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Stability of fractional Chern insulators with a non-Landau level continuum limit
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The stability of fractional Chern insulators is widely believed to be predicted by the resemblance of their
single-particle spectra to Landau levels. We investigate the scope of this geometric stability hypothesis by
analyzing the stability of a set of fractional Chern insulators that explicitly do not have a Landau level continuum
limit. By computing the many-body spectra of Laughlin states in a generalized Hofstadter model, we analyze the
relationship between single-particle metrics, such as trace inequality saturation, and many-body metrics, such
as the magnitude of the many-body and entanglement gaps. We show numerically that the geometric stability
hypothesis holds for Chern bands that are not continuously connected to Landau levels, as well as conventional
Chern bands, albeit often requiring larger system sizes to converge for these configurations.

DOI: 10.1103/PhysRevB.109.245111

I. INTRODUCTION

For over 40 years, the fractional quantum Hall effect
(FQHE) has inspired a large and diverse body of research,
since it is the original example of a topological phase of matter
with fractional excitations and has the scope for revolutionary
applications in quantum metrology and computing [1,2]. In
the past decade, research interest has focused particularly on
lattice generalizations of these fractional quantum Hall states,
known as fractional Chern insulators (FCIs) [3–5], which en-
rich FQHE physics through their enhanced configurability and
have the potential to be realized at zero magnetic field [6,7]
and high temperatures [8]. Most notably, the past few years
have seen exciting experimental reports of low- and zero-field
FCIs in moiré lattices of graphene [9,10] and transition-metal
dichalcogenides [11], which has reignited theoretical interest
in FCI stability [12–21]. The underlying goal of such research
is to use the single-particle band structure to predict properties
of the many-body spectrum, in order to identify so-called
“ideal” Chern bands that yield the most robust FCIs [22–24].
The cornerstone of FCI stability theory is the geometric stabil-
ity hypothesis [25], which conjectures that FCIs become more
robust as the trace inequality is saturated, on the basis that at
this point the Chern band projected density algebra is identical
to that of Landau levels [26,27]. This hypothesis has been
rigorously tested in a variety of topological flat band models
and is found to hold in many typical cases [25,28,29]. How-
ever, recently, several extensions to the geometric stability
hypothesis have been proposed [16,20,23,30,31], with authors
arguing analytically that the single-particle resemblance to
Landau levels cannot be the defining criterion of FCI stability
but, rather, a special case. In light of this, there is motivation to
construct a simple many-body lattice model that can numer-
ically test the geometric stability hypothesis decoupled from
the Landau level limit.

In this paper, we investigate the scope of the geometric
stability hypothesis by studying FCIs in a family of topo-
logical tight-binding models that do not have a Landau level

continuum limit. Specifically, by adding a set of longer-
range hoppings to the Hofstadter model, we show that terms
quadratic in momentum exactly cancel in its small flux den-
sity expansion, which breaks the SO(2) symmetry present
in the Landau level Hamiltonian. In typical topological flat
band models, the continuum and Landau level limits are syn-
onymous and so the effect of each is obscured, whereas in
our model we can decouple these limits, and approach non-
Landau flat bands in the continuum. This is particularly useful
for probing the geometric stability hypothesis, which explains
the generally increasing stability of FCIs in the continuum
limit, as a consequence of the increasing similarity of their
host Chern bands to Landau levels. In this framework, we
study the many-body properties of bosonic and fermionic
Laughlin states numerically using exact diagonalization on a
torus, and we quantify the robustness of FCIs using many-
body gaps in their energy and entanglement spectra. We show
how the geometric stability hypothesis may appear to break
down as we approach the non-Landau level continuum limit,
at system sizes and flux densities typically used in exact
numerics [25,28,29]; however, it is recovered as we take the
thermodynamic or continuum limits, which highlights the lim-
itations of comparing FCI stability using finite-size numerics.
We argue that the geometric stability hypothesis is widely sup-
ported by numerics for small systems because the continuum
and Landau level limits typically coincide [25,28]. Moreover,
we comment on proposals that the underlying FCI stability
criterion goes beyond the resemblance of single-particle spec-
tra to Landau levels [23,30,31].

The structure of this paper is as follows. In Sec. II, we in-
troduce the single-particle and many-body Hamiltonians, and
we explain our choice of system parameters. In Sec. III, we
outline the method for quantifying the geometric stability hy-
pothesis, as well as the stability of FCIs. In Sec. IV, we present
the exact diagonalization results for the bosonic and fermionic
Laughlin states, and compare properties of the single-particle
and many-body spectra. Finally, in Sec. V, we summarize and
discuss the results, and comment on their implications.
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II. MODEL

In this section, we introduce the lattice model. In Sec. II A,
we focus on the single-particle Hamiltonian, and in Sec. II B,
we include interactions to define the complete many-body
model.

A. Single-particle model

We consider a system of N particles hopping in the xy
plane, on a finite square lattice with basis vectors {ax, ay} =
a{êx, êy}, spacing a, and dimensions Nx×Ny, with periodic
boundary conditions, in the presence of a perpendicular mag-
netic field B = Bêz. We define the single-particle Hamiltonian
of this system as the generalized Hofstadter model [32–34]

H0 = −
∑
n>0

∑
〈i j〉n

tneiθi j c†
i c j + H.c., (1)

where 〈. . .〉n denotes nth nearest-neighbors (NN) with corre-
sponding hopping strength tn, θi j denotes the Peierls phase
acquired by hopping from site i to site j, and c(†)

i is the
particle (creation) annihilation operator at site i. In particular,
the Peierls phases are defined as θi j = (2π/φ0)

∫ j
i A · dl,

where φ0 = h/e is the flux quantum, A is the vector potential,
and dl is the infinitesimal line element going from site i to site
j. These phases incorporate the perpendicular magnetic field
in the system to a good approximation [35,36], and they define
a magnetic unit cell (MUC) of dimensions lx×ly = q, such
that Lx×Ly are the system dimensions in MUC units. The flux
density of the system is then given as nφ = Ba2/φ0 = p/q,
where (p, q) are coprime integers, and q → ∞ corresponds
to the continuum limit. The incommensurability between the
MUC area and the flux quantum gives rise to the celebrated
fractal energy spectrum as a function of nφ , known as the
Hofstadter butterfly [34,37,38]. Consequently, the Hofstadter
model is a popular choice, for both theorists [39–43] and ex-
perimentalists [44–48], due to its ability to generate an infinite
selection of topological band structures with arbitrary Chern
number.

