̃ ), for β/2 � τ � β
,

ḡi>
α1α2

(τ ) ≡ −〈
φ

(β−τ )
i

∣∣d̂α1 e− τ Ĥ
2 e− τ Ĥ

2 d̂†
α2

∣∣φ(β−τ )
i

〉
,

ḡi<
α1α2

(τ̃ ) ≡ −〈
φ

(β−τ̃ )
i

∣∣d̂†
α2

e− τ̃ Ĥ
2 e− τ̃ Ĥ

2 d̂α1

∣∣φ(β−τ̃ )
i

〉
,

|φ(τ )
i 〉 ≡ e− τ Ĥ

2 |i〉√
〈i|e−βĤ|i〉

. (6)

We provide evidence in the next section that these improved
estimators strongly reduce the variance problem near τ =
β/2. They also have a natural particle hole symmetry. Further-
more, the maximal evolved time in this new scheme is β/2,
as opposed to β of the original estimator—a difference that
might be computationally significant for models with highly
entangled low-temperature or ground state physics. The draw-
back of the improved estimators is that they require one to
compute gi≶

α1α2 (τ ) at each τ point separately. Nevertheless, this
issue is strongly mitigated by the use of the compact discrete
Lehmann representation (DLR) of the Green’s function [63].
The DLR approach allows the Green’s function on the whole
imaginary time grid to be efficiently represented to high pre-
cision by merely computing its values on a modest number
of special τ points making up the “DLR grid,” whose number
grows only logarithmically with the inverse temperature.

III. RESULT AND DISCUSSION

In this section, we first present a benchmark of the
improved estimator and then apply the METTS algorithm

method to the archetypical Hund’s metal Sr2RuO4 . The
Appendixes present additional material, such as detailed dis-
cussions on the number of bath sites and purified sites,
presented in Appendixes C and D, and a benchmark of the
method against the continuous-time hybridization expansion
quantum Monte Carlo algorithm (CTHYB) for a three-band
Kanamori model, presented in Appendix E, with an excellent
agreement of the self-energy down to very low temperature
βD = 800 (where D is the half bandwidth).

A. Improved estimator

We first investigate the effect of the improved estimator
on the large fluctuations observed in the previous METTS
computation around τ = β/2 [55]. We consider the DMFT
solution of a single-band Hubbard model on the Bethe lattice
with a filling of n = 0.8 and an interaction strength of U =
4D, where D denotes the half bandwidth of the semielliptic
density of states.

In Fig. 1, we show the Green’s function as a function of
imaginary time τ measured from the original estimator in
Fig. 1(a) and improved estimator in Fig. 1(b). When employ-
ing the original estimator, our benchmarks are in excellent
agreement with the CTHYB quantum Monte Carlo results
using the implementation in the TRIQS software [64,65] across
the entire imaginary time domain, except for τ ≈ β/2 due to
large fluctuations in the METTS sampling, as discussed pre-
viously [55]. As shown in Fig. 1(b), the large variance close
to β/2 is strongly reduced with the improved estimator. In
order to quantify this effect, we consider the METTS variance
defined as

σ 2(τ ) ≡ 1

NS

NS∑
i=1

‖gi(τ ) − G(τ )‖2 (7)

where g is the estimator and G its average over the NS sam-
ples. In Fig. 1(c), we indeed see that the improved estimator
significantly reduces the variance around β/2.

B. Application to Sr2RuO4

Let us now consider Sr2RuO4 [66], within the DMFT
framework. In addition to the still-debated unconventional
superconducting state below ≈1.5 K [67,68], the normal state,
including the Hund’s metal state [7,69] and Fermi-liquid state
below TFL ≈ 25 K [28,66], has attracted considerable atten-
tion. Previous DMFT studies have been successfully applied
to explain various experimental observations, such as mass
enhancement [70,71], static magnetic responses [72], and the
enhancement of spin-orbital coupling strength by a factor of
2 due to correlation effects [44,73]. Due to the availability of
results with multiple methods (CTHYB, NRG), this material
is an excellent benchmark for multiorbital quantum impurity
solvers in a realistic DMFT setup.

