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Confinement is a paradigmatic phenomenon of gauge theories, and its understanding lies at the forefront of
high-energy physics. Here, we study confinement in a simple one-dimensional Z2 lattice gauge theory at finite
temperature and filling, which is within the reach of current cold-atom and superconducting-qubit platforms. By
employing matrix product states (MPS) calculations, we investigate the decay of the finite-temperature Green’s
function and uncover a smooth crossover between the confined and deconfined regimes. Furthermore, using
the Friedel oscillations and string length distributions obtained from snapshots sampled from MPS, both of
which are experimentally readily available, we verify that confined mesons remain well-defined at arbitrary
finite temperature. This phenomenology is further supported by probing quench dynamics of mesons with exact
diagonalization. Our results shed new light on confinement at finite temperature from an experimentally relevant
standpoint.
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I. INTRODUCTION

Lattice gauge theories (LGTs) were first proposed to un-
ravel the intricate mechanism of quark confinement [1], which
is one of the key steps towards understanding the formation
of hadrons at finite temperature and their transition to quark-
gluon plasma [2]. Although LGTs are still mainly considered
when tackling problems in high energy physics, they are
also extremely powerful when applied to condensed-matter
physics [3–5]. There, confined phases emerge in many models
that are used to describe strongly correlated systems [6,7],
and Z2 LGTs have direct connections to high-Tc superconduc-
tivity [8,9]. LGTs’ full power is unveiled when gauge fields
are coupled to dynamical matter at finite doping, where the
confinement-deconfinement transition still lacks a compre-
hensive theoretical description. This is also partially due to the
fact that numerical simulations of LGTs are demanding [10],
especially when the dimension surpasses the simplest case
of one spatial and time dimension (1 + 1D) [11]. The study
of LGTs becomes even more involved at finite temperature,
where the usual numerical limitations are amplified.

Significant advances in quantum simulations using cold
atoms in recent years introduced a new platform to study
strongly correlated many-body problems [12–14]. Consider-
able progress has been made specifically towards quantum
simulation of LGTs using cold atoms [15]. A first proof of
concept of experimentally simulating a Z2 LGT has already
been made [16,17] by employing a Floquet scheme [18].
Recently, new proposals have been put forward that utilize
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Rydberg tweezer arrays [19], where the tedious implementa-
tion of the gauge protection has been greatly simplified by
making use of the so-called local pseudogenerators [20,21].
Furthermore, proposals using superconducting qubits have
also appeared [22]. A lot of effort has also been made in using
digital quantum computers [23–27] with a version of a LGT
already experimentally realized [28], however limited in size.

Here we study finite-temperature properties of a simple
1 + 1D Z2 LGT where dynamical charges are coupled to a
gauge field at finite doping. This Z2 LGT is the simplest
nontrivial LGT which can be obtained after discretization of
the U (1) Schwinger model to a Zn LGT [29], and it is already
within the reach of existing quantum simulators [15–18]. The
dynamics of the gauge field is induced by an electric-field
term, which also acts as a linear confining potential in the
sector without background charges. As a result, individual
particles become confined into mesons, which themselves
remain dynamical. So far, the study of confinement in a Z2

LGT at finite temperature has been limited to challenging
Monte Carlo calculations [30], and the sign problem could be
mitigated in a U (1) Schwinger model [31–33]. A theoretical
study of a phase diagram at finite temperature and chemical
potential utilizing digital quantum simulator algorithms has
also been performed, however the study of confinement was
hindered by the small system size [26].