In the conventional Hofstadter model (with tn>1 = 0), it
is straightforward to show that the lattice model approaches
the Landau level Hamiltonian in the continuum limit. We first
write the NN Hofstadter model, HNN, as a symmetric sum of
magnetic translation operators, such that

HNN = −t1(Tx + Ty) + H.c., (2)

where Tm = ∑
〈i j〉1,m

eiθi j c†
i c j and 〈i j〉1,m denotes 1st NN in

the êm direction [49]. Since magnetic translation operators
are unitary, we can express them in terms of the Hermitian
generators Tm = eiKm , where the pseudomomenta Km are the
lattice analogs of the dynamical momenta πm and satisfy
[Kx, Ky] = 2πnφ i. This yields

HNN = −2t1(cos Kx + cos Ky). (3)

Finally, we can make the dependence on the flux density
explicit by defining Pm = n−1/2

φ Km and expand in small nφ to
yield

HNN = −4 + nφ

(
P2

x + P2
y

) + O
(
n2

φ

)
. (4)

FIG. 1. (3,6,9) Hofstadter model. Sketch of the hopping terms in
the (3,6,9) Hofstadter Hamiltonian (conjugates not drawn). The radii
for the first 9 sets of nearest neighbors on a square lattice are 1,
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Using the fact that Pm = (�/h̄)πm, where � is the magnetic
length, we can show that the effective Hamiltonian HNN ∼
nφ (P2

x + P2
y ) is isomorphic to the Landau level Hamiltonian

HLL = (π2
x + π2

y )/(2m∗) with m∗ = h̄2/(2a2). Further details
of this derivation are discussed in Ref. [29].

In the generalized Hofstadter model (with tn>1 	= 0), the
procedure for taking the continuum limit follows in a similar
way. For simplicity, we restrict ourselves to the generalized
Hofstadter model with hoppings along the cardinal axes, H⊥,
to avoid cross terms in our expansion. We start by writing the
model as a symmetric sum of magnetic translation operators

H⊥ = −
∑
n>0

t ′
n

(
T n

x + T n
y

) + H.c., (5)

where {t ′
1, t ′

2, t ′
3, t ′

4, . . . } = {t1, t3, t6, t9, . . . } is the set of hop-
pings along the cardinal axes. Next, we write the magnetic
translation operators in terms of the Hermitian generators
Tm = eiKm , introduce Pm = n−1/2

φ Km, and expand in small flux
density, which yields

H⊥ = − 4
∑
n>0

t ′
n + nφ

(
P2

x + P2
y

) ∑
n>0

n2t ′
n

− n2
φ

(
P4

x + P4
y

) ∑
n>0

n4

12
t ′
n

+ n3
φ

(
P6

x + P6
y

) ∑
n>0

n6

360
t ′
n + O

(
n4

φ

)
. (6)

Crucially, by including longer-range hoppings in the
Hamiltonian, we are able to tune the coefficients in our ex-
pansion and depart from the Landau level limit.

In this paper, we focus on the generalized Hofstadter model
with n ∈ {1, 3, 6, 9} hoppings along the cardinal axes and
t1 = 1, as depicted in Fig. 1, which we refer to simply as
the (3, 6, 9) Hofstadter model, H(3,6,9). In this case, there
is a plane of parameters 1 + 4t3 + 9t6 + 16t9 = 0 on which
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the leading (nonconstant) term in the small-nφ Hamiltonian
expansion is 4th order in momentum, and the SO(2) symmetry
of the continuum Hamiltonian is reduced to the square lattice
point group [29]. We refer to this as the quartic plane. The
(t3, t6, t9) = (−1/4, 0, 0) point on this plane corresponds to
the “zero-quadratic model” in Ref. [29]. Similarly, on this
plane, there is a line in parameter space t9 = (1 − 15t6)/64
on which the leading term is 6th order in momentum, which
we call the hexic line, and a point on this line t9 = −1/56
for which the leading term is 8th order in momentum, which
we call the octic point. Hence, the (3,6,9) Hofstadter model
allows us to explore a family of topological flat band models
that do not have a Landau level continuum limit, and also
comment on many-body behavior as we depart from this limit
order-by-order.

In Fig. 2(a), we show the single-particle band structure
of the (3,6,9) Hofstadter model at the point (t3, t6, t9) =
(−0.11,−0.15, 0.05) on the hexic line, with flux density nφ =
1/9. The first Chern numbers of each band are labeled on the
plot, and the bands are colored according to their sign. We
note that the (3,6,9) model has a topologically distinct band
structure to the Hofstadter Hamiltonian, which would have
the Chern numbers of the 5th and 6th bands interchanged
to respect its symmetry. Nevertheless, we obtain a low-lying
topological flat band with Chern number C1 = 1, amenable to
hosting the FQHE, as in the conventional Hofstadter case. In
Fig. 2(b), we show the fractal energy spectrum of the (3,6,9)
model as a function of nφ = p/199 at the same point in param-
eter space, with Chern numbers in the range C ∈ [−10, 10]
colored from blue to red. Here we note that the center of the
spectrum is shifted in the negative E direction, when com-
pared to the conventional Hofstadter butterfly, with subbands
in the lower middle of the spectrum overlapping each other.
This distortion reflects the slightly different band dispersion
and Chern numbers resulting from the longer-range hoppings,
as seen in Fig. 2(a). However, the broad properties of the
spectrum are similar to the Hofstadter model, despite the fact
that the nφ → 0, 1 lines no longer correspond to the Landau
level limit. Overall, the single-particle properties of the (3,6,9)
model show that it has the potential to host FCIs, provided it
is tuned to the appropriate system parameters. For a derivation
of the single-particle band structure for the (3,6,9) Hofstadter
model, we refer the reader to Appendix A.

B. Many-body model

We introduce short-range particle interactions using min-
imal delta function terms in the Hamiltonian, such that the
many-body system is described by

H = H(3,6,9) + PLB

∑
i j

Vi j : ρiρ j : PLB, (7)

where PLB is the projector to the lowest band, Vi j = δi j (δ〈i j〉)
is the contact (NN) interaction for bosons (fermions), and
ρi = c†

i ci is the particle density operator at site i. It has been
shown numerically for the Hofstadter model that neither the
band projection nor the short-range interactions obstruct the
stabilization of FCIs in the Jain series, owing to the favorable
properties of the topological band structure [39]. Moreover,
for simplicity, we restrict ourselves to lowest-lying topologi-