The low-energy physics of Sr2RuO4 is determined by the
Ru 4d-t2g orbitals hybridizing with oxygen 2p orbitals [7,74].
A minimal one-body Hamiltonian can be constructed by con-
sidering the three maximally localized t2g orbitals, which are
obtained from the DFT Kohn-Sham orbitals without spin-
orbit coupling [75,76]. The noninteracting density of states
of Sr2RuO4 consists of a quasi-two-dimensional dxy band and
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FIG. 2. Comparison of the real [(a)–(c)] and imaginary [(d)–(f)] parts of the DMFT self-energy of Sr2RuO4 without spin-orbit coupling,
calculated using the METTS solver (full circles) and CTHYB quantum Monte Carlo (open circles) at T = 464 K (left panels), T = 116 K
(middle panels), and T = 29 K (right panels).

two degenerate quasi-one-dimensional dyz/xz bands. Notably,
the dxy band exhibits a van Hove singularity slightly above the
Fermi energy, while its spectral function features a long tail
below the Fermi energy and a relatively larger bandwidth than
the dxz/yz bands. The latter bands display typical quasi-one-
dimensional characteristics with singularities located at their
edges [74]. The Coulomb interaction takes the Kanamori form
as

ĤK = 1
2 (U − 3J )N̂(N̂ − 1) + 5

2 JN̂ − 2JŜ2 − 1
2 JL̂2, (8)

with U = 2.3 eV and J = 0.4 eV [28,73,77]. Here N̂, L̂, and
Ŝ are the total particle number, orbital, and spin momentum
operators of the impurity, respectively. The SOC term in the
Hamiltonian reads

Ĥsoc = i
λ

2

∑
mm′m′′

ζmm′m′′
∑
σσ ′

d†
mσ dm′σ ′τm′′

σσ ′, (9)

where ζ is the completely antisymmetric tensor and τ the
Pauli vector. An isotropic coupling constant of λ = 0.11 eV is
chosen for this term, with m ∈ {dxy, dyz, dxz} and σ ∈ {↑,↓}.
We use Nb = 8, Np = 4 for calculations without SOC, and
Nb = 6, Np = 2 with SOC. In every calculation, the mea-
surements are averaged over NS = 1080 samples, with each
sample calculated using a maximal bond dimension of m =
240 and a truncation error cutoff of tw = 10−10. Due to the
local D4h point group of Ru atoms, we omit the spin index
when presenting results without SOC.

We start with results without SOC. In Fig. 2, we com-
pare the real (upper panels) and imaginary (lower panels)
parts of the DMFT self-energy obtained from our approach
with CTHYB quantum Monte Carlo at three temperatures,
located in the fully incoherent (T = 464K), crossover (T =
116K), and coherent (T = 29K) regions [70]. We observe
excellent agreement between our results and CTHYB at
these three typical temperatures, demonstrating the accuracy
of our method. Our approach’s capability to provide ac-
curate results across a large temperature range is further

demonstrated by comparing the extracted quasiparticle
weight Z = (1 − ∂ωn Im�(iωn)|ωn→0)−1 from our method with
CTHYB in Fig. 3(a) [78]. We observe excellent agreement for
temperatures as high as T = 464 K down to low temperatures
as T = 29 K, which is close to the Fermi-liquid temperature
TFL ≈ 25 K [28,66]. Notably, accurately calculating the first
few Matsubara frequencies of the self-energy can be chal-
lenging for CTHYB at very low temperatures. Our method,
however, benefiting from fork tensor product state represen-
tation of the impurity wave function, is less constrained by
low-temperature calculations and can access an even lower
one at T = 23.2 K.

Figures 3(b) and 3(c) depict the imaginary part of the
self-energy of the dxy and dyz/xz orbitals. For T = 23.2 K,
we observe a linear behavior of Im�(iωn) as ωn → 0
for all three orbitals, indicating Fermi-liquid behavior. The

FIG. 3. (a) Comparison of quasiparticle weights Z from our ap-
proach (filled circles) and CTHYB quantum Monte Carlo (open
circles) at various temperatures. (b) Imaginary part of the DMFT
self-energy for the dxy orbital and (c) the two degenerate dyz and dxz

orbitals at temperatures of T = 38.7 K (orange circles), T = 29 K
(green diamonds), and T = 23.2 K (red triangles). The dashed gray
lines serve as guides to the eye and are linear with respect to ωn.
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FIG. 4. Comparison of the imaginary part of selected self-energy
components for Sr2RuO4 with (filled circles) and without (open
circles) spin-orbit coupling at T = 58 K. The inset illustrates the
effective spin-orbit coupling strength λeff

xy (orange) and λeff
z (green).