In this work, we employ large-scale state-of-the-art matrix
product states (MPS) calculations [34], where we make use
of the concept of quantum purification [35–37] in order to
obtain finite-temperature states. We study the decay of the
Z2-invariant Green’s function at finite temperature, which is
a direct probe of confinement, and we uncover a smooth
confinement-deconfinement crossover at finite temperature.
This goes against the conventional wisdom where one would
expect a deconfined phase at any finite temperature T > 0,
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FIG. 1. (a) In the physical sector without background charges, pairs of hard-core bosons (blue spheres) are connected with the Z2 strings
(red horizontal lines), which denote the orientation of the Z2 electric field. (b) Green’s function (3) for different temperatures T at a constant
chemical potential yielding a filling of nt = 0.389 in the ground state, together with the fitting function containing exponential and power-law
decay (dashed lines) [38]. (c) Heat diagram of the difference between the correlation lengths at h = 0 and h = t as a function of target lattice
filling nt and temperature T (white dots indicate data points). For the details on exact fillings at finite temperatures, see Supplemental Material
[38].

since the system has to be deconfined in the limit T → ∞.
In addition to the Green’s function, we study Friedel oscil-
lations, which also contain direct signatures of confinement.
Furthermore, we sample snapshots from MPS and study string
and antistring length histograms, which we propose as a new
simple but robust measure of confinement suitable for cold-
atom experiments. All these quantities, as well as dynamical
quenches at finite and zero temperature, show signatures of
confinement at any temperature T < ∞, albeit becoming less
pronounced as T increases.

II. MODEL

We consider a 1 + 1D Z2 LGT where hard-core bosons
(partons) are minimally coupled to a Z2 gauge field [39–42],

Ĥ = −t
∑

j

(
â†

j τ̂
z
j, j+1â j+1 + H.c.

) − h
∑

j

τ̂ x
j, j+1. (1)

Here â†
j (â j ) are hard-core boson creation (annihilation) op-

erators, and we represent the Z2 gauge and electric fields on
the links between lattice sites with Pauli matrices τ̂ z

j, j+1 and
τ̂ x

j, j+1. We note that in 1 + 1D one can map the bosons to
fermions via the Jordan-Wigner transformation [43], meaning
that our results can also be extended to spinless fermions.

In addition, we consider the set of local operators [39]

Ĝ j = τ̂ x
j−1, j τ̂

x
j, j+1(−1)n̂ j , (2)

where n̂ j = â†
j â j . These local operators generate the local

symmetry of the Z2 gauge group and are the Z2 LGT
counterpart of the Gauss law. They commute with the Hamil-
tonian, [Ĥ, Ĝ j] = 0,∀ j, and with each other, [Ĝ j, Ĝi] = 0.
The eigenvalues of Ĝ j are g j = ±1. The Hilbert space can
thus be divided into different sectors specified by the val-
ues of g j on each lattice site. In this work, we choose the
so-called physical sector without background charges where
g j = 1,∀ j [39]. Hence, the orientation of the Z2 electric field
changes only across an occupied lattice site and it is thus

convenient to define the Z2 electric string and antistring,
which graphically represent the orientation of the electric field
as τ x = ∓1, respectively; see Fig. 1(a). We note that we do not
include a staggered mass term in our LGT, which would give
the vacuum state as the ground state in the Schwinger model
[1,29]. This is because we are interested in finite fillings,
which translates to finite hole doping in a t − Jz model to
which the above LGT can be exactly mapped [41].

The first term in Hamiltonian (1) is the hopping term,
where the τ̂ z operator ensures that the Gauss law remains
satisfied, i.e., that the partons remain attached to a string.
The second term induces a linear confining potential among
partons connected with the same string, since strings become
energetically unfavorable. In the ground state, partons con-
nected with the same string thus become confined into mesons
(dimers), where the string length is minimized. This happens
for any nonzero value of h > 0 [40]; at h = 0 partons are
free/deconfined [39]. A solution of the confinement problem
in the ground state of this Z2 LGT has been found by perform-
ing a nonlocal transformation to the so-called string-length
basis [41]. There, confinement can formally be understood as
translational-symmetry breaking in the new basis [41].

We use the concept of quantum purification [35–37,44] in
order to obtain finite-temperature states. We add an auxiliary
lattice site to every physical lattice site. These are entangled
to the physical lattice sites and act as a thermal bath [35].
By using DMRG [34,45], we first compute the maximally
entangled state between the auxiliary and physical sites on
which we then perform imaginary time evolution [46] in order
to obtain states at finite temperature T [35–37]. We use SYTEN

[47,48], an MPS toolkit where DMRG as well as standard
time evolution algorithms for MPS are implemented. For
more details on the numerical calculations, see Supplemental
Material [38].