FIG. 2. Single- and many-body spectra on the hexic line.
(a) Single-particle band structure of the (3, 6, 9) Hofstadter model,
defined as Eq. (1) with t1 = 1, n = {1, 3, 6, 9}, at the point
(t3, t6, t9) = (−0.11, −0.15, 0.05) on the hexic line, with nφ = 1/9.
The Chern number C of each band is labeled and the bands are
colored according to its sign. Note that bands 5 and 6 are not touch-
ing. The fluctuations of the lowest band about its mean are shown
inset. (b) Butterfly plot showing the fractal single-particle energy
spectrum as a function of nφ . The bands are colored from blue to
red according to their Chern number, in the range C ∈ [−10, 10].
(c) Many-body energy spectrum for the 8-particle fermionic Laugh-
lin state filling ν = 1/3 of the lowest band at nφ = 1/24, stabilized
using nearest-neighbor interactions Vi j = δ〈i j〉. The many-body gap
	mb and quasidegeneracy spread δ are labeled, and the gap scaling
with magnetic unit cell area q is shown inset. (d) Spectral flow of the
3 quasidegenerate grounds states shown in (c), as a flux 
 is threaded
through the handle of the torus. (e) Particle entanglement spectrum
corresponding to (c) obtained by tracing over half of the particles.
The principal entanglement gap 	ξ is labeled and the number of
states below the gap obeys the (1, 3) counting rule [4]. (f) Particle
entanglement spectra corresponding to (c), in the k = 0 momentum
sector, obtained by tracing over NA particles. The entanglement gap
is shaded gray.

cal flat bands with C1 = 1 achieved at flux densities nφ = 1/q,
where the continuum limit corresponds to the Landau level
limit in the conventional Hofstadter case.

In order to stabilize an FCI, it is crucial to define the
correct lattice geometry and particle filling. We consider
square system sizes, such that Nx = Ny, since this has been
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shown to be most stable for our numerical simulations [50].
Moreover, we focus on the primary states in the Jain series
[51,52], the Laughlin states at filling ν = 1/s, with s = 2 (3)
for bosons (fermions), since these are the most robust and
well-understood FQH states with the clearest signatures. For
the bosonic Laughlin state, we consider MUCs of dimension
lx×ly = m×m with Lx×Ly = 4×4, whereas for the fermionic
Laughlin state, we consider MUCs of dimension lx×ly =
3n×2n with Lx×Ly = 4×6. In both cases, we choose the
integers m, n to tune the flux density and we target the ν =
N/Nφ = 1/2 and 1/3 FQH states for bosons and fermions,
respectively, where Nφ = Lx×Ly is the total number of flux
quanta. We focus on Laughlin states with N = 8 particles
because it has been shown, through extensive exact diagonal-
ization computations, that the many-body spectra of Laughlin
FCIs in the Hofstadter model are already well converged in
the thermodynamic continuum limit at this system size (cf.
Figs. 2 and 6 of Ref. [39]). Moreover, we would like to
obtain a many-body example that is readily reproducible and
comparable with previous studies [25,28,29].

In Fig. 2(c), we show an example many-body energy spec-
trum of a fermionic Laughlin state stabilized at nφ = 1/24.
Here, the many-body energies Emb are offset with respect to
the ground state energy Emb,0 and plotted against the linearized
momentum index kxLy + ky [53]. The ground-state degener-
acy of a ν = r/s FQH state is given by sg, where g is the
genus of the ground-state manifold [54]. On the torus (g = 1),
we observe a threefold degenerate ground state clearly sepa-
rated by a many-body gap 	mb to the higher-lying states. In
practice, the degeneracy of these ground states is not exact,
depending on physical factors, such as the proximity of an FCI
to a phase transition [39,55], as well as numerical factors, such
as system size and numerical precision [39]. Therefore, we
also define the quasidegeneracy spread of the ground states δ

(although this spread is not visible on the scale of the plot). We
can confirm the topological character of these ground states by
threading a flux through the handle of the torus and verifying
the spectral flow [4,42], as shown in Fig. 2(d). Finally, we
note that due to the nature of the contact and NN interactions,
the many-body gap scales 	mb ∝ 1/q(2) for bosons (fermions)
[25,28,39], as depicted in the inset of Fig. 2(c).

In Fig. 2(e), we show the particle entanglement spec-
trum (PES) corresponding to the FCI in Fig. 2(c). The
spectrum is defined as the generalization of the particle-
space Schmidt decomposition of a nondegenerate ground
state |�〉 = ∑

i e−ξi/2|�A
i 〉 ⊗ |�B

i 〉 to the degenerate case,
such that {e−ξ/2, |�A(B)〉} now corresponds to the eigenba-
sis of the reduced density matrix ρA(B) = trB(A)ρ with ρ =
1
s

∑s
i=1 |�i〉〈�i|. By tracing over the positions of a subset of

particles, it can be shown that the level counting corresponds
exactly to the number of quasiholes in the system, and hence
is a signature of FQH states. In FCIs, the relevant low-energy
sector with precise quasihole counting is generally separated
from the nonuniversal high-energy sector by a principal en-
tanglement gap 	ξ . In the case of the bosonic Laughlin state,
we expect a counting according to the (1,2) generalized Pauli
exclusion principal, which for NA = 4 particles in Lx×Ly =
4×4 orbitals on a torus yields a total of 660 quasihole states,
whereas for the fermionic Laughlin state, we expect a (1,3)
counting, which for NA = 4 with Lx×Ly = 4×6 yields a total

of 2730 states and is what we observe in Fig. 2(e) [4]. In
Fig. 2(f), we show the PES in the k = 0 momentum sector
corresponding to Figs. 2(c) and 2(e) as we trace over NA

particles. Here we can see how the number of states below
the gap reduces for NA 	= 4. For further details of the expected
FCI quasihole counting, we refer the reader to Ref. [4].

III. METHOD

In this section, we outline our approach for probing the
geometric stability hypothesis. In Sec. III A, we introduce the
stability metrics in single-particle spectra, and analogously,
in Sec. III B, we define our stability metrics in many-body
spectra.

A. Single-particle metrics

Since the numerical discovery of FCIs [5–8], a number of
single-particle metrics have been used to predict their stabil-
ity. The most rudimentary of these is the flatness criterion
W � V � 	, which predicts that, at sufficient interaction
strength V , an increase in the gap-to-width ratio 	/W will
enhance FCI stability [54]. The intuition is that flat bands have
a near-singular density of states, which together with a large
V and fractional filling maximizes particle interactions, while
the large gap 	 prevents hopping to the next highest band.
Although roughly true, several exceptions to this rule have
been found, such as FCIs stabilized with V � 	 [41], and
so this is not a precise indicator. Closely related to the gap-
to-width ratio, the normalized Berry curvature fluctuations
σ̂B = σB/μB are also often used as an indicator of stability,
where μB, σB correspond to the mean and standard deviation
of the Berry curvature B defined over the Brillouin zone
(BZ). The reasoning here is that Berry flatness is observed
in Landau levels of the FQHE, which are known to exhibit
robust fractional states [26].

