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Gauging a finite subgroup of a global symmetry can map conventional phases and phase transitions to
unconventional ones. In this work, we study, as a concrete example, an emergent Z2-gauged system with global
symmetry U(1), namely, the Z2-gauged Bose-Hubbard model both in 1D and in 2D. In certain limits, there is an
emergent mixed ’t Hooft anomaly between the quotient Ũ(1) symmetry and the dual Ẑ2 symmetry. In 1D, the
superfluid phase is mapped to an intrinsically gapless symmetry-protected topological (SPT) phase, as supported
by density-matrix renormalization group (DMRG) calculations. In 2D, the original superfluid-insulator transition
becomes a generalized deconfined quantum critical point (DQCP) between a gapless SPT phase, where an
SPT order coexists with Goldstone modes, and a Ũ(1)-symmetry-enriched topological (SET) phase. We also
discuss the stability of these phases and the critical points to small perturbations and their potential experimental
realizations. Our work demonstrates that partial gauging is a simple and yet powerful approach in constructing
novel phases and quantum criticalities.
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I. INTRODUCTION

The popular Landau paradigm has been tremendously suc-
cessful in describing different phases and phase transitions
among them. However, more novel phases and phase transi-
tions beyond the traditional paradigm have been found over
the past few decades. For example, the deconfined quantum
critical point (DQCP) [1] between two phases that break
different ordinary (0-form) symmetries cannot be explained
simply by spontaneous symmetry breaking (SSB) from Lan-
dau order parameters. Topologically ordered phases [2], as
another example, cannot be captured by SSB of ordinary
symmetries.

It was realized recently that some DQCPs can be explained
using mixed ’t Hooft anomalies, which can be emergent at
low energy between the two associated symmetries [3,4].
The concept of ’t Hooft anomalies, widely studied in high
energy physics, has also found deep and broad applications in
condensed matter physics since the discovery of topological
insulators or, more generally, symmetry-protected topological
(SPT) phases [5–12]. These anomalies characterize global
symmetries that cannot be gauged consistently. Related to this
work, more recently emergent anomalies have been used to
construct gapless SPT phases [13–17] which are “intrinsic” in
the sense that not only are the topological edge modes robust
against the gapless bulk of the system, but also the SPT nature
relies crucially on the gaplessness [18–21]. ’t Hooft anomalies
thus play an important role in extending the Landau paradigm.

Another perspective in extending the Landau paradigm
comes from recent development in expanding the definition
of “symmetries” to generalized symmetries [22–24] (nonin-
vertible symmetries included [25,26]) after it was realized
that symmetry generators are essentially topological defects.

In particular, ordinary (0-form) symmetries, whose charged
objects are 0-dimensional, have been generalized to p-form
symmetries, whose charged objects are p-dimensional. Topo-
logically ordered phases can be interpreted as SSB of some
higher-form symmetries. Moreover, it was realized that the
Higgs phase can be viewed as an SPT phase protected by
higher-form symmetries and is stable to weak explicit break-
ing of these higher-form symmetries [27,28].

One more perspective comes from gauging, i.e., coupling
systems to dynamical gauge fields. Gauging a theory of matter
fields can yield a rich phase diagram. A prominent example
is the Fradkin and Shenker model whose phase diagram can
contain a confined phase, a Higgs phase, and a deconfined
phase [29]. The gauging technique can also be used to extract
information in the original system. For example, gauging dif-
ferent SPT phases can lead to distinct topologically ordered
phases where quasiparticles have different braiding statistics
[30].

Anomalies, higher-form symmetries, and gauging form a
powerful toolkit and have led to many interesting new dis-
coveries. It is known that coupling a system to a flat gauge
field produces a dual higher-form symmetry and that partially
gauging a discrete symmetry can produce a mixed anomaly
between the quotient symmetry and the new dual symmetry
[31,32]. It was emphasized in Ref. [33] that gauging a finite
subgroup is a general approach to construct exotic critical
points from ordinary continuous ones. In 1D, the critical
point where the global symmetry is spontaneously broken is
mapped to a DQCP between two SSB phases associated with
the quotient symmetry and the dual symmetry [34]. In higher
dimensions, it is a generalized DQCP between an ordinary
SSB phase and a symmetry enriched topological (SET) phase.
We will analyze the generalized DQCP after partial gauging
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using the new perspectives from higher-form symmetries and
mixed anomalies.

In this work, we study the emergent Z2-gauging of a sys-
tem with global U(1) symmetry. In next section, we describe
the general ideas. Starting from Sec. III, we will focus on a
concrete model, i.e., the Bose-Hubbard model both in 1D and
2D, coupled to Ising spins on the bonds, where the bosonic
parity is effectively gauged. We adapt the argument in the
recently proposed “Higgs = SPT” paradigm [27,28] to argue
that the gauged 1D superfluid phase is actually an intrinsically
gapless SPT phase by considering both the periodic boundary
condition (PBC) and the open boundary condition (OBC). The
critical low energy theory is a Z2-gauged compact boson con-
formal field theory (CFT). These statements are corroborated
by density-matrix renormalization group (DMRG) computa-
tions. In Sec. IV, we will argue that in 2D, the superfluid
is also a type of gapless SPT where the gaplessness comes
from the Goldstone modes and thus the generalized DQCP
is between a gapless SPT phase and a SET phase. We also
discuss the effect of some perturbations that explicitly break
the dual symmetry, and comment on potential realizations
in experiments. We conclude our discussion in Sec. V with
some future directions. Some details are presented in the
appendices.

II. GENERAL IDEAS

Gauging a finite Abelian ordinary (0-form) symmetry in
dD space induces a dual (d − 1)-form symmetry generated
by the Wilson operators [22]. The charged objects of the
dual (d − 1)-form symmetry are (d − 1)-dimensional. One
can gauge a finite Abelian normal subgroup � of the global
symmetry G (discrete or continuous), then the global sym-
metry becomes G/� × �̂(d−1) where �̂(d−1) = hom(�, U(1)),
the Pontryagin dual of �, is the dual (d − 1)-form symme-
try. If G is a nontrivial extension of G/� by �, i.e., G �

G/� × �, then there is a mixed anomaly between the G/�

and �̂(d−1)[31]. As a corollary, there is no trivially gapped
(i.e., nondegenerate, gapped, and symmetric under both sym-
metries) ground state.

Starting with a general ordinary second order phase tran-
sition of Landau type in dD where the global symmetry G
is completely spontaneously broken, we can obtain a gener-
alized DQCP by gauging a finite normal subgroup � of G
[33]. The two phases separated by the generalized DQCP are
associated with the SSB of G/� and �̂(d−1), respectively. In
particular, the SSB of a higher-form symmetry �̂(d−1) (d � 2)
leads to a topologically order phase [22,23]. For example,
we can gauge the � = Z2 subgroup of a Z4 clock model in
2D where there is an ordinary second order phase transition
across which the unbroken G = Z4 is completely broken.
The transition point now becomes a generalized DQCP be-
tween a SSB phase where the quotient Z̃2 is broken and a
SET phase enriched by the quotient Z̃2 (see Ref. [33] and
also Appendix A). Using the argument in Refs. [27,28], we
claim that the quotient Z̃2 SSB phase in fact has boundary
modes as long as the dual 1-form Ẑ2 (as well as the origi-
nal Z4 symmetry) is preserved. If G is continuous, the SSB
of G/� leads to Goldstone modes, the winding number of
which is the charge under the dual Ẑ2 symmetry. Thus, in the

FIG. 1. (a) Schematic diagram for the 1D Bose-Hubbard model
(blue sites) coupled to Ising spins (violet bonds). (b) Schematic phase
diagram. The original BKT transition between the superfluid and the
insulator phase is enriched to a gauged BKT transition between a
gapless SPT superfluid phase, protected by U(1) and W , and the in-
sulator phase with W spontaneously broken. (c) Degeneracies in the
superfluid and the insulator phase with PBC and OBC, respectively.
[(d) and (e)] Finite size scaling of the gap �bulk in both the superfluid
(t = 1.0, U = 1.0) and the insulator phase (t = 0.1, U = 1.0). �bulk

is defined to be the gap in spectrum above the (possibly) degenerate
ground states. OBC is used in both cases.

corresponding phase, the boundary modes coexist with the
gapless bulk.