For practical purposes, we consider an even number of
hard-core bosons in the lattice. Since we employ open bound-
ary conditions, we consider that the chain always starts with
an antistring, i.e., a link with positive orientation τ x

0,1 = +1 in
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FIG. 2. Fourier transformation of Friedel oscillations. (a) Fourier coefficients |nk | in the deconfined phase exhibit broad peaks at k = 2πnt

(vertical dotted line), which correspond to Friedel oscillations of free partons. (b) In the confined phase, the Fourier transformation exhibits
peaks at k = πnt (vertical dashed line), which correspond to Friedel oscillations of mesons. (c) Substantial peaks are visible at k = πnt

(vertical dashed line) and at k = 2πnt (vertical dotted line) at higher target filling nt = 26/36 in the confined phase h/t = 1. Both peaks rise
simultaneously with decreasing temperature T . For precise fillings at finite temperature, see Supplemental Material [38].

the confined phase when h/t > 0. These conditions prevent
the partons from being confined to the boundaries. This is
automatically satisfied in the numerical implementation with
DMRG in the ground state, where we map the model to
a spin-1/2 system and also add a chemical potential term
proportional to μ [38].

III. GREEN’S FUNCTION

To probe the confinement of partons into mesons, we con-
sider the Z2-invariant Green’s function defined as [40–42]

G(i − j) =
〈

â†
i

⎛
⎝ ∏

i��< j

τ̂ z
�,�+1

⎞
⎠â j

〉
, (3)

which can also be considered as a one-dimensional version
of the Fredenhagen-Marcu order parameter [49]. At T = 0, it
decays exponentially in the confined regime and with a power-
law in the deconfined regime [40].

The Green’s function decays exponentially in both regimes
at T > 0, albeit with different decay rates. This makes a clear
distinction between the confined and deconfined phases at
finite temperature difficult. To overcome this complication, we
compare the rate of decay of the Green’s function (3) in both
regimes and determine the crossover temperature, at which the
thermal fluctuations start to dominate.

To this end, we fit the Green’s function results with a func-
tion containing algebraic and exponential (∼e−|i− j|/ξ ) decay
profiles, and we extract the correlation length ξ ; see Fig. 1(b)
(for details, see also [38]). We consider the difference between
the correlation lengths, �ξ (T ) = [ξh=0(T ) − ξh=t (T )], in the
two regimes at the same temperature T and comparable target
fillings nt , for which we know that the charges are confined
and deconfined in the ground state; see Fig. 1(c). From this we
determine the crossover region where thermal fluctuations be-
gin to dominate the exponential decay of the Green’s function.
We define the approximate crossover boundary in the region
where ξh=0(T ) − ξh=t (T ) = 1

2ξh=0(T ).
We find that the typical crossover region is at T/t ≈ 0.25,

which is also influenced by the lattice filling; see Fig. 1(c). The
so-called target filling nt is the filling obtained in the ground

state at a given chemical potential μ, which is kept constant
during the imaginary time evolution. The actual densities n(T )
at finite temperature thus deviate slightly from nt for each
run at h/t = 0 and h/t = 1, respectively. These deviations
do not exceed |nh=t (T ) − nh=0(T )|/n(T ) < 20% for T/t < 1.
We thus plot the data points as a function of nt [38].

IV. FRIEDEL OSCILLATIONS

Another hallmark of confinement in the 1 + 1D Z2 LGT
is an abrupt change of the frequency of the Friedel oscilla-
tions in the confined phase. The frequency in the confined
phase equals 2kF = πn, which is half the frequency found
in the deconfined phase of free partons [40]. This indicates
that the confined mesons are indeed well-defined constituents
that remain mobile and form a Luttinger liquid with intricate
interactions.