Despite the frequent success of these two simple metrics,
however, it was soon realized that band geometry plays an
important role, in addition to band topology. Both of these
properties are consolidated in the quantum geometric tensor
(QGT), which underpins a diverse set of physical phenomena,
from superfluidity to electrical conductance [56–66]. In the
context of Chern bands, the QGT is given as

Rα
i j (k) = [

∂ki〈k, α|]Qα (k)
[
∂k j |k, α〉], (8)

where α is the band index, i, j are spatial indices, |k, α〉
is the Bloch eigenstate in band α with momentum k, and
Qα (k) = 1 − ∑

β 	=α |k, β〉〈k, β| is the orthogonal band pro-
jector. The real part of the QGT is given by the Fubini-Study
metric gα

i j (k) = Re[Rα
i j], which corresponds to the distance

between eigenstates on the Bloch sphere, whereas the imagi-
nary part of the QGT is given by the Berry curvature Bα (k) =
−2Im[Rα

xy(k)]. Crucially, since band geometry and topology
are components of the same tensor, we can derive relations
between them, namely

D(k) = det g(k) − 1
4 |B(k)|2 � 0, (9)

T (k) = tr g(k) − |B(k)| � 0, (10)
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where we have dropped the band index α for simplicity, and
we define D as the determinant inequality saturation measure
(DISM) and T as the trace inequality saturation measure
(TISM). It has been shown analytically that when the trace
(determinant) inequality is saturated for a Chern band, the al-
gebra of projected density operators is identical (isomorphic)
to that in Landau levels [26]. We note that since the trace
inequality is the stronger condition of the two, the DISM is
normally not considered. Based on this, it was conjectured
that the closer the TISM is to zero, the more amenable a
Chern band is to hosting FCI states [25]. This is known as the
geometric stability hypothesis, which succinctly consolidates
and extends all of the single-particle metrics that were used
prior. Recently, more general numerical tests have been pro-
posed to identify ideal Chern bands [31]; however it has not
yet been shown numerically that these provide a meaningful
continuous metric away from the ideal point.

In light of this, we use the BZ-averaged TISM 〈T 〉 as our
prominent single-particle stability metric. However, for refer-
ence we also compute the following: the BZ-averaged DISM
〈D〉; the normalized Berry curvature fluctuations over the BZ
σ̂B, which is the leading-order contribution when mapping
the algebra of projected density operators from Chern bands
to Landau levels; the Fubini-Study metric fluctuations over
the BZ σ 2

g = 1
2

∑
i j σ

2
gi j

, which is the next-to-leading-order
contribution; and the gap-to-width ratio 	/W . We define these
quantities as in Ref. [25], for easy comparison.

B. Many-body metrics

One of the main difficulties in testing the geometric sta-
bility hypothesis is that there is no unique way of defining
the magnitude of FCI stability. Several methods have been
employed in the literature, such as the magnitude of the
many-body gap 	mb [25,28,29,39,42,67,68], the magnitude
of the many-body gap scaled by the quasidegeneracy spread
	mb/δ [55], the magnitude of the principal entanglement gap
	ξ [18,28,39,68], the critical interaction strength at which
there is a phase transition Vcrit [41,69], and the extent to
which a finite many-body gap 	mb persists in the large-N
limit [39,42,67], to name a few. Although these metrics are
often correlated, such as the magnitude of the many-body and
entanglement gaps [28], there are also cases when they are
not. For example, we observe an infinite entanglement gap
for the ground states of Laughlin and Read-Rezayi parent
Hamiltonians, which becomes finite when we add a small
perturbation to the Hamiltonian [68], whereas the many-body
gap will only be infinitesimally affected in this case. Hence,
there is a need to unambiguously define a many-body metric
in order to quantitatively compare FCI stability and comment
on a stability hypothesis.

In our systems, we expect a quasidegeneracy spread of
close to zero in all cases [39], and so we cannot effectively use
the 	mb/δ metric. Based on empirical testing, we find that this
measure works best as an FCI is tuned through a phase transi-
tion, where δ changes significantly. Nevertheless, we compute
the quasidegeneracy spread in each case to verify that δ ≈ 0.
Moreover, since phase transitions vary in nature and can be
difficult to numerically characterize, it is not efficient to use
the critical interaction strength Vcrit metric. Instead, we define

FCI stability on fundamental terms, using the magnitude of
gaps in the many-body and entanglement spectra, as shown
in Figs. 2(c) and 2(e), which we spot check at larger N to
ensure that they are stable in the thermodynamic limit. We
define the many-body gap as the gap between the largest
s-fold quasidegenerate eigenenergy and the next highest state.
Similarly, we define the principal entanglement gap as the gap
between the largest of the quasihole entanglement eigenen-
ergies and the next highest state. By using these metrics in
unison, we can obtain a clearer picture of relative FCI stability
with respect to the TISM, which will allow us to quantitatively
evaluate the geometric stability hypothesis. Further details of
the numerical method are described in Appendix B.

IV. RESULTS

In this section, we present a total of 735 numerical ex-
act diagonalization computations, solving for the many-body
spectra of the (3,6,9) Hofstadter Hamiltonian on a torus, and
targeting the bosonic and fermionic Laughlin states in the
lowest C1 = 1 topological flat band at nφ = 1/q. In all cases,
we project the interaction Hamiltonian to the lowest band.

In Fig. 3, we show our comparison of single-particle and
many-body stability metrics for the bosonic Laughlin state
in the (3,6,9) Hofstadter Hamiltonian on the quartic plane
1 + 4t3 + 9t6 + 16t9 = 0. We reiterate that unlike for the con-
ventional Hofstadter model, for which the geometric stability
hypothesis is known to hold, the single-particle bands do not
converge to Landau levels as nφ → 0 anywhere on this plane.
In this figure, the top row [Fig. 3(a)] corresponds to our single-
particle indicator, the BZ-averaged TISM, and the other three
rows are derived from the many-body spectra. Figure 3(b)
shows the many-body gap, Fig. 3(c) shows the quasidegen-
eracy spread, and Fig. 3(d) shows the principal entanglement
gap. In Fig. 3(a), we can see that the scaled TISM 〈T 〉/q
converges in the continuum limit. The TISM is approximately
zero for the region below the hexic line, where the quartic term
has positive sign, and gradually increases as t6, t9 increase, in
the region where the quartic term has negative sign. According
to the geometric stability hypothesis, this would imply that
FCIs are most stable below the hexic line and will either
break down or decrease in stability as we move above the
hexic line. From the many-body gap data in Fig. 3(b), this is
what we observe at nφ = 1/16, 1/49. In these plots, we can
see that there is a constant nonzero many-body gap below
the hexic line, with a magnitude q	mb ≈ 0.6 comparable to
that of the Hofstadter model in the thermodynamic continuum
limit [28,39], which drops to approximately zero as we move
above the line, signaling a breakdown of the FCI phase. The
success of the geometric stability hypothesis here is perhaps
unsurprising because at large nφ , the (3,6,9) Hofstadter model
behaves like the topological flat band models previously tested
[25]. It is only as we approach the continuum limit nφ → 0
that the effect of having no quadratic terms in momentum
is accentuated. Indeed, as we move closer to the continuum
at nφ = 1/81, we witness anomalous behavior. In this case,
we still observe a comparable nonzero many-body gap below
the hexic line; however now there are also fluctuating nonzero
many-body gaps above the hexic line. By taking vertical cross
sections of this plot, we can see that the magnitude of the
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FIG. 3. Stability of the bosonic Laughlin state on the quar-
tic plane. (a) BZ-averaged TISM 〈T 〉, scaled by the MUC area
q, plotted in the quartic plane 1 + 4t3 + 9t6 + 16t9 = 0, for nφ =
1/16, 1/49, 1/81. The hexic line t9 = (1 − 15t6)/64 and octic point
t9 = −1/56 are overlaid in green. The points corresponding to Fig. 4
are marked by blue crosses and the cross section corresponding to
Fig. 7(a) is marked by a red dashed line. (b) Many-body gap 	mb,
scaled by the MUC area q, with parameters corresponding to (a). The
results are shown for the 8-particle bosonic Laughlin state stabilized
by the contact interaction Vi j = δi j . (c) Quasidegeneracy spread δ,
scaled by the MUC area q, corresponding to (b). (d) Principal entan-
glement gap 	ξ , corresponding to (b) and (c).