It is even more interesting if there is an intermediate phase
sandwiched between phases where the global symmetry is
preserved or completely broken, such that, after gauging, the
dual symmetry and the quotient symmetry are both preserved.
For instance, the intermediate critical phase for the 1D q-
state clock model with q � 5 has an emergent U(1) (see
Appendix A). This is similar to the superfluid phase in the
1D XY model with global symmetry U(1). We argue that
the critical phase is an intrinsically gapless SPT phase in the
Z2-gauged model, described by a symmetry-enriched CFT
[16]. The response action that dictates the symmetry-protected
edge modes is similar to that in the gauged Ising model in the
Ref. [27]. However, as a result of partial gauging, there is a
subtle ’t Hooft anomaly matching that governs the gaplessness
of the SPT phase. This idea is not limited to bosonic systems
and can be similarly applicable to fermionic systems. In our
following discussions, we will focus on the bosonic case with
G = U(1).

III. 1D Z2-GAUGED BOSE-HUBBARD MODEL

A. Model

Consider a 1D Bose-Hubbard model [on the sites, see
Fig. 1(a)] coupled to Ising spins (on the bonds) as follows:

H = − t
∑

i

b†
i σ

z
i+1/2bi+1 + U

∑
i

ni(ni − 1)

− K
∑

i

σ x
i−1/2(−1)niσ x

i+1/2, (1)
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where t is the hopping, U > 0 is the on-site Hubbard re-
pulsion, and ni = b†

i bi is the local boson number. In the last
term, the Ising spins are coupled to the local boson parity
operator (−1)ni . If K is taken to be much larger than the rest
of the parameters, then it becomes an emergent parity-gauged
Bose-Hubbard model

H = −t
∑

i

b†
i σ

z
i+1/2bi+1 + U

∑
i

ni(ni − 1) (2)

with the gauge constraints

Gi = σ x
i−1/2(−1)niσ x

i+1/2 = 1. (3)

Note that in the Hamiltonian, for simplicity, we consider the
canonical ensemble where the total boson number N = ∑

i ni

is conserved. In our following discussion, we consider even
system size L, regardless of boundary conditions, with one
boson per site. This makes the presentation more neat while
retaining the essential physics [35].

The microscopic model has two symmetries: spin flip sym-
metry generated by

W =
∏

i

σ z
i+1/2, (4)

and boson particle number conservation U(1) symmetry act-
ing as

X (θ ) =
∏

i

eiθni (5)

with X (θ ) = X (θ + 2π ). The boson parity

P =
∏

i

(−1)ni (6)

is a subgroup of U(1).
In the low energy theory, we can interpret the Ising spins as

Ising gauge fields. Effectively, bosons on sites are minimally
coupled to the Ising gauge field on the bonds. The boson
parity, viewed as a Z2 subgroup of the U(1) symmetry, is
gauged, while W can be viewed the dual Ẑ2 symmetry gen-
erated by Wilson loops. Using PBC, it is easy to see that
the UV physical symmetry P acts trivially in the IR theory
since P = ∏

i(−1)ni = ∏
i(σ

x
i+1/2)2 = 1. This is equivalent to

(trivially) projecting out the parity odd sector of the Hilbert
space and at the same time adding the twisted sector. Thus, in
the IR theory, the original U(1) symmetry effectively reduces
to the quotient Ũ(1) ≡ U(1)/Z2 symmetry whose action is
now

X̃ (θ ) =
∏

i

X̃i(θ ) ≡
∏

i

eiθni/2. (7)

Due to the gauge constraints, X̃ (θ + 2π ) = X̃ (θ ) is satisfied
when PBC is used. In our following discussion, we will some-
times refer to Z2 groups using their generator for simplicity.

We must distinguish the UV symmetry W × U(1), where
P is a subgroup and hence physical, and the IR symmetry
W × Ũ(1), where the Z2 parity is a gauged symmetry. They
will play an important role in our later discussion when it
comes to the question whether a ’t Hooft anomaly is emergent
and whether it should be canceled. Also, even though P = 1
is trivial in the UV because we are considering the case with
even N = L, it still plays a nontrivial role in the IR. The

discussion about the grand canonical ensemble with a finite
chemical potential μ adds more features and is discussed in
Appendix C.

Before coupling to Ising spins, the Bose-Hubbard model
can have two phases: a superfluid or a Mott insulator. The
superfluid-insulator transition is a Berezinskii–Kosterlitz–
Thouless (BKT) transition point where the transition is due
to fluctuations of vortices in the phase [37,38]. The transition
occurs around t/U ≈ 0.3 [39–41]. Note that in the superfluid
phase, the U(1) symmetry is not broken due to the celebrated
Mermin-Wagner theorem [42], but there is a quasi-long range
order, where 〈b†

i b j〉 ∼ r−ηb decays algebraically for large r =
| j − i| with ηb = K̃/2, K̃ being the Luttinger parameter. Simi-
larly, the disorder parameter |〈XR(θ )〉| = |〈∏i∈R eiθni〉|, where
R is a line segment with r = |R|, decays algebraically. Here,
the disorder operator XR(θ ), unlike the symmetry generator
X (θ ) in Eq. (5), only acts on a subset, R, of the total space.
If the U(1) symmetry is spontaneously broken, this disorder
operator effectively creates two defects at the two ends of R.
Then the expectation of this operator effectively detects the
long-range correlation of the two defects, similar to that in the
Ising model [43]. In the 1D critical superfluid phase, it decays
in an algebraic law, similar to the correlation function of two
order operators.

Typical phase transitions are insensitive to boundary condi-
tions in the thermodynamical limit. Gauging the Z2 subgroup
is equivalent to averaging over untwisted and twisted sectors.
Thus gauging the Z2 subgroup does not change the position
of critical point in the phase diagram. A continuous phase
transition in the gauged model is directly inherited from the
ungauged one but with many new features due to the interplay
between the quotient Ũ(1) and the dual Ẑ2 symmetry W . The
original BKT transition is now gauged [see Fig. 1(b)].

The intuitions are justified by DMRG computations.
After gauging, 〈b†

i b†
i b jb j〉 remains gauge-invariant. The

scaling law remains the same as in the ungauged system.
〈b†

i b j〉, however, has to be dressed with gauge fields σ z
i to

remain gauge-invariant: 〈b†
i σ

z
i+1/2 . . . σ z

j−1/2b j〉. The latter has

the same scaling law as 〈b†
i b j〉 in the ungauged system. An

example of both order parameters in the superfluid phase is
shown in Figs. 2(a) and 2(b) where a power-law decay as a
function of large r = | j − i| in both parameters can be seen. In
the insulator phase, they both decay exponentially to zero. The
disorder parameter |〈X̃R(θ )〉| also remains intact. It saturates to
a constant in the insulator phase. Its behavior in the superfluid
phase is shown in Fig. 2(c) where the angle dependence of
α(θ ) is also displayed. α(θ ) has a quadratic dependence on
θ . As we will discuss below, this is compatible with the
charge fractionalization in the superfluid phase. Note that even
though OBC is used when these quantities are calculated, the
bulk behavior is the same as in the PBC case.

On the other hand, the new Ising degrees of freedom also
behave differently in the superfluid and the insulator phase.
As a result of the emergent gauge constraints, the relation
〈σ x

i σ x
j 〉 = 〈∏i∈R(−1)ni〉 = 〈X̃R(2π )〉 holds in either phase. It

relates an “order parameter” associated with W to a disorder
parameter associated with Ũ(1). As we will discuss soon, this
is a manifestation of the emergent mixed anomaly between
Ũ(1) and the dual Ẑ2 symmetry W . In the insulator case, the
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FIG. 2. (a) Boson pair correlation function, which is shown to
follow a power law 〈b†

i b†
i b jb j〉 ∼ r−ηbb in the superfluid phase. The

inset shows the extrapolation of the exponent ηbb to the thermody-
namic limit using finite-size scaling. Error bars are obtained from the
upper and the lower bound of the extrapolation. (b) Gauge-invariant
boson correlation, which also follows power law 〈b†

i σ
z . . . σ zb j〉 ∼

r−ηb . The inset shows the extrapolation of ηb. (c) The Ũ(1) disorder
operator |〈X̃R(θ )〉| decays as power law r−α(θ ) in r. The main plot
shows the θ = 2π case. The inset shows the θ dependence of the
exponent α, which is 4π -periodic. α is symmetric about 2π , and
a quadratic fit (dashed line) is performed for the segment from 0
to 2π . (d) Subsystem von Neumann entanglement entropy SE as a
function of subsystem size l . The inset shows the linear dependence
of SE on λ(l ) ≡ 1

6 ln( 2L
π

sin( π l
L )). The central charge c, which is

given by the slope, is shown to be almost exactly 1. Recently, the
entanglement spectrum of gapless SPT phases has also been studied
and the entanglement spectrum also has degeneracy [36]. All the
main plots are for L = 100, t = 0.5, and U = 1.0.

magnetization |〈σ x
i 〉| in the thermodynamical limit is nonzero,

W is spontaneously broken, and the spin-spin correlation
|〈σ x

i σ x
j 〉| saturates to a constant. In the superfluid phase, the

bulk magnetization vanishes and the bulk spin-spin correlation
|〈σ x

i σ x
j 〉| ∼ r−ηs decays algebraically regardless of whether

PBC or OBC is used. See Fig. 3(a) for the bulk correlation
with OBC [44]. Later on, we will show that these critical
exponents are not all independent. In fact, they are compatible
with the predictions from a compact boson CFT.