The gray dashed line represents the bare coupling strength of
λ = 0.11 eV.

quasiparticle weight extracted at T = 23.2 K is 0.18 for the
dxy orbital and 0.28 for the dyz/xz orbitals, in good agree-
ment with previous calculations [28,73] and experimental
results [66,71]. Despite the larger bandwidth of the dxy orbital,
its quasiparticle excitations are more renormalized than the
dyz/xz orbitals. This unexpected behavior can be attributed
to the relatively smaller spectral weight of the hybridization
function for the dxy orbital near the Fermi energy due to the
van Hove singularity [70]. Let us now turn to computations
with SOC. This term is known to play a significant role in
this material; although it is only a few percent of the band-
width, its inclusion is crucial for accurately describing the
experimental Fermi surface [45,71,74]. Incorporating SOC is
particularly challenging for QMC solvers, with calculations
performed only for temperatures above 200 K [73,77,79].
While zero-temperature results are available from MPS-based
solvers, using an artificial inverse temperature of βeff =
200eV−1 [44], the impact of SOC at intermediate temper-
atures on single-particle quantities remains to be explored
with a direct computation. Here, we present results with SOC
at T = 58 K. In Fig. 4, we compare Im�(iωn) with (filled
circles) and without (open circles) SOC at T = 58 K. As
anticipated, the diagonal elements are only slightly modified,
and the quasiparticle weights slightly change from 0.226 to
0.228 for the dxy orbital and from 0.301 to 0.306 for the dyz/xz

orbitals. As depicted in the inset, the effective in- and out-of-
plane spin-orbital coupling strengths respectively defined as

λeff
xy (iωn) ≡ λ − 2Im�xy↑,xz↓(iωn), (10a)

λeff
z (iωn) ≡ λ + 2Im�yz↑,xz↑(iωn) (10b)

are essentially frequency independent over a wide fre-
quency range and can be considered as constant single-
particle terms added to the bare ones. This enhancement
of SOC strength by correlation effects, resulting in λeff

xy ≈
0.19 eV and λeff

z ≈ 0.2 eV, lifts the degeneracies at the cross-
ing along the Brillouin zone and gives rise to well-separated
sheets, consistent with experimental observations [71]. The
originally isotropic atomic SOC now exhibits some anisotropy

between the in- and out-of-plane values due to the lower-
symmetry local point group D4h of the Ru ion. These
findings are in agreement with earlier finite-temperature
CTHYB calculations [73,80] and zero-temperature MPS
calculations [28,44].

IV. CONCLUSION

In summary, we have introduced an improved estimator for
the Green’s function in METTS computations. Using this esti-
mator significantly reduces the variance in certain time ranges
where the previous estimator of Ref. [55] would require many
more samples. Combining the METTS and purification ap-
proach with the fork tensor product state network, we obtained
a finite-temperature quantum impurity solver which works for
three-band systems at low temperature, even in the presence
of spin-orbit coupling, a regime inaccessible to the quan-
tum Monte Carlo methods. We illustrated our method with
a computation of the self-energy for Sr2RuO4 including the
spin-orbit coupling.

Because both the improved G(τ ) estimator and the METTS
algorithm are quite general purpose, we expect the above
improvements to be useful for studying strongly correlated
lattice models where METTS has already been used to com-
pute thermodynamic properties [81–83]. Having controlled
access to the imaginary time Green’s function should help to
understand scenarios such as the disordered intermediate-U
phase of the triangular lattice Hubbard model [82].
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APPENDIX A: FIT OF THE HYBRIDIZATION FUNCTION

In this section, we give the details of our fitting proce-
dure of the hybridization function to the form Eq. (2). For a
given hybridization function �, the parameters ε and V are