many-body gap does not monotonically decrease as the TISM
increases. Moreover, there are FCIs at 〈T 〉 ≈ 0 that have a
smaller many-body gap than states with 〈T 〉 > 0. In order
to investigate this observation, we plot the quasidegeneracy
spread in Fig. 3(c). At small flux densities nφ = 1/16, 1/49,
we can see a noisy distribution of δ values above the hexic
line indicating unordered many-body spectra that are not in
a topological phase. However, as we approach the contin-
uum at nφ = 1/81, we can see the quasidegeneracy spread
reduces to zero in the region where we previously observed a
nonzero many-body gap. Finally, we probe the phase diagram
further by analyzing the entanglement spectra in Fig. 3(d).
Corresponding to the plots above, we notice a clear nonzero
principal entanglement gap above the correct (1,2) counting in
the region below the hexic line in all cases, which indicates the
presence of an FCI phase. The gap magnitude 	ξ ≈ 23 con-
verges as nφ → 0 and is comparable to that for the Hofstadter
model in the continuum limit (cf. Fig. 5(a) of Ref. [28]). For
nφ = 1/81, however, we also observe a nonuniform nonzero

FIG. 4. Many-body spectra for candidate bosonic Laughlin states
with small and large TISM. Comparison of many-body energy
and entanglement spectra for candidate 10-particle bosonic Laugh-
lin FCIs at nφ = 1/81, on the quartic plane, with (a) (t6, t9) =
(−0.25, −0.25), and (b) (t6, t9) = (0.25, 0.25), corresponding to the
blue crosses in Fig. 3. The ground-state energies are (a) Emb,0 =
−72.0 and (b) Emb,0 = −74.6. The entanglement energies included
in the (1, 2) counting are colored red. The bottom panels show the
corresponding finite-size scaling of the many-body and entangle-
ment gaps. The many-body gaps are marked by blue dots and the
entanglement gaps are marked by red crosses. For reference, the
scaled many-body gap of the Hofstadter model in the thermodynamic
continuum limit is shown as a blue dashed line [28,39]. The lattice
geometries are selected so that the total system is approximately
square, with |1 − Nx/Ny| � 50% in all cases. The PESs are computed
with NA = �N/2�.

gap region appearing above the hexic line. Moreover, as for
the many-body gap data, there are points with 〈T 〉 > 0 that
have a larger entanglement gap than in the 〈T 〉 ≈ 0 region.

At first glance, this may appear as though the geometric
stability hypothesis has been violated. However, by perform-
ing a finite-size scaling, we find that the many-body and
entanglement gaps in the region below the hexic line are
stable in the thermodynamic limit, whereas the gaps in the
region above the hexic line are unstable, as shown in Fig. 4. In
particular, for the anomalous region, we observe that the en-
tanglement gap closes as we increase particle number, which
disqualifies it from an FCI phase [25], whereas the entan-
glement gap in the lower region remains nonzero throughout
the scaling and shows signs of convergence. Similarly, in
Appendix C we perform a flux density scaling and show that
the anomalous region is also not robust in the continuum limit.
This suggests that the geometric stability hypothesis holds in
the thermodynamic and continuum limits, even for bands that
are not continuously connected to Landau levels.

In Fig. 5, we show the plot for the fermionic Laughlin state
corresponding to Fig. 3. As before, we see in Fig. 5(a) that the
scaled TISM 〈T 〉/q converges in the continuum limit. From
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FIG. 5. Stability of the fermionic Laughlin state on the quar-
tic plane. (a) BZ-averaged TISM 〈T 〉, scaled by the MUC area
q, plotted in the quartic plane 1 + 4t3 + 9t6 + 16t9 = 0, for nφ =
1/24, 1/54, 1/96. The hexic line t9 = (1 − 15t6)/64 and octic point
t9 = −1/56 are overlaid in green. The point corresponding to Fig. 2
is marked by a red cross, the points corresponding to Fig. 6 are
marked by blue crosses, and the cross section corresponding to
Fig. 7(b) is marked by a red dashed line. (b) Many-body gap 	mb,
scaled by the MUC area q, with parameters corresponding to (a).
The results are shown for the 8-particle fermionic Laughlin state
stabilized by the nearest-neighbor interaction Vi j = δ〈i j〉. (c) Quaside-
generacy spread δ, scaled by the MUC area q, corresponding to (b).
(d) Principal entanglement gap 	ξ , corresponding to (b) and (c).

the many-body gap data in Fig. 5(b), we notice a similar trend
to the bosonic Laughlin state in Fig. 3(b). At all values of
flux density, we observe a constant nonzero many-body gap
below the hexic line, with a similar magnitude q2	mb ≈ 1.2
to that for the Hofstadter model in the thermodynamic con-
tinuum limit [70] (cf. Fig. 4(b) of Ref. [28]). At intermediate
values of flux density nφ = 1/24, 1/54, we can see that this
nonzero many-body gap diminishes above the hexic line, in
agreement with the geometric stability hypothesis, apart from
a few sporadic points, which we do not categorize as FCIs due
to an incorrect quasihole counting. However, as we approach
the continuum limit at nφ = 1/96, we can see that there is
a region above the hexic line that has a nonzero many-body
gap, which is approximately an order of magnitude larger than
the gap observed for 〈T 〉 ≈ 0 [71]. Data for the quasidegen-
eracy spread are less insightful here, since δ ≈ 0 in almost
all cases; however they do not eliminate the possibility of an
FCI phase. Finally, in Fig. 5(d), we notice an analogous trend