In our DMRG calculations, the local bosonic Hilbert space
dimension is truncated to 5 (beyond which the critical ex-
ponents almost saturate). Bond dimensions less than 400 are
sufficient for the results to converge. To obtain the power law
exponents, the correlation functions are fitted with a power
law decay with i and j far away from both edges. Finite-size
scaling is performed with system sizes (number of boson
sites) up to L = 200. For each system size, the mean and
the error bar are obtained by fitting different segments/bins
of data points. The extrapolated mean value is obtained by a
quadratic fit against 1/L. The extrapolated error bar comes
from the difference between the extrapolated upper bound
and lower bound of the exponent across different system
sizes. The DMRG calculations are done using the ITENSOR

package [45].

FIG. 3. (a) The bulk spin-spin correlation in the superfluid phase
with a power-law fit (dash line) |〈σ x

i σ x
j 〉| ∼ r−ηs . The inset shows

the extrapolation of the critical exponent ηs to the thermodynamic
limit using finite-size scaling. (b) The magnetization |〈σ x

i 〉| in the
superfluid phase across the system with OBC. The spins on the edges
are perfectly polarized and the magnetization decays to a small value
to the bulk. The inset shows the center spin magnetization |〈σ x

L/2〉|
follows a power law decay as system size increases, compatible with
the fact that magnetization vanishes when PBC is used. L = 100,
t = 0.5, and U = 1.0 for both plots.

B. Emergent mixed anomaly

In the low energy theory, there is an emergent mixed
anomaly between the quotient Ũ(1) and the dual Ẑ2 symmetry
W (considering PBC for simplicity). One manifestation of the
mixed anomaly is that Ũ(1) and W cannot be simultaneously
realized on-site. Here Ũ(1) and W seem to be realized on-site.
However, Ũ(1) is only exact when the gauge condition in
Eq. (18) is enforced, i.e., K → ∞, and the Hilbert space then
is not a tensor product. We can follow Ref. [33] to eliminate
the gauge constraints and find that either Ũ(1) or W is realized
non-on-site (see Appendix B).

If we turn on the background gauge field AŨ(1) and AW

associated with Ũ(1) and W respectively, the mixed anomaly
is characterized by a response action in (2 + 1)D: ω = AW ∪
dAŨ(1)/4π, where ∪ is a cup product, a discrete analog of
the wedge product of differential forms [46]. Thus Ũ(1) and
W cannot be gauged consistently in the (1 + 1)D system
we are studying which may be viewed as the boundary of
the (2 + 1)D bulk (Appendix D). The system, viewed as the
boundary of the bulk, usually cannot have boundaries because
the boundary of a boundary is an empty set. This is not a con-
tradiction because in our work the mixed anomaly is emergent
in the low energy sector. After some suitable modifications of
boundary terms, we can put this model on a lattice with open
boundary conditions while preserving both symmetries in the
Hamiltonian, which plays a crucial role in the “Higgs = SPT”
argument in Refs. [27,28] and our argument in the following
for the gapless SPT phase.

As a result of the emergent mixed anomaly, the ground
state cannot be trivially gapped, meaning that in a gapped
phase W must be spontaneously broken since Ũ(1) cannot
be spontaneously broken due the Mermin-Wagner theorem.
Indeed, W is spontaneously broken in the insulating phase,
while in the superfluid phase both Ũ(1) and W are preserved.
As we have discussed above, in the superfluid phase, both
〈b†

i b†
i b jb j〉 and |〈σ x

i σ x
j 〉| are shown to have a power law decay

[Fig. 2(a) and 3(a)]. These correlated ordering/disordering
behaviors are already encoded in the relation 〈σ x

i σ x
j 〉 =

〈∏i∈R(−1)ni〉 = 〈X̃R(2π )〉 we mentioned earlier. This relation
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implies that Ũ(1) is preserved if W is spontaneously broken
and that Ũ(1) is spontaneously broken if W is preserved.

Another manifestation of the mixed anomaly is symmetry
fractionalization. We take W to act on a segment of sites
R instead of the entire chain. This is a disordered operator
for the Ising spins. The emergent gauge constraints imply
that the string operator has to be dressed with b or b† to
act nontrivially on the low energy sector. In other words,
〈b†

i σ
z
i+1/2 . . . σ z

j−1/2b j〉 is effectively gauge invariant. Note that
both b or b† are fractionally charged under X̃ (θ ) in Eq. (7).
Similarly, the disorder operator for X̃R(θ ) is fractionally
charged under W . This can be seen from that X̃i(2π ) = (−1)ni

and 〈σ x
i−1/2(−1)ni . . . (−1)n j σ x

j+1/2〉 = 1. Since the edge spins
are charged under W , linearity implies that the end points of
the disorder operator X̃R(θ ) are fractionalized.

C. Gapless SPT phase

In this section, we show that the superfluid phase is a
gapless SPT phase.

We first adapted the “Higgs = SPT” argument in Ref. [27]
to argue for the existence of edge modes if W and P both
commute with the Hamiltonian and an open boundary is
chosen such that the emergent gauge constraints in Eq. (3)
are preserved. Note that we treat P as the physical symme-
try in the UV. The emergent gauge constraints force P =
σ x

1/2σ
x
L+1/2 in the IR. There are different ways to impose

boundary conditions on the edges to guarantee the (dynam-
ical) gauge-invariance. If the edge degrees of freedom are
not fixed, Ref. [27] argues that P is a physical symmetry,
similar to the observation made about asymptotic symmetries
in Ref. [47]. In our discussion, we find it more transparent
to simply treat P as a UV symmetry. Since the Hamiltonian
is local, it must commute with the two σ x individually. The
anticommutativity between σ x with W implies that there are
necessarily edges modes if W or P is preserved. To be more
explicit, let |ψ〉 be a ground state of the Hamiltonian that satis-
fies W |ψ〉 = η|ψ〉 with η = ±1, then the state |ψ̃〉 ≡ σ x|ψ〉 is
another degenerate state because W |ψ̃〉 = −η|ψ̃〉. If the bulk
is nondegenerate, the degeneracy necessarily comes from the
edges. In fact, either W or P is spontaneously broken by the
edges while the bulk remains gapless. These observations can
be justified by the DMRG computations.

First, we compare the degeneracy for PBC and OBC in
both the insulator and the superfluid phase. From Fig. 1(c),
we can see that the ground state in the insulator phase is
doubly degenerate, be it with PBC or OBC. This is expected
due to the SSB of the dual Ẑ2 symmetry. There are no edge
modes in this phase. On the other hand, if PBC is used, the
ground state of the superfluid phase is unique, while if OBC is
used, there is a double degeneracy. This is a result of the SSB
of W on the edges we mentioned above. Indeed, we present
the magnetization |〈σ x

i 〉| in Fig. 3(b). Even though the bulk
magnetization decays to zero in the thermodynamical limit
as in the PBC case, the edge spins are clearly polarized. In
fact, due to the constraint from P = σ x

1/2σ
x
L+1/2 = 1, two edge

spins are perfectly correlated. Note that the degeneracy in this
phase is exact even in finite-size systems. This means that the
edge modes are strictly localized on the edges, and the edge
localization length ξe, defined as e−L/ξe ∼ �bdry, is exactly 0.

The wave function can be interpreted as a fixed point SPT
state.