FIG. 5. [(a)–(c)] Imaginary part of the self-energy, and (d–f)
corresponding differences compared to QMC results, for DMFT so-
lution of the single-band model at a filling of n = 0.8 and interaction
strength U = 4D. Results are obtained with varying numbers of
bath sites (Nb = 3, 4, 5, 6, 7, 8, and 9) per spin orbital. Panels are
organized by temperature: βD = 100.0 (left), βD = 200.0 (middle),
and βD = 400.0 (right).
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FIG. 6. (a) Standard error of the mean
√

σ 2
G/NS as a function of

Monte Carlo sampling size NS for various numbers of purified bath
sites Np per spin orbital in the DMFT solution of the single-band
Hubbard model. The dashed gray line represents a guide to the eye
and is proportional to 1/

√
NS . (b) Average bond dimension 〈m〉 with

NS = 120 Monte Carlo sample, as a function of imaginary time τ

with various Np values, and the inset shows 〈m〉 at τ = β/2 as a
function of Np. The calculations are performed with Nb = 8 at βD =
200 and a truncation weight of tw = 10−11 for the time evolution.

determined by minimizing a cost function [3]

χ ({ε,V }) = 1

Nfit

Nfit∑
n=0

1

ω
γ
n
‖�(iωn) − �̄(iωn)‖, (A1)

where ωn are Matsubara frequencies, Nfit = 1500 in this paper,
and ‖ · ‖ is the Frobenius norm. The parameter γ ∈ [0, 1]
adjusts the weighting of low frequencies in the cost function
χ . For γ = 0, all frequencies are treated equally, while low
frequencies are assigned greater weight for γ > 0. We found
that choosing γ = 1 stabilizes our DMFT convergence, par-
ticularly in cases where a small number of bath sites Nb is
used.

APPENDIX B: IMPLEMENTATION AND
COMPUTATIONAL DETAILS

In this Appendix, we elaborate on the implementation and
computational details of the METTS solver. To calculate each
gα1α2 (τ ), one first evolves a product state |i〉 in imaginary
time to |φi〉 = e−βĤ/2|i〉/

√
〈i|e−βĤ |i〉. Due to the nonlocal

nature of the impurity Hamiltonian and the absence of direct
interaction between the bath degrees of freedom, the two-site
TDVP cannot adjust the bond dimension during an imag-
inary time evolution. Therefore, one can either employ an
alternative time evolution method, such as the global Krylov
time evolution method, during the initial time steps, and then
switch to either two-site or single-site TDVP up to β/2. In
our implementation, we extend the global basis expansion
method proposed in Ref. [60] for MPS to fork tensor product
states. In each of the time evolution steps, |ψ (τ + �τ )〉 =
e−�τ Ĥ |ψ (τ )〉, a series of Nk reference states are generated as

{(1 − �τ Ĥ )|ψ (τ )〉, · · · , (1 − �τ Ĥ )k|ψ (τ )〉},
and used to expand the basis of |ψ (τ )〉. In general, the sequen-
tial application of (1 − �τ Ĥ ) onto a fork tensor product state
increases the bond dimension rapidly and is computationally
expensive. However, since high accuracy is not required for
each reference state for basis expansion, we truncate these
reference states with a relatively small bond dimension of
around m′ = 50. Moreover, we find that in all our calculations,
a relatively small Nk = 1, 2 is typically sufficient.

For calculating each METTS state, we employ
an exponential growth imaginary time grid as
{τ0�τ 0, τ0�τ 1, τ0�τ 2, · · · , β/2}, which ensures a small
time step at the beginning of the imaginary time evolution,
while increasing the time steps as approaching β/2. Such
an exponential time grid has been demonstrated to speed up
calculations exponentially and provide better accuracy [84].
In our implementation, we have τ0 = 0.05, and �τ is

FIG. 7. Comparison of [(a)–(d)] real and [(e)–(h)] imaginary part of DMFT self-energy for the degenerate three-orbital model using the
METTS solver (filled symbols) with CTHYB results (open symbols) at various temperatures. (i) Imaginary part of the self-energy as a function
of Matsubara frequency at various temperatures. Dashed gray and purple lines indicate the scaling behavior of ω0.5

n and ωn, respectively. For
all METTS calculations, we use Nb = 8 bath sites per spin orbital, out of which Np = 5 are purified. The number of Monte Carlo samples is
NS = 500, and the bond dimension is m = 200.
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determined by a given number of imaginary time points Nτ ,
which is set according to β. For instance, for the Sr2RuO4

calculations, we have Nτ = 4β/5.