FIG. 6. Many-body spectra for candidate fermionic Laughlin
states with small and large TISM. Comparison of many-body en-
ergy and entanglement spectra for candidate 10-particle fermionic
Laughlin FCIs at nφ = 1/96, on the quartic plane, with (a) (t6, t9) =
(−0.25, −0.25), and (b) (t6, t9) = (0.25, 0.25), corresponding to the
blue crosses in Fig. 5. The ground-state energies are (a) Emb,0 =
−72.1 and (b) Emb,0 = −75.8. The entanglement energies included
in the (1, 3) counting are colored red. The bottom panels show the
corresponding finite-size scaling of the many-body and entangle-
ment gaps. The many-body gaps are marked by blue dots and the
entanglement gaps are marked by red crosses. For reference, the
scaled many-body gap of the Hofstadter model in the thermodynamic
continuum limit is shown as a blue dashed line [28,39]. The lattice
geometries are selected so that the total system is approximately
square, with |1 − Nx/Ny| � 27% in all cases. The PESs are computed
with NA = �N/2�.

to that seen in Fig. 3. At flux densities nφ = 1/24, 1/54, we
observe the correct (1,3) counting below the hexic line with
a clear nonzero entanglement gap that converges as nφ → 0,
whereas above the hexic line the gap goes to zero, indicating
a breakdown of the FCI phase. This shows that the points of
nonzero many-body gap above the hexic line, observed in the
left two panels of Fig. 5(b), do not correspond to FCIs. As
we approach the continuum at nφ = 1/96, we can again see
the constant region of nonzero entanglement gap 	ξ ≈ 16
below the hexic line, with a magnitude comparable to that
for the Hofstadter model in the continuum limit (cf. Fig. 5(b)
of Ref. [28]). Moreover, there is now also an anomalous
nonuniform region of nonzero gap above the hexic line, with
a significantly larger entanglement gap.

As before, this may appear as though the geometric sta-
bility hypothesis has been violated at first glance. However,
by performing a finite-size scaling, we can see that the many-
body and entanglement gaps are stable in the region below
the hexic line, whereas they fluctuate wildly in the region
above the hexic line, as shown in Fig. 6. In particular, the
entanglement gap closes in the anomalous region as we in-
crease particle number, which disqualifies it from an FCI
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phase [25], whereas the entanglement gap remains nonzero
and shows signs of convergence in the lower region. In ad-
dition, the flux density scaling in Appendix C shows that the
anomalous region is also not robust in the continuum limit.
We emphasize that the system sizes and flux densities chosen
in Figs. 3 and 5 correspond to those used in previous numer-
ical studies of the geometric stability hypothesis [25,28,29],
which highlights the additional care required when analyzing
models with a non-Landau level continuum limit. Ultimately,
these data again support the geometric stability hypothesis in
the thermodynamic and continuum limits, even for bands not
continuously connected to Landau levels.

To explicitly demonstrate the spurious violations of the
geometric stability hypothesis at small system sizes, we fo-
cus on the cross sections marked by the red dashed lines in
Figs. 3 and 5. We start with the cross section for the bosonic
Laughlin state from Fig. 3 at nφ = 1/81, which is plotted
in Fig. 7(a). According to the geometric stability hypothesis,
we would expect FCI stability to monotonically increase as
〈T 〉 → 0. Instead, there appears to be a phase transition,
with a trivial phase observed at t9 = 0.05 [72], suggesting
that a monotonic decrease in the TISM does not lead to a
monotonic increase in FCI stability. Moreover, in this case
we notice that both of our FCI stability metrics, i.e., the
many-body gap and the entanglement gap, are correlated, and
they both seem to indicate that states at large 〈T 〉 ≈ 50 are
more stable than at 〈T 〉 ≈ 0. For comparison, we also plot the
other single-particle stability metrics discussed in Sec. III A.
Here we can see that the DISM is strongly correlated with
the TISM, and the gap-to-width ratio is inversely correlated
with the Berry fluctuations, as expected. We note that in this
example, the primitive single-particle stability metrics, such
as the gap-to-width ratio and Berry fluctuations, accord with
the band geometric measures, such as the TISM, DISM, and
Fubini-Study fluctuations, which is not always the case [23].
For all metrics, we notice a clear transition about the hexic
line, where the quartic term changes sign. Similarly, we can
examine the cross section for the fermionic Laughlin state
from Fig. 5 at nφ = 1/96, which is plotted in Fig. 7(b). As
in Fig. 7(a), we can see that FCI stability does not appear
to monotonically increase as 〈T 〉 → 0, regardless of which
many-body stability metric is considered. Interestingly, on this
occasion we can see that the many-body and entanglement
gaps are inversely correlated above the hexic line. This reflects
the rapid reduction of the many-body gap as t6, t9 � 0 are in-
creased, which is obscured by the color scale in the right panel
of Fig. 5(b). Nevertheless, there are points with 〈T 〉 ≈ 50 for
which both the many-body and entanglement gaps are larger
than at 〈T 〉 ≈ 0. Again, we can see that all single-particle
metrics accord with each other, showing a distinct transition
about the hexic line. Comparing FCIs at quartic, hexic, and
octic points with fixed flux density in Figs. 3 and 5, we do
not notice a significant change in the many-body and entan-
glement gaps, although these Hamiltonian properties do have
an overall effect on the phase diagram.

V. DISCUSSION AND CONCLUSIONS

In this paper, we have investigated the scope of the ge-
ometric stability hypothesis by analyzing the stability of a

FIG. 7. Stability of Laughlin states on cross sections of the
quartic plane. Comparison of cross sections at (a) t6 = −0.05 for
the bosonic Laughlin state at nφ = 1/81, and (b) t6 = 0.25 for the
fermionic Laughlin state at nφ = 1/96, corresponding to the red
dashed lines in Figs. 3 and 5. The first panels show the scaled
many-body gap, q(2)	mb for bosons (fermions), and the principal
entanglement gap 	ξ , as a function of t9. The many-body gaps are
marked by blue dots and the entanglement gaps are marked by red
crosses. The maximum values of the gaps are marked with dashed
lines, and the hexic line is marked with a solid green line, as in
Figs. 3 and 5. The subsequent panels show the corresponding single-
particle metrics in black. The second, third, and fourth panels show
the scaling of the BZ-averaged TISM 〈T 〉, the BZ-averaged DISM
〈D〉, and fluctuations of the Fubini-Study metric σg, respectively.
The minima of the TISM and DISM are marked with a dashed line.
Finally, the fifth and sixth panels show the scaling of the normalized
Berry curvature fluctuations σ̂B and the gap-to-width ratio 	/W . The
logarithmic scale on the y axes is base 10.