Next, we discuss the finite size scaling in the bulk gap �bulk

to show the bulk is indeed gapless in the thermodynamic limit.
As we can see from Fig. 1(d), the bulk gap, the first excited
state from the doubly degenerate ground state, is inversely
proportional to the system size L. In the thermodynamic limit,
the bulk correlation length ξb diverges and the bulk becomes
gapless [48]. This is compatible with the fact that there is
a mixed anomaly between Ũ(1) and the dual Ẑ2 symme-
try W . As we have already mentioned, both Ũ(1) and W
are preserved, which is supported by algebraically decaying
〈b†

i b†
i b jb j〉 [Fig. 2(a)] and |〈σ x

i σ x
j 〉| [Fig. 3(a)]. The gap �bulk

in the insulator phase, on the other hand, remains finite in the
thermodynamical limit, as extrapolated by finite-size scaling
[Fig. 1(e)]. Thus we have showed that the superfluid phase is
a gapless SPT phase.

We can discuss the effective action of this gapless SPT
phase. Let us recall that the microscopic on-site symmetry of
the Hamiltonian in Eq. (1) is U(1) × W . The emergent sym-
metry acting nontrivially in the IR is Ũ(1) × W . To capture
the edge degeneracy, we may write down a response action as
[27]

α = 1
2 AW ∪ AP, (8)

where AW and AP is the background field of W and P in the
spacetime M, respectively. If AP and AW are flat, dAP = 0
and dAW = 0. Then if M is closed, α is gauge invariant and
describes an SPT phase protected by W and P. Indeed, if M
has a nontrivial boundary, there can be an open Wilson line
terminating on the ∂M where dAW �= 0. Then the action SM =
2π

∫
M α changes by is λAW /2 under the gauge transformation

AP → AP + dλP. To compensate this change, there must be
edge modes.

On the other hand, P is a subgroup of U(1). If we turn on
a flat background field AU(1), the closedness of AU(1) requires
dAP = dAŨ(1)/2π mod 2 (see Appendix D), i.e., AP may no
longer be closed. The action SM = 2π

∫
M α now is no longer

invariant under AW → AW + dλW even if M is closed. This
is a ’t Hooft anomaly between W and P ! Since both W
and P are UV onsite symmetries, this ’t Hooft anomaly must
be canceled by some other terms. Luckily, we find that the
emergent mixed anomaly can play the role.

Indeed, we have already seen that there is an emergent
mixed anomaly between Ũ(1) and W . If we denote the (2 +
1)D bulk as Y such that its boundary is the (1 + 1)D spacetime
M that we are studying, i.e., ∂Y = M, then the corresponding
anomaly action can be written as ω = AW ∪ dAŨ(1)/4π where
AŨ(1) and AW are extended into Y . Note that α and ω satisfy
the anomaly vanishing equation [18]

ω = dα, (9)

so the partition function

Z = e2π i
∫

Y ωe−2π i
∫

M α (10)

is anomaly free. In other words, the emergent mixed anomaly
compensates the ’t Hooft anomaly in α. If M has a nontrivial
boundary, the gauge invariance argument again justifies the
existence of edge modes. Thus the gapless SPT phase can
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be captured by α and ω together. For more details, see Ap-
pendix D.

It is not surprising that Eq. (8) is also the effective action
of the 1D SPT phase in Ref. [27] where an Ising model
is gauged. However, the total symmetry we are consider-
ing is U(1) × W instead of W × P in that work. Instead
of the Higgs phase, our focus here is more on the critical
phase. In Ref. [27], they suggested that the critical point
is a “symmetry-enriched quantum critical point” studied in
Ref. [16]. Here, our critical phase is more closely related to
the “intrinsically gapless SPT phase” proposed in Ref. [18].
In that work, the (fermionic) parity is gapped by interactions,
while in our discussion, the parity is simply gapped by emer-
gent gauging. The SPT string order parameter in our case is
simply 〈σ x

i−1/2(−1)ni . . . (−1)n j σ x
j+1/2〉 = 1 while Higgs order

parameter 〈b†
i σ

z
i+1/2 . . . σ z

j−1/2b j〉 vanishes in the thermody-
namical limit. Since H2( U(1) × Z2, U(1)) = 0, there is no
nontrivial gapped SPT phase protected by U(1) × W , based
on the complete classification of conventional bosonic SPT
phases in 1D [5]. In other words, if OBC is used for our gap-
less SPT phase, we cannot gap out the bulk without destroying
the edge degeneracy or breaking the total symmetry.

Conceptually, constructing intrinsically gapless SPT
phases using partial gauging as we discussed in this work is
easier than the approach used in Ref. [18]. The mixed anomaly
between the quotient symmetry and the dual symmetry is a
direct consequence of the nontrivial group extension and does
not depend on the details of the Hamiltonian. In Ref. [18], the
authors considered a fermionic system, but the analysis above
is obviously generalizable to fermionic systems even though
the fermionic parity cannot be spontaneously broken and spin
structures may need to be taken into account. Indeed, a similar
analysis can be found in Ref. [49]. There, they gauged the
fermionic parity of a free spinless fermionic chain. Hubbard
interactions can also be added. As long as there is no other
SSB order, the gauged Luttinger liquid of spinless fermions
with W preserved is a gapless SPT phase. Spinful fermions
can also be studied. Note that gauging the fermionic parity
produces a bosonic theory that does not depend on spin struc-
tures. In particular, gauging the parity of a 1D Dirac fermion
theory yields the XY model with a BKT transition [50].

Even though we have focused on a canonical ensemble
with even parity, the analysis carries over to a grand canonical
ensemble. Then both even and odd parity sectors should be
taken into account, especially when OBC is used. The essen-
tial physics stays almost unchanged. For example, the ground
state degeneracy for both PBC and OBC is the same as in
Fig. 1(b). The anomaly analysis is similar. For more details,
see Appendix C.

D. Conformal field theory

Since the BKT transition can be described by a compact
boson CFT [51], we expect that the gauged BKT transition
and the superfluid phase is also captured by gauging the Z2

symmetry of the compact boson CFT which is also a compact
boson CFT. Indeed, the compact boson CFT contains two
global U(1)’s, one associated with momentum and the other
with winding. They are dual to each other and there is a mixed
anomaly between them. Gauging a Z2 subgroup of a compact

boson CFT not only changes the radius of the compactifica-
tion, but also maps order operators to disorder operators and
vice versa [24,33]. The Z2-charged sectors and the Z2-twisted
sectors are exchanged under this operation. The states in the
Z2-twisted sectors are charged under the dual Ẑ2 symmetry.
This dual Ẑ2 symmetry can be viewed as a subgroup of the
U(1) symmetry associated with winding.

This expectation again can be verified by the DMRG re-
sults. We first check the central charge c in the superfluid
phase in the gauged system. Indeed, as shown in Fig. 2(d),
the subsystem entanglement entropy SE = −tr(ρR ln ρR), as-
sociated with the reduced density matrix ρR of a subsystem
R, scales linearly with the factor λ(l ) ≡ 1

6 ln( 2L
π

sin( π l
L )) [52].

Here L is the total system size of the open chain and l is
the size of the subsystem R on one side of the entanglement
cut. The slope gives us the central charge c ∼ 1, the nominal
central charge of a compact boson CFT.

Next, we identify the microscopic operators with the pri-
mary vertex operators. Before gauging, the (Euclidean) action
is given by

S = 1

4π

∫
dzdz̄∂zφ∂z̄φ, (11)

where z = exp(τ + ix), and the free boson field φ is compacti-
fied on a circle of radius R, i.e., φ(z, z̄) ∼ φ(z, z̄) + 2πR. Split
φ(z, z̄) into the left-moving and the right-moving components:
φ(z, z̄) = XL(z) + XR(z̄). Then the local primary operators are

Vn,w(z, z̄) = exp
[
i
( n

R
+ wR

)
XL(z) + i

( n

R
− wR

)
XR(z̄)

]
,

(12)

where n ∈ Z and w ∈ Z are the momentum number and
the winding number, respectively. After gauging, R → R/2,
which is equivalent to redefining n and w: n ∈ 1

2Z and w ∈ 2Z
and φ(z, z̄) ∼ φ(z, z̄) + 4πR while fixing R [33,53]. The con-
formal weights of Vn,w are

hn,w = 1

4

( n

R
+ wR

)2
, h̄n,w = 1

4

( n

R
− wR

)2
, (13)

and conformal dimensions

�n,w = hn,w + h̄n,w = 1

2

(
n2

R2
+ w2R2

)
. (14)

At a generic radius, the CFT has global symmetry U(1)n ×
U(1)w which act on XL/R as

U(1)n :XL/R(z) → XL/R(z) + Rθn,

U(1)w :XL/R(z) → XL/R(z) ± 1

4R
θw, (15)

where θn/w ∼ θn/w + 2π . On the gauged vertex operators
Vn,w, they act as

U(1)n :Vn,w → ei2nθnVn,w,

U(1)w :Vn,w → eiwθw/2Vn,w. (16)

In our case, we can identify Ũ(1) with U(1)n and identify Ẑ2

with the Z2 subgroup of U(1)w. It is straightforward to see
that b†b† (or bb) can be identified with V2,0 and σ x with V0,1/2.
The corresponding conformal dimensions are thus 2/R2 and
R2/2 respectively. Meanwhile, the nonlocal operator b† (or b)
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corresponds to the nontrivial local operator with the lowest
scaling dimension V1,0 before gauging. Its scaling dimension
should be 1/2R2. This is indeed supported by DMRG.