To analyze the Friedel oscillations at finite temperature, we
perform the Fourier transformation of the density profile 〈n̂ j〉
and extract the frequency of oscillations. In the deconfined
phase h/t = 0, we observe broad peaks at k = 2πn, which
is the expected frequency for the Friedel oscillations of free
partons; see Fig. 2(a). The peaks are broad and only become
well defined for temperatures T/t � 1/4. With lower temper-
ature the peaks rise and converge to the ground-state results.
Contrarily, we observe peaks at k = πn for low temperatures
in the confined phase h/t = 1 as expected; see Fig. 2(b).
These peaks appear again at around T/t � 1/4 and converge
to the ground-state results at lower temperature in a similar
fashion to the deconfined case.

There are no deconfined peaks visible in our results for the
filling of nt = 0.3889 and h/t = 1 at any temperature, which
rules out a deconfined parton gas in this regime. If the latter
would exist, we would expect a shift in the peak position
from k = πn to k = 2πn with increasing temperature. The
absence of this shift thus suggests that mesons are pre-formed
already well above the crossover temperature, i.e., partons are
confined up to high temperatures where thermal fluctuations
completely dominate the behavior of the system.

At higher fillings, n � 0.5, we observe the coexistence
of peaks at k = πn and 2πn; see Fig. 2(c). However, peaks
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FIG. 3. String and antistring length distributions. (a) Distributions are qualitatively similar in the deconfined phase, h = 0, at a fixed
temperature T and filling obtained from the snapshots ns. The peaks shift to � = 1 with increasing temperature. (b) Different distributions of
strings and antistrings can be observed in the confined phase h/t = 1. There is a strong peak at � = 1 in the string length distribution, and there
are no strings with lengths larger than � � 3. In contrast, the antistring length distribution is wide, spreading over � > 8 at finite temperatures
and peaking at around � ≈ 3 in the ground state.

at both positions rise simultaneously with lower temperature
and there is again no exchange of the position of the peaks
with temperature. The peaks observed at higher fillings at
k = 2πn can be associated with hole fluctuations, which
become significantly more mobile relative to mesons.

V. STRING-LENGTH DISTRIBUTIONS

Our model is within reach of modern cold-atom experi-
ments. However, extracting the Green’s function would be
a rather complicated task. We therefore consider string and
antistring length histograms, which are easily accessible from
on-site density-resolved snapshots that can be obtained ex-
perimentally. There, one simply has to extract the number of
empty lattice sites between odd-even and even-odd particles,
respectively; see Supplemental Material [38] for more details.
This is a robust, experimentally feasible probe of confinement,
since strings are on average shorter than antistrings in the con-
fined regime; we thus expect different distributions of strings
and antistrings as a clear indicator of confinement.

To demonstrate the effectiveness of such a probe, we sam-
ple snapshots from MPS [50] using perfect sampling [51]
implemented within SYTEN [47,48]. The results presented in
Fig. 3 show a clear difference in distributions in the confined
and deconfined regimes. In the deconfined regime there is no
difference between the string and antistring length distribu-
tions since partons are free; see Fig. 3(a).

In the confined phase, the string length distribution is
peaked at � = 1, meaning that most of the mesonic states are
tightly confined with few empty lattice sites between the two
partons making up a meson; see Fig. 3(b). (There is a small
fraction of mesons with � � 2, which can be attributed to
quantum fluctuations. The presence of � = 2 states is in fact
necessary for the mesonic states to remain mobile, since the
hopping of mesons can be understood as a second-order per-
turbation process when we consider the limit of h 
 t [40].)
In contrast, the anti-string-length distribution is broad, with a
long tail. Furthermore, the anti-string-length distribution has

a peak at � > 1 in the ground state. This is also influenced
by the overall filling of the chain; see Supplemental Material
[38].

The combined bimodal distribution of string and antistring
lengths is thus a clear indicator of confinement. These features
are present up to temperatures consistent with our previous
calculations of the Green’s function and Friedel oscillations.
For higher temperatures T � t , the distributions become more
similar to each other and both peak at � = 1: this is consis-
tent with a continuous crossover to the deconfined regime at
T = ∞. However, at finite temperature T � t , a slight differ-
ence between string and antistring length histograms remains,
supporting our claim of preformed mesons up to any finite
temperature.