family of FCIs that do not have a Landau level continuum
limit. In Sec. II A, we started by explaining why the (3,6,9)
Hofstadter model in the quartic plane has a non-Landau level
continuum limit. In Sec. II B, we then showed how the flat
bands of this model are amenable to hosting FCIs given an
appropriate lattice geometry, filling fraction, and interaction
Hamiltonian. Subsequently, in Sec. III, we outlined our
method for testing the geometric stability hypothesis. In
Sec. III A, we explained why the TISM is the prominent
single-particle stability metric, and in Sec. III B, we justified
our choice of many-body and entanglement gaps as quantifiers
of FCI stability. Lastly, in Sec. IV, we analyzed the stability
of Laughlin states in our model and demonstrated that the
geometric stability hypothesis also applies to non-Landau flat
bands, albeit often requiring larger system sizes to converge
for these configurations.
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In Sec. IV, we chose system sizes and flux densities that
correspond to previous numerical studies of the geometric
stability hypothesis for topological flat band models with a
Landau level continuum limit [25,28,29]. In doing so, we
are able to directly compare numerical aspects of the sim-
ulations. We find that, even though N = 8 Laughlin FCIs
are well converged in the thermodynamic limit for the con-
ventional Hofstadter model [39], this is not the case for the
(3,6,9) model. In Figs. 3 and 5, we notice anomalous re-
gions above the hexic line that are not robust in the N → ∞
limit, and in Appendix C, we show that these regions also
diminish as we continue to take the nφ → 0 limit. Since
these anomalous regions are fluctuating, highly sensitive to
numerical precision, and not robust in the thermodynamic
or continuum limits, we attribute this to a numerical insta-
bility and not a physical phase transition. Moreover, since
the relative magnetic length in our simulations is constant,
the most likely cause of this transient numerical instability is
the relative dominance of the fourth-order momentum term in
the Hamiltonian.

As previously mentioned, the definition of FCI stability is
ambiguous, which makes quantitatively testing the geomet-
ric stability hypothesis problematic. We decided to use the
many-body and entanglement gaps as quantifiers because they
are direct properties of the many-body Hamiltonian, despite
the fact that they are not always correlated. Other methods
of quantifying FCI stability, such as the range of interaction
strengths over which an FCI is stabilized [41,69], may lead to
different results. Another factor that is important to consider
is the form of the interaction term. For example, an FCI at
〈T 〉 = 0 will not be more stable than an FCI at 〈T 〉 > 0 if its
interaction terms are significantly less optimal. In our inves-
tigation, we have compared FCIs with identical contact/NN
interactions to remove this variable. We also reiterate that,
despite the plethora of recent extensions and generalizations
[16,20,23,30,31], the original geometric stability hypothesis
holds up well for models that are not continuously connected
to Landau levels in our study, modulo misleading breakdowns
that are of numerical origin.

We have presented results highlighting the limitations of
testing the geometric stability hypothesis using finite-size nu-
merics. In future work, it would be interesting to develop and
test the efficacy of continuous single-particle stability metrics
in more general frameworks [16,23,30,31], analogous to the
TISM, since most current research is focused on criteria for
the ideal Chern band itself [14,31]. Moreover, although we
have presented a simple example of a model that does not
have a Landau level continuum limit, this is not the only
example. The conventional Hofstadter model famously has
an effective continuum for bands of higher Chern number in
the limit nφ → 1/|C| [39]. It would therefore be interesting
to check whether there is also a finite-size breakdown in
the geometric stability hypothesis here, although this would
be more challenging, since it would require systematically
stabilizing a large set of higher-|C| FCIs [39,42,67,73,74].
We hope that showcasing the scope of the geometric stability
hypothesis motivates further efforts toward its generalization,
along with a reliable and inexpensive single-particle metric,
that can be used to universally compare the relative stability
of FCIs.
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APPENDIX A: SINGLE-PARTICLE BAND STRUCTURE
OF THE (3,6,9) HOFSTADTER MODEL

In this section, we consider the (3,6,9) Hofstadter model,
defined as Eq. (1) with n = {1, 3, 6, 9} and t1 = 1.

As mentioned in the main text, the Peierls phase is defined
as θi j = (2π/φ0)

∫ j
i A · dl, where A is the vector potential

and dl is an infinitesimal line element along the path from
i = (Xi,Yi ) to j = (Xj,Yj ). Performing this line integral in
Landau gauge A = Bxêy yields the general formula

θi j = 2πnφ (Yj − Yi )

(
Xi + Xj − Xi

2

)
, (A1)

where the flux density nφ = Ba2/φ0 = p/q with coprime in-
tegers (p, q), φ0 is the flux quantum, and X,Y are measured in
units of a. Note that, in this choice of gauge, the Peierls phase
depends on relative y coordinates but absolute x coordinates.
Using this formula, we find that the only hoppings in the
(3,6,9) Hofstadter model with a nonzero Peierls phase are
given as

θ
(m,n)
i j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2πnφm, j = (m, n + 1),

4πnφm, j = (m, n + 2),

6πnφm, j = (m, n + 3),

8πnφm, j = (m, n + 4),

(A2)

where we have defined i = (m, n).
Taking the plane wave ansatz �m,n = eikxmaeikynaψm,

and substituting this into the time-independent Schrödinger
equation H�m,n = E�m,n, leaves us with

Eψm = F ∗ψm−4 + D∗ψm−3 + C∗ψm−2

+ B∗ψm−1 + Amψm + Bψm+1

+ Cψm+2 + Dψm+3 + Fψm+4, (A3)

where

Am = −2
4∑

τ=1

t ′
τ cos(2τπnφm + τkya), (A4)

B = −t ′
1eikxa, (A5)
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FIG. 8. Additional results for the stability of the bosonic Laughlin state on the quartic plane. (a) BZ-averaged TISM 〈T 〉, scaled by
the MUC area q, plotted in the quartic plane 1 + 4t3 + 9t6 + 16t9 = 0, for nφ = 1/100, 1/121, 1/144, 1/169, 1/196, 1/225, 1/256. The
hexic line t9 = (1 − 15t6)/64 and octic point t9 = −1/56 are overlaid in green. (b) Many-body gap 	mb, scaled by the MUC area q, with
parameters corresponding to (a). The results are shown for the 8-particle bosonic Laughlin state stabilized by the contact interaction Vi j = δi j .
(c) Quasidegeneracy spread δ, scaled by the MUC area q, corresponding to (b). (d) Principal entanglement gap 	ξ , corresponding to (b) and
(c). These results follow directly from Fig. 3.