In the DMRG calculations, we choose a sample point in the
superfluid phase: t = 0.5,U = 1.0. As shown in Figs. 2 and
3, the scaling dimension of b†b† is ηbb ∼ 0.62 and the scaling
dimension of the scaling dimension of σ x is ηs ∼ 1.5. The
nonlocal correlation 〈b†

i σ
z . . . σ zb j〉 ∼ r−ηb yields a scaling

dimension ηb ∼ 0.16. They are all compatible with R2 ∼ 3.1.
Note also that the conformal dimensions of the order/disorder
operators scale quadratically with the charges n and w. Previ-
ously we have seen that the end points of the disorder operator
X̃R(θ ) are fractionalized charged under the dual Ẑ2. Assuming
linearity in charge fusion, we may formally assign a charge
proportional to θ to the end points when 0 � θ � 2π . Thus
we may expect that the conformal dimension of X̃R(θ ) should
be proportional to θ2 in the interval. This is compatible with
the quadratic fit in the inset of Fig. 2(c).

E. Perturbations

In the discussions above, we have argued that the super-
fluid is a gapless SPT is protected by U(1) and W . As long
as the Hamiltonian (and the boundary conditions) preserve
U(1) and the dual Ẑ2 symmetry W , the edge degeneracy is
protected. For instance, as verified by DMRG, adding a term∑

σ z
i−1/2σ

z
i+1/2 does not lift the degeneracy. Adding a small

perturbation hx
∑

σ x
i+1/2 however breaks this symmetry. The

edges open up a small gap that scales as 1/L and are no longer
degenerate (see Appendix E for more details). The situation is
different in higher dimensions when the protecting symme-
tries include higher-form symmetries. Breaking higher-form
symmetries explicitly may not lift the edge degeneracy. Fur-
thermore, we could introduce another type of perturbation
hz

∑
σ z

i+1/2, which preserves the W symmetry, but violates
the effective gauge constraint from the large K term. When
hz � K , the gauge constraint will still be effectively enforced
at low energy, and exact edge degeneracy remains. Only when
hz < K becomes sufficient large, does the degeneracy become
lifted, and the edge modes become exponentially localized
instead of exactly localized (see Appendix E for more details).

IV. 2D Z2-GAUGED BOSE-HUBBARD MODEL

Having considered the 1D case, we can generalize the
analysis to higher dimensions. In this section, we consider
the emergent Z2-gauged Bose-Hubbard model on a 2D square
lattice [Fig. 4(a)]:

H = − t
∑

i, j∈∂ei j

b†
i σ

z
ei j

b j + U
∑

i

ni(ni − 1) − μ
∑

i

ni,

− 1

g

∑
p

∏
e∈∂ p

σ z
e − g

∑
e

σ x
e , (17)

with the gauge constraints

Gi =
∏
i∈∂e

σ x
e (−1)ni = 1. (18)

Here ei j represents the bond connecting site i and site j, and
p represents any plaquette of the lattice. Note that in order to

FIG. 4. (a) Schematic diagram for the 2D Bose-Hubbard model
(blue sites) coupled to Ising spins (violet bonds). A star operator
related to the gauge constraints in Eq. (18) and a plaquette operator
are highlighted. (b) Schematic phase diagram. The gapless SPT in
the superfluid phase where Ũ(1) is spontaneously broken and the
SET enriched by Ũ(1) in the insulator phase are separated by a
generalized DQCP.

capture the Higgs phase, we turn on the chemical potential μ

and consider the grand canonical ensemble. The 1D case is
briefly discussed in Appendix C. Similar to the 1D version,
we view the gauge constraints to be energetically enforced.

We first let g → 0 so that the zero-flux (flatness) condition∏
e∈∂ p σ z

e = 1 is enforced and the transverse field term is
dropped, giving rise to an emergent 1-form symmetry

W =
∏
e∈γ

σ z
e , (19)

where γ is a loop running along the bonds of the lattice.
Nonzero g perturbations will be discussed later. There is also
a Ũ(1) with X̃ (θ ) = ∏

i eiθni/2 satisfying X̃ (θ + 2π ) = X̃ (θ ).
This model has been studied before in, e.g., Ref. [54] from
a different perspective. In their studies, the boson field b is
not fundamental but emergent as a result of fractionaliza-
tion. In our following discussion, we will emphasize more on
higher-form symmetries and anomalies. As it is hard to study
large systems using DMRG, we will focus on the theoretical
analysis, although some results have been checked already in
small systems using DMRG.

It is well-known that there is a second order superfluid-
insulator transition in the pure Bose-Hubbard model (before
coupling the Ising model) by tuning the ratio U/t . Unlike
the 1D version, the global U(1) symmetry is spontaneously
broken in the superfluid phase. For simplicity, we may also
assume that the chemical potential μ has been tuned such that
the boson filling is an integer. In the gauged model, the zero-
flux condition ensures the flatness of the gauge field, killing
all local dynamics but the topological degrees of freedom in
σ z. Thus a continuous phase transition in the gauged model is
directly inherited from the ungauged one but with many new
features due to the interplay between the quotient Ũ(1) and
the dual Ẑ2 1-form symmetry W .

A. Emergent mixed anomaly

Since U(1) is a nontrivial extension of Ũ(1) by Z2, there
is a mixed anomaly between Ũ(1) and the Ẑ2 1-form symme-
try W (see Appendix D). Let us denote the 2D system as M
(without boundaries) and view it as a boundary of a 3D bulk
Y . The mixed anomaly is captured by a (3 + 1)-D SPT bulk
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protected by the generalized symmetry Ũ(1) × W . If we turn
on the 1-form background gauge field AŨ(1) of Ũ(1) and the
2-form background gauge field AW of W and extend them into
Y , then the anomaly action is given by

SY = i

2

∫
Y

AW ∪ dAŨ(1). (20)

Here, AŨ(1) is compact and periodic in 2π , and AW takes
value in Z2. This action is not gauge invariant under the
gauge transformations of AW in the presence of boundary M,
a manifestation of the mixed anomaly between Ũ(1) and W
in the boundary theory which implies that it is impossible
to gauge both symmetries consistently. In fact, the mixed
anomaly reduces to that in the case of gauging the Z2 sub-
group of Z4 [33,55]. Analogous to the 1D case, the end points
of the disordered operators of one symmetry are fractionally
charged under the other, which can be seen directly from
〈b†

i σ
z
i+1/2 . . . σ z

j−1/2b j〉 and |〈X̃R(θ )〉|.
Similar to the 1D case, the ground state of the sys-

tem cannot be trivially gapped (i.e., nondegenerate, gapped,
and symmetric under both symmetries). This consequence
strongly constrains the phase diagram. As we will argue
in this work, the critical point inherited from the ordinary
superfluid-insulator transition now becomes a generalized
DQCP between a gapless SPT phase where Ũ(1) is sponta-
neously broken and a SET phase where the dual Ẑ2 symmetry
is spontaneously broken [Fig. 4(b)].

B. Gapless SPT phase

We now combine the emergent mixed anomaly with the
“Higgs = SPT” argument in Ref. [27] to argue in two steps
that the superfluid phase after gauging becomes a gapless SPT
phase.

As the first step, we show that if the 1-form symmetry
W is not spontaneously broken, then the ground state is a
gapless SPT phase. The gaplessness is a direct consequence
of the mixed anomaly: if Ũ(1) is also preserved, then the
system is critical; on the other hand, if Ũ(1) is sponta-
neously broken, there will be Goldstone bosons. When the
system has no boundary, the gauge condition Eq. (18) implies
that the boson parity symmetry P is trivial in the low en-
ergy effectively gauged system, P = ∏

i(−1)ni = ∏
e(σ x

e )2 =
1. However, when there is an open boundary (which preserves
necessary symmetries), P becomes nontrivial because the spin
operators on the boundary are not canceled, P = ∏

e∈bdry σ x
e .