APPENDIX C: BATH SIZE DEPENDENCE

Although the convergence of DMFT solutions from an im-
purity solver employing finite bath sites toward the continuous
limit has been extensively discussed [3,85–87], for complete-
ness, we present our solver’s results at various temperatures
and bath sites in Fig. 5 for the single-band model the same
as Sec. III A in the main text. As Nb ranges from 3 to 7,
we observe a systematic convergence of �(iωn) to the QMC
continuous limit. Comparing Figs. 5(a) and 5(c), we find
that lower temperatures (βD = 400) require larger Nb � 6
to achieve satisfactory agreement with QMC results, unlike
cases at higher temperatures (βD = 100) showing excellent
agreement with QMC already with Nb = 4. For βD = 200
and 400, increasing Nb further from 8 to 9 no longer yields
substantial improvements, and for βD = 100, we encounter
the “overfitting” problem for Nb = 8, 9 as indicated by the
increase of error δ�(iωn) in Fig. 5(d).

APPENDIX D: PURIFICATION VERSUS
SAMPLING—ROLE OF Np

Here we discuss the role of Np, the number of purified sites,
using the single-band model the same as Sec. III A in the main
text. In Fig. 6(a), we present the imaginary time integrated
variance

σ 2
G =

∫ β

0
σ 2(τ )dτ (D1)

as a function of the number of samples NS for increasing
Np. We see that increasing Np from 1 to 4 strongly reduces
the METTS fluctuations. For Np � 4, this reduction is much

more modest, and the standard error of the mean,
√

σ 2
G/NS ,

starts to follow a clear standard 1/
√

NS decay rate, charac-
teristic of Monte Carlo sampling. In Fig. 6(b), we show the
averaged maximal bond dimension 〈m〉 versus τ , for various
Np. As expected, the bond dimension grows with Np, and
with imaginary time τ . The growth with τ tends to saturate,
due to the fact that |φi〉 converges to the ground state in the
β → ∞ limit. We also observe that as Np → Nb, the average
bond dimension increases more slowly: the purification of the
bath sites far away from Fermi level has little effect, probably
due to their fillings being very close to 0 and 1. We conclude
that, for these parameters, there is actually an optimum in Np

around Np ≈ 4 above which the computational cost of form-
ing each METTS (measured by the average bond dimension)

FIG. 8. Bond dimension convergence for the degenerate three-
orbital model at various temperatures using the same parameters set
as Fig. 7.

continues to grow with Np, while the METTS variance does
not decrease significantly anymore.

APPENDIX E: BENCHMARK—THREE-BAND MODEL

In this Appendix, we benchmark our approach on a three-
band model. We consider a Kanamori Hamiltonian of form
Eq. (8) in the main text. Each impurity orbital is separately
coupled to a bath with an identical semielliptic density of
states of half bandwidth D. We use a filling of 〈N̂〉 = 2, and
interaction strengths of U = 4D and J = U/6.

In Figs. 7(a)–7(h), we see that the DMFT self-energy
�(iωn) obtained with our method is in very good agreement
with CTHYB at various temperatures. The precise low-
frequency dependency of the self-energy constitutes a more
rigorous benchmark of the method. In this “Hund’s metal”
model, the strong suppression of Kondo screening scales by
Hund’s coupling gives rise to a phase characterized by an
almost frozen local spin moment and a power-law behav-
ior in the low-frequency self-energy, in contrast to ordinary
Fermi-liquid behavior [7,88,89]. This behavior is illustrated
in Fig. 7(i): the self-energy exhibits a �(iωn)/D ∼ (ωn/D)0.5

power-law behavior at low frequencies. For the lower temper-
ature case of βD = 800, a crossover to Fermi-liquid behavior
is observed, indicated by the linear dependence of the self-
energy on ωn/D at low frequencies.

In Fig. 8, we show the convergence of self-energy with
respect to bond dimension at various temperatures for the
three-band model. We observe a systematical convergence
of the self-energy with increasing m. The low frequencies
are more sensitive to the bond dimension. For βD = 100,
m = 80 is enough to achieve a satisfactory accuracy, while for
βD = 800, a larger bond dimension of m = 200 is required.
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