C = −t ′
2ei2kxa, (A6)

D = −t ′
3ei3kxa, (A7)

F = −t ′
4ei4kxa, (A8)

and we have skipped the letter E to avoid confusion with
the eigenenergies. Consequently, the full eigenvalue problem
Hψ = Eψ, where ψ = (ψ1, ψ2, . . . , ψq )ᵀ, is described by the
q×q Hamiltonian matrix

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A1 B C D F . . . 0 F ∗ D∗ C∗ B∗
B∗ A2 B C D . . . 0 0 F ∗ D∗ C∗
C∗ B∗ A3 B C . . . 0 0 0 F ∗ D∗
D∗ C∗ B∗ A4 B . . . 0 0 0 0 F ∗
F ∗ D∗ C∗ B∗ A5 . . . 0 0 0 0 0
...

...
...

...
...

. . .
...

...
...

...
...

0 0 0 0 0 . . . Aq−4 B C D F
F 0 0 0 0 . . . B∗ Aq−3 B C D
D F 0 0 0 . . . C∗ B∗ Aq−2 B C
C D F 0 0 . . . D∗ C∗ B∗ Aq−1 B
B C D F 0 . . . F ∗ D∗ C∗ B∗ Aq

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(A9)

The eigenvalues of the above Hamiltonian yield the q-band
single-particle energy spectrum for the (3,6,9) Hofstadter
model with nφ = p/q, shown in Figs. 2(a) and 2(b).

APPENDIX B: DETAILS OF THE NUMERICAL METHOD

We compute the many-body spectra of the (3,6,9)
Hofstadter model using the Lanczos algorithm implemented
in the DiagHam package. In most cases, we use a Lanc-
zos precision of 	Emb = 10−10 and compute the lowest five
eigenstates in each momentum sector. However, there are a
few cases where we need to either adjust the precision or
compute a larger number of eigenstates in order to ensure that
the low-lying states are properly converged, such as for the
N = 9 point in Fig. 6(a). This can have a significant effect
on the energy and entanglement spectra, with the latter being
more sensitive.

For the systematic computations on the quartic plane,
shown in Figs. 3, 5, 7, and 8, we use a square total system
size, as described in the main text. However, when performing
the finite-size scaling in Figs. 4 and 6, or the flux density
scaling for fermions in Fig. 9, this is not always possible
for the given particle numbers and flux densities, and so we
use approximately square systems. We define the squareness
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FIG. 9. Additional results for the stability of the fermionic Laughlin state on the quartic plane. (a) BZ-averaged TISM 〈T 〉, scaled by the
MUC area q, plotted in the quartic plane 1 + 4t3 + 9t6 + 16t9 = 0, for nφ = 1/126, 1/140, 1/150, 1/160, 1/168, 1/176, 1/187. We select
flux densities that admit almost square configurations (ε � 7%) and are approximately evenly spaced with respect to q. The hexic line
t9 = (1 − 15t6)/64 and octic point t9 = −1/56 are overlaid in green. (b) Many-body gap 	mb, scaled by the MUC area q, with parameters
corresponding to (a). The results are shown for the 8-particle fermionic Laughlin state stabilized by the nearest-neighbor interaction Vi j = δ〈i j〉.
(c) Quasidegeneracy spread δ, scaled by the MUC area q, corresponding to (b). (d) Principal entanglement gap 	ξ , corresponding to (b) and
(c). These results follow directly from Fig. 5.

deviation parameter as

ε =
∣∣∣∣1 − Nx

Ny

∣∣∣∣. (B1)

For each system size, we search for lattice geometries that
yield the correct filling fraction LxLy/N = s and flux den-
sity lxly = q, while minimizing ε. For the bosonic Laughlin
state in Fig. 4, lattice geometries that satisfy this for 1 �
Lx, lx, Ly, ly < 100 are given in Table I(a). For the fermionic
Laughlin state in Fig. 6, corresponding lattice geometries are
given in Table I(b).

APPENDIX C: FLUX DENSITY SCALING FOR LAUGHLIN
STATES ON THE QUARTIC PLANE

In this section, we present a total of 1694 numerical exact
diagonalization computations, to complement the results in
Sec. IV. In particular, we directly follow on from Figs. 3 and
5 and investigate the stability of Laughlin states on the quartic
plane as we go deeper into the continuum limit nφ → 0.

In Fig. 8, we show a direct continuation of Fig. 3 for the
stability of the bosonic Laughlin state at smaller values of nφ .
As in the main text, we consider square configurations with
MUCs of dimension lx×ly = m×m and system dimensions
Lx×Ly = 4×4. In the figure, we see that the anomalous re-

gions of large many-body and entanglement gaps above the
hexic line gradually diminish as nφ → 0, which shows that
this is a transient phenomenon. At the smallest flux density of
nφ = 1/256, the anomalous regions have almost completely

TABLE I. Lattice geometries used for the finite-size scaling in
the bottom panels of (a) Fig. 4 and (b) Fig. 6.

N lx ly Lx Ly ε

(a) bosons

6 9 9 3 4 0.25
7 27 3 1 14 0.36
8 9 9 4 4 0
9 9 9 3 6 0.5
10 9 9 4 5 0.20

(b) fermions

6 12 8 3 6 0.25
7 16 6 3 7 0.14
8 12 8 4 6 0
9 16 6 3 9 0.11
10 16 6 3 10 0.20
11 16 6 3 11 0.27
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disappeared and the geometric stability hypothesis is recov-
ered, with clear signatures of FCIs observed only below the
hexic line, where the TISM is smallest.

Similarly, in Fig. 9, we show a direct continuation of Fig. 5
for the stability of the fermionic Laughlin state at smaller
values of nφ . In this case, we are not able to restrict ourselves
to square configurations, due to the increasingly challenging
convergence of the Lanczos algorithm. Instead, we consider
approximately square configurations with ε � 7%, using the
algorithm described in Appendix B. As for the bosonic Laugh-
lin state in Fig. 8, we see that the anomalous regions diminish
as nφ → 0. Similarly, the anomalous regions for the many-
body and entanglement gaps are correlated and recede from
the top-right corner, where the TISM is largest.

From performing the computations, we find that the
anomalous regions are not only fluctuating, but also highly
sensitive to the precision of the Lanczos algorithm. Coupled
with the fact that these regions are not robust in the thermo-
dynamic or continuum limits, we attribute this to a numerical
instability and not a physical phase transition. Since the ratio
of the linear system size

√
NxNy ∼ √

q to magnetic length
� ∼ (2πnφ )−1/2 ∼ √

q is constant, this is not a length scale
phenomenon. Instead, the most likely cause of the transient
numerical instability is the relative dominance of the fourth-
order momentum term in the Hamiltonian. This highlights the
additional care needed to recover the geometric stability hy-
pothesis for Chern bands with a non-Landau level continuum
limit.
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