Using some rough terms, we may state that in this case P
is not “completely” gauged even in the low energy sector.
It is manifested in the existence of “half” string operators
σ z

1/2 . . . σ z
j−1/2b j with one end terminating on the boundary

which acts nontrivially in the low energy sector. Nevertheless,
boson creation/annihilation operators still have to be attached
by a string of gauge field σ z. In particular, if the string operator
does not end on the boundaries, it has to end on a creation or
an annihilation operator to ensure a nontrivial action in the low
energy sector. This means that the emergent mixed anomaly
is still playing its due role and the ground state still cannot be
trivially gapped.

To show that the state is SPT, we place it on lattice with
open boundaries that preserve the dual Ẑ2 symmetry W . We

FIG. 5. (a) Action of boson parity P, effectively a ’t Hooft line
(purple), and a Wilson line W (orange) terminating on the boundary
(top) of a semi-infinite system. The other end of W terminates either
in the bulk or at infinity. The anticommutativity of P and W forces
a SSB on the boundary. (b) Disorder operator X̃R(θ = 2π ) supported
on sites (highlighted in red) inside a region R, which is the same
with with the ’t Hooft loop operator,

∏
e∈∂R σ x

e , supported on the
(dual lattice) boundary of R. (c) Gauge invariant Wilson line W
attached to boson operators (Higgs order operator), and a ’t Hooft
line connecting two π vortices (which is suppressed by the zero-flux
condition). (d) Example of two topologically distinct phase modes
with winding number 1, ϕ1,0 (red), and winding number 0, ϕ0,0 (blue)
along the x direction. 0 and Lx are identified.

consider a half-plane geometry with an infinitely long bound-
ary [Fig. 5(a)], where the “rough” boundary has dangling
bonds sticking out so that properly modified local gauge con-
straints Eq. (18) are still well-defined [56]. Then similar to
the 1D case, we can argue that if W is preserved, there will
necessarily be a boundary degeneracy as follows. We choose
the symmetry generator of W = ∏

e∈γ σ z
e to be a Wilson line

with one end terminating on the boundary and the other
end either extending to infinity or terminating on a boson
creation/annihilation operator. With P and W preserved in
the bulk, the anticommutativity of P and W implies a ground
state degeneracy, which in this case necessarily comes from
the boundary. This defines an SPT phase. In fact, the Higgs
condensate 〈b†

i σ
z
i+1/2 . . . σ z

j−1/2b j〉 can be viewed as an SPT
string order parameter here.

As the second step, we show that W is preserved in
the superfluid phase. To this end, we show that a ’t Hooft
loop operator, charged under W , satisfies the nonperimeter
law. We take the ’t Hooft loop (defined on the dual lat-
tice) to be

∏
e∈∂R σ x

e where R is an arbitrary large connected
area with perimeter l = |∂R|, shown in Fig. 5(b) (we ig-
nore the contributions from corners for simplicity). Then
the gauge condition Eq. (18) implies that |〈∏e∈∂R σ x

e 〉| =
|〈∏i∈R(−1)ni〉| = |〈∏i∈R eiπni〉| = |〈X̃R(2π )〉|. Since X̃R(2π )
is a disorder operator for Ũ(1), we can see that the order
parameter of the dual Ẑ2 and the disorder parameter of the
Ũ(1) are directly related. We interpret this relation as a di-
rect manifestation of the mixed anomaly: if one symmetry
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is spontaneously broken, then the other is preserved. There
is one subtlety here. In the insulating phase, |〈X̃R(θ )〉| and
|〈∏e∈∂R σ x

e 〉| both satisfy the perimeter law e−β(θ )l , where
β(θ ) is independent of l . Thus Ũ(1) is preserved while the
dual Ẑ2 is spontaneously broken in this phase. It is possible
to absorb the dependence on ∂R in the perimeter law by
adding a local counterterm such that both quantities approach
a constant for large smooth ∂R [57]. This is the SET phase
in Fig. 4(b) which we will discuss more later. On the other
hand, in the superfluid phase, |〈X̃R(θ )〉| satisfies the scaling
∼ e−α(θ )l ln l where α(θ ) is independent of l [58,59], weaker
than the area law. Consequently, the scaling of |〈∏e∈∂R σ x

e 〉| is
also weaker than the area law. Since it is strictly stronger than
the perimeter law, it is impossible to renormalize the scaling
law to a constant for large smooth ∂R. Thus we claim that W
is unbroken.

Combining the two steps, we conclude that the superfluid is
mapped to a gapless SPT phase protected by W and P where
Ũ(1) is spontaneously broken. The gaplessness comes from
the Goldstone bosons.

Similar to the 1D case, we may write down the term in the
effective action that dictates the existence of edge modes

α = 1
2 AW ∪ AP, (21)

where AW is the 2-form background gauge field of W and AP

is the 1-form background gauge field of P. The anomaly in α

when AŨ(1) is turned on is again canceled by the anomaly ac-
tion in Eq. (20). In some rough sense, α dictates the existence
of edge modes when dAŨ(1)/2π = 0 mod 2, while the mixed
anomaly governs the SSB of Ũ(1) in the superfluid phase.

C. Excitations in the superfluid phase

We have argued that the superfluid phase is a gapless SPT
phase. Here we discuss the excitations in the phase: vortices,
Goldstone bosons, and domain walls. Since the Z2-gauging
process amounts to projecting out the Z2-charged sector and
adding the twisted sector to the theory and the process relates
some order parameters to disorder parameters [33,55], many
physical properties of this new gapless SPT phase can be
inferred directly from its superfluid parent state. As we have
already seen above, the disorder parameter |〈X̂R(θ )〉| for Ũ(1)
is a (fractional) order parameter for the dual Ẑ2. Similarly,
|〈b†

i (
∏

e∈γi j
σ z

e )b j〉| where γi j connects sites i and j (Fig. 5(c)),

viewed as a disorder parameter for the dual Ẑ2, serves as a
(fractional) order parameter for Ũ(1).

To guarantee the exactness of the 1-form symmetry, we im-
posed the zero-flux condition

∏
e∈∂ p σ z

e = 1, which suppresses
all (dynamical) π -vortex excitations. Equivalently, an open ’t
Hooft line which would end on a pair of π -vortices [Fig. 5(c)]
are also suppressed. In the Higgs phase, the condensate phase
ϕ is locked to the vortices. The dual 1-form symmetry mea-
sures the Z2 winding of condensate phase ϕ, which takes
values in nπ for integer n modulo 2, along noncontractible
cycles, which is equivalent to insertions of π -fluxes across
noncontractible cycles [see Fig. 5(d)]. We should compare
the scenario with that in the “parent” superfluid phase before
gauging where there is an emergent 1-form U(1) symmetry
in the low energy sector [22,60,61]. Charged objects of the

emergent U(1) are the winding of ϕ, taking values in 2nπ

for integer n. 2π -vortices explicitly breaks this emergent dual
U(1) 1-form symmetry. However, since they are neutral under
the dual Ẑ2 1-form symmetry W after the effective gauging,
they do not destroy the exactness of the dual Ẑ2 1-form sym-
metry.

Being put on a torus, the gapless Goldstone modes can be
effectively decomposed into two parts: ϕ = ϕn,m + δϕ, where
the first term denotes winding of nπ and mπ along the two
noncontractible cycles separately and the second term is the
small fluctuation with respect to this configuration. Thus the
topology of the Goldstone modes can be captured by the
1-form charges. It is very tempting to compare it with the
topology of Goldstone modes after a continuous symmetry G
is spontaneously broken to a subgroup group H [62]. There,
the symmetry protection/enrichment of the Goldstone modes
is discussed with respect to the residual symmetry H [which
in our case corresponds to the quotient symmetry Ũ(1)] while
the topology in the SPT phase we are studying is associated
with the dual 1-form symmetry.

In the decomposition of ϕ above, n and m label the twisted
sector, and δϕ is neutral under the 1-form symmetry gener-
ated by W . Nevertheless, we may locally deform δϕ to some
separate θ̃ -domain walls where locally its value jumps by θ̃ .
Similar to the 1D case and the discrete case, by assuming
fusion linearity, we may formally assign a charge θ̃/π for
0 � θ̃ � π under the dual 1-form symmetry to a domain
wall where δϕ changes by θ̃ . This is a manifestation of the
mixed anomaly and the symmetry fractionalization. In the
superfluid/Higgs phase, δϕ is small such that the winding
numbers of ϕ is conserved. Proliferation of the winding, and
equivalently the inserted fluxes, breaks the Ẑ2 1-form sym-
metry and recovers the Ũ(1) simultaneously, leading to a SET
phase.