VI. QUENCH DYNAMICS

Next we consider another experimentally accessible, dy-
namical probe. To this end, an initially tightly bound parton
pair is introduced into a finite-density thermal gas and we
probe whether it remains confined during the subsequent time
evolution.

Specifically, we localize a meson on the central two sites of
an L-site chain; the left (right) remaining (L − 2)/2 sites are
prepared independently in a thermal state of Ĥ in Eq. (1) at
a given temperature T and density n = (N − 2)/(L − 2); see
the inset in Fig. 4(a). Then, we calculate the time evolution
of this initial density under the full system Hamiltonian (1),
including all L sites.

We perform numerical exact simulations for L = 12,
N = 6 at different values of h and T . Our results indicate no
confinement at any temperature when h = 0, while again we
find evidence of confinement at any temperature T < ∞ when
h > 0: We consider dynamics of the probabilities pa,b(r) that
the ath and bth particle, counted from the left, are r sites apart,
shown in Figs. 4(a) and 4(b) for h/t = 0 and 1, respectively, at
T/t = 0.5. By construction, the probability of the middle pair
to be a site apart is p3,4(1) = 1 before the quench. In the wake

245110-4



CONFINEMENT IN (1+1)-DIMENSIONAL Z2 … PHYSICAL REVIEW B 109, 245110 (2024)

FIG. 4. Starting in a thermal ensemble at temperature T/t = 0.5
and at half-filling at a given value h, with a well-defined particle
pair at the middle (see the inset), we quench with Ĥ and calculate
in ED the probabilities of a pair of particles being one site apart
over evolution time. (a) In the case of h = 0, we find that any two
consecutive pairs are equally likely to be a site apart at long evolution
times. (b) When h/t = 1, we find that the middle pair is bound, as are
the two other pairs on either side, which is indicative of confinement.

of the quench, we find a fundamental difference between zero
and nonzero h. At long times, we find that when h = 0 any two
consecutive particles are equally probable to be a site apart.
On the other hand, when h/t = 1, we find that it is always
more probable that the middle pair is bound, as well as the
two pairs to its left and right, indicating confinement. This
qualitative picture holds also at other values of T [38,52], but
consistent with a deconfinement crossover, the signal becomes
less pronounced for higher temperatures T → ∞.

VII. SUMMARY AND OUTLOOK

In this work, we studied confinement in a 1 + 1D Z2

LGT at finite temperature. We considered a Z2-invariant
Green’s function as the direct probe of confinement at finite
temperature, where we uncovered a smooth confinement-
deconfinement crossover at approximately T/t ≈ 0.25. By
additionally considering the Friedel oscillations, where the
confinement manifests itself in halving of the frequency,
we confirmed that the confinement-deconfinement crossover
extends up to temperatures where the thermal fluctuations
dominate the behavior of the system. These results were

furthermore affirmed by the string and antistring length dis-
tributions that we proposed as an experimentally feasible,
robust measure of confinement. Finally, we complemented
our results with dynamical probes, also experimentally readily
accessible in current state-of-the-art quantum simulators [53].
There, we showed that, again, confinement persists up to high
temperatures, albeit signatures of confinement become less
pronounced as the system approaches the deconfined infinite-
temperature state.

Our results pave the way towards understanding confine-
ment crossover at finite temperature in a simple 1 + 1D Z2

LGT with dynamical matter, which can be probed with cur-
rent quantum simulators. We show that the partons remain
confined at low temperature, with a smooth crossover at finite
temperature to an incoherent regime dominated by thermal
fluctuations. At any finite temperature T < ∞, signatures of
confinement remain. This result challenges the conventional
reasoning in one dimension, where one would naively expect
a deconfined regime at any finite temperature as the system
is deconfined for T → ∞. We expect that our results can be
extended to higher gauge groups and models with more com-
plicated interactions. Our work paves the way for explorations
of confinement in state-of-the-art analog, or digital, quan-
tum simulators, which naturally include thermal fluctuations.
Such setups can also naturally explore mixed-dimensional
settings of coupled 1D chains, where even richer confinement-
deconfinement physics can be expected [30].
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