D. SET phase

Having discussed the SPT phase, we now briefly touch
upon the emergent Ũ(1)-SET phase [Fig. 4(b)].

The SSB of a discrete higher-form symmetry leads to a
topologically ordered phase [22,23], a phase with long-range
entanglement and ground state degeneracy depending on the
topology of the base space. The SSB of the dual Ẑ2 1-form
symmetry leads to a Z2-topological ordered phase whose ex-
citations are the same as Kitaev’s toric code or (untwisted)
quantum double model [63]. When OBC is used, the bound-
aries can be gapped [56,64]. This phase is also enriched by the
Ũ(1) because the quotient Ũ(1) symmetry is preserved.

The topological charges are gauge charges e, π -fluxes m,
and their bound state em. The last two types are not dynamical
due to the exactness of the 1-form symmetry, or equivalently
the zero-flux condition. Since Ũ(1) does not commute anyon
types, there is no obstruction to the symmetry fractional-
ization [65]. Hence, it is classified by [w] ∈ H2(Ũ(1),A),
where A is the finite group whose elements are the Abelian
topological charges of the unitary modular tensor category C
with group multiplications given by their corresponding fu-
sion rules [65]. In this case, A = Z2 × Z2, so H2(Ũ(1),A) =
Z2 × Z2. Explicitly, a representative cocycle is given by

w(θ, θ ′) = m� θ+θ ′
2π

�, where θ, θ ′ ∈ [0, 2π ) parametrizes Ũ(1)
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and �·� is the floor function. The nontriviality of w, as a man-
ifestation of the mixed anomaly we discussed above, dictates
the fractionalization of charges under Ũ(1). Alternatively, the
system can be viewed as living on the surface of an SPT
phase in 3D protected by Ũ(1) and Ẑ2. To trivially gap out
the system, Ũ(1) has to be broken.

E. Generalized DQCP

As we have discussed above, even though π -vortices are
suppressed once the zero-flux condition is enforced, the pro-
liferation of topological phase winding excitations drives the
SPT phase to the SET phase. Since the original superfluid-
insulator transition is continuous and only a finite subgroup is
gauged, we expect this inherited transition to be continuous
as well [33]. Thus we obtain a generalized DQCP from the
gapless SPT phase with preserved Ẑ2 1-form symmetry and
broken Ũ(1) to a SET phase with Ũ(1) [see Fig. 4(b)].

As a result of partial gauging of a finite group, much of the
information encoded in the order/disorder parameters can be
directly read from the original superfluid-insulator transition.
The critical point can be determined by the change in the
scaling laws of different order/disorder parameters. The sym-
metry breaking of higher-form symmetries at critical points
has been investigated in the recent literature [66–68]. If all
symmetries involved including the higher-form symmetry are
preserved at the critical point in some systems, we may get a
2D analog of the intrinsically gapless SPT in 1D by invoking
similar anomaly arguments.

This generalized DQCP is essentially the same as the
so-called XY ∗ transition obtained from the conventional 3D
XY critical point [54,69]. The difference is that it is ψ ∼ bb
rather than b that is treated as the fundamental degree of
freedom [69]. At the XY ∗ transition, b undergoes an ordinary
XY transition. Since ψ is a composite operator of two b’s,
the power law scaling exponent of 〈ψ†

i ψ j〉 gets significantly
modified ηbb ∼ 1.49 from ηb ∼ 0.03 for b. The divergence of
the correlation length ν ∼ 0.67 and the isotropy of the space
and time dimensions z ∼ 1 were verified to be the same as in
the conventional 3D XY universality class. These statements
were verified numerically [69].

In terms of entanglement entropy SR of a smooth simply
connected region R without corners, it is known that, other
than the leading perimeter law term SA ∝ l ≡ |∂R|, there is a
logarithmic subleading correction in a SSB phase of a contin-
uous symmetry [70] and a topological subleading correction
in a topologically ordered phase [71,72]. At the critical point,
SA takes the form of SA = αl − β with β = βXY + βZ2 . Here
βXY comes from the ordinary XY transition, i.e., SSB of U(1),
and βZ2 = ln 2 is the topological entanglement entropy of the
Z2 topologically ordered phase [54].

If we consider OBC, there is also a generalized boundary
phase transition between the gapless SPT/Higgs phase and
the Ũ(1)-enriched topological phase. It would be interesting
to investigate this boundary phase transition.

F. Perturbations

In the above discussion, we have imposed the zero-flux
condition by taking g → 0 in order to preserve the exactness

of the dual 1-form. The existence of the
∑

σ x
i term in Eq. (17)

explicitly breaks this symmetry. However, we expect the per-
turbation changes neither the topological order in the SET
phase nor the gapless boundary modes in the SPT phase in
2D due to the robustness of higer-form symmetries [23]. In
particular, in the original Fradkin-Shenker phase diagram for
2D Ising gauge theory coupled to matter with PBC, both the
deconfined phase, the Higgs phase and the transition in be-
tween are robust with the introduction of the small polarizing
field.

To study the edge physics, the authors in Ref. [27] nu-
merically demonstrated the robustness of the topological edge
modes in the SPT/Higgs phase. On the other hand, the ro-
bustness of Z2 topological order with open boundaries under
perturbation is also numerically investigated in Ref. [73].
Based on their results, the robustness depends both on the
boundary type (rough or smooth) and the perturbation type
(σ x or σ z). For rough boundaries [see Fig. 5(a)] and pertur-
bations of the form σ x, the topological order is robust. It is
natural to expect resilience in the edge physics.

Based on the robustness of both phases, it is also natural
to expect the SPT/Higgs-SET transition to remain continuous
and robust, even with small perturbations that explicitly break
the 1-form symmetry. In this case, we can regard the 1-form
symmetry to be emergent [74], and the properties of the gener-
alized DQCP should remain intact. In this sense, generalized
DQCPs can be a generic type of quantum criticalities and
deserve to be investigated in more details in future work.

G. Experimental realizations

The Bose-Hubbard model in 1D and higher dimensions
has been realized in such systems as cold atoms on optical
lattices [75–80], and the continuous superfluid-insulator tran-
sition has been observed. Lattice gauge theories have also
been simulated in such systems [81–83]. Recently, the Z2

topological order has been realized and measured in Rydberg
atoms on a 2D Ruby lattice [84,85]. It is more complicated
to simulate gauged matter theories, but there are also some
recent experimental progress in this direction. For example,
a similar Z2-gauge Bose-Hubbard model in 2D was studied
in Ref. [86] with the idea of realizing the gauge constraints
by using simplified local pseudogenerators [87]. We believe
quantum simulation with cold atoms is a promising platform
to realize the unconventional phases and quantum criticalities
proposed in this work.

Realizations of the gapless SPT phases and the generalized
DQCPs discussed in our work may be also possible in other
solid state systems. For example, since the generalized DQCP
is essentially the XY ∗ transition studied before [69,88], we
may start with an ordinary Bose-Hubbard system with frac-
tionalized excitations. As long as the low energy effective
theory is described by an emergent Z2-gauged Bose-Hubbard
model, we may test the analysis in our work.

A recent trend in the past few years has been realizing the
gauging process by using finite-depth unitaries, measurement,
and feedforward so topological ordered states can be obtained
efficiently [89–92]. Other phases such as Higgs phases [93]
and continuous symmetry breaking states [94], and phase
transitions [95,96] have been proposed. Some SET phases
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can also be obtained by partial gauging [97]. Realizing a
SET phase by partially gauging a U(1) symmetry is also very
natural. To simulate and study a gapless SPT phase and the
generalized DQCP discussed in this work in these adaptive
circuits is a fascinating direction.

V. CONCLUSIONS

In this work, we investigated the emergent Z2-gauged mat-
ter theory of the 1D and 2D Bose-Hubbard model coupled to
Ising degrees of freedom. We analyzed the inherited phase di-
agram from that of the ungauged superfluid-insulator version.
In 1D, we identified the superfluid phase to be an intrinsically
gapless SPT phase protected by W × U(1), W being the Ising
spin reflection symmetry. In the low energy theory, W can be
viewed as the dual Ẑ2 symmetry. We discussed the effective
action which includes a mixed anomaly term between W
and the quotient Ũ(1) symmetry ω, and a topological term
α dictating the edge degrees of freedom if there is an open
boundary. The ’t Hooft anomaly in α is matched by that in
ω. We argued that the gapless SPT phase is described by a
Z2-gauged compact boson CFT, which is also supported by
DMRG computations. In 2D, we focused on the zero-flux
limit and concluded, by adapting the “Higgs = SPT” argu-
ment, that the superfluid phase is also a gapless SPT protected
by higher form symmetries whose gaplessness comes from
the Goldstone modes due to the SSB of the quotient Ũ(1). We
studied the excitations, especially the Goldstone modes whose
winding number is related to the charge of the Ũ(1) domain
wall under the dual Ẑ2 1-form symmetry W , which is a direct
manifestation of the mixed anomaly between the two symme-
tries. The other phase is the insulating phase corresponding to
the SSB of the W with Ũ(1) preserved, i.e., Ũ(1)-enriched
Z2 topological order. Then we analyzed the transition be-
tween the gapless SPT/Higgs phase and the Ũ(1)-SET phase,
which is a generalized DQCP. The robustness of the gapless
SPT/Higgs phase, the SET phase, and the generalized DQCP
between them toward perturbations that explicitly break the
Ẑ2 1-form symmetry is discussed. Possible experimental real-
izations using quantum simulations with cold atoms are also
proposed.

The idea of partially gauging a finite subgroup discussed
in this work is straightforward and general. In principle, we
can start with any system that has a SSB of a generic contin-
uous symmetry, including generalized symmetries, and then
perform the partial gauging to arrive at novel phases and phase
transitions in between. The system can even be topological at
the outset. Extension to higher dimensions is straightforward.
The colluding roles of the topological term α and the emergent
anomaly ω in constructing general (intrinsically) gapless SPT
phase deserve further elaboration. It would also be interesting
to study deformations of the gapless SPT phases away from
their fixed-point so that the edge localization length ξe is not
strictly zero.

As we have mentioned earlier on, our analysis generalizes
easily to fermionic systems. In particular, the 1D intrinsically
gapless SPT phase works for a free fermion gas or a Luttinger
liquid [49] and is generalizable to generic critical point or a
Fermi liquid in higher dimensions. Generically, introduction
of a weakly fluctuating gauge field may destabilize the system

and drive the system to other phases, such as superconductors.
It would be interesting to construct such a stable intrinsically
gapless fermionic SPT phase. A good starting point may be
exactly solvable models of free lattice fermions coupled to
Ising spins on the link. When it is not analytically solvable,
numerical simulations using, e.g., the determinant quantum
Monte Carlo method similar to Refs. [98,99] can give us
more valuable insights. We hope our work can stimulate more
endeavors along these directions.
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APPENDIX A: EMERGENT Z2-GAUGED q-STATE
CLOCK MODEL

In the main text, we focused on the case where the Z2

subgroup of the continuous U(1) is effectively gauged. Some
of the properties we discussed there can already be found
when the total symmetry group is discrete. In this Appendix,
we present similar analysis of the q-state clock model with
discrete on-site Zq symmetry. We focus on even q cases,
so that there exists a Z2 subgroup that can be subsequently
gauged. Both 1D and 2D cases are discussed.

1. 1D

For the Ising model, i.e., when q = 2, gauging the Z2

is equivalent to a Kramers-Wannier transformation from the
original Ising model to the dual Ising model with a dual 0-
form Ẑ2 symmetry. The minimal nontrivial case corresponds
to q = 4, which is also discussed in Refs. [33,34]. The Z2-
gauged four-state clock model has global symmetry Z̃2 × Ẑ2

with a mixed anomaly between the two symmetries character-
ized by the nontrivial extension class in H2(Z̃2, Ẑ2) = Z2. A
concrete lattice model can be written down as follows:

H = − J
∑

j

(C†
j τ

z
j+1/2Cj+1 + h.c.) − h

∑
j

(S j + S†
j )

− K
∑

j

τ x
j−1/2S2

j τ
x
j+1/2, (A1)

where C4
j = S4

j = 1 and CjS j = ei 2π
4 S jCj . We fix J = 1.

Similar to the case in the main text, we have a minimal
coupling between clock degrees of freedom on sites and Ising
spins on bonds, where the large K limit effectively imple-
ments the gauging with the gauge constraint given by Gj =
τ x

j−1/2S2
j τ

x
j+1/2 = 1. The global symmetry is V × W , with

V =
∏

j

S j, W =
∏

j

τ z
j+1/2, (A2)
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FIG. 6. Ground state degeneracy in different phases of the 1D
Z8-clock model with its Z2 subgroup gauged, under PBC (a) and
under OBC (b).

where at low energy W becomes the dual Ẑ2 symmetry and V
is the quotient symmetry. There is a subtlety for the V sym-
metry when there is an open boundary. For periodic boundary
condition (PBC), we have V 2 = ∏

j S2
j = ∏

j τ
x
j−1/2τ

x
j+1/2 =

1, by using the low energy gauge constraint, making V ex-
plicitly Z2. However, for open boundary condition (OBC), we
have instead the nontrivial identity V 2 = τ x

1/2τ
x
L+1/2. Here L is

the number of sites in the open chain.
In the case of h � 1, S j will be polarized, which implies

that 〈τ x
m−1/2τ

x
n+1/2〉 = ∏

m� j�n S2
j �= 0, i.e., there is long range

order in τ x, leading to SSB of W while V is preserved. On
the other hand, when h � 1, there will be SSB in V but with
W preserved. The SSB in V directly inherits from the SSB of
the ungauged clock model, since the Z2 gauging corresponds
to summing over twisted boundary conditions, which does
not change the long-range correlation of the order parameter
[33,34]. Due to the SSB of V , which is simply Z̃2 in the bulk,
the ground state is twofold degenerate |ψ1〉 and |ψ2〉 with
V |ψ1〉 = |ψ2〉.

Furthermore, in the V SSB phase, for either of the degener-
ate ground state |ψα〉, there is nontrivial string order parameter
given by 〈C†

mτ z
m+1/2 . . . τ z

n−1/2Cn〉 �= 0, signifying that the V
SSB phase is in fact the Higgs/SPT phase [27]. To see the
nontrivial edge states, we consider a semi-infinite chain with
one open boundary at site L. Then we have V 2 = τ x

L+1/2, so
that V 2W = −WV 2. For a ground state |ψα〉, both V 2 and
W are symmetries. Due to the anticommutation of the two
symmetry operators, we can similarly argue that V 2|ψα〉 and
|ψα〉 are degenerate and the degeneracy comes from the edge
since V 2 is localized at the edge. This way, we explicitly see
the edge degeneracy for each of the bulk degenerate ground
states.

The analog of the intrinsically gapless SPT of the U(1)
case shows up when q � 5. It is known that the 1D quan-
tum clock model without gauging has two critical points,
both are of BKT type and dual to each other, and there is a
critical phase with emergent U(1) symmetry in between the
two critical points [100]. The minimal nontrivial case with
mixed anomaly after gauging is the 8-state clock model. After
gauging, the emergent symmetry is Z̃4 × Ẑ2, where there is a
mixed anomaly characterized by the nontrivial extension class
in H2(Z̃4, Ẑ2) = Z2.

Figure 6 shows the schematic phase diagram with the cor-
responding ground state degeneracies under both PBC and
OBC. In the large h limit, the dual Ẑ2 symmetry is sponta-
neously broken, which is labeled as the Ẑ2 SSB phase. In the
small h limit, we have the Z̃4 SSB phase. In the intermediate
coupling regime (h1 < h < h2), the system is in a critical
phase, where both of the two symmetries are preserved. There
is an emergent symmetry U(1) × U(1) ⊃ Z̃4 × Z̃2 and the
critical phase is described by the (Z2-gauged) compact bo-
son CFT. Indeed, this phase is an analog of the intrinsically
gapless SPT phase we discussed in the main text.

2. 2D

For 2D q-state clock model, the Hamiltonian takes sim-
ilar form with that of the Z2-gauged Bose-Hubbard model
described in the main text,

H = − J
∑

i, j∈∂e

(C†
i τ z

eCj + h.c.) − h
∑

j

(S j + S†
j )

− 1

g

∑
p

∏
e∈∂ p

τ z
e − g

∑
e

τ x
e − K

∑
j

Sq/2
j

∏
e, j∈∂e

τ x
e , (A3)

where Cq
j = Sq

j = 1 and CjS j = ei 2π
q S jCj . We fix J = 1. In the

zero flux limit g → 0 and large K limit, the global symmetries
are the quotient 0-form Z̃q/2 and the 1-form Ẑ2, given by,

V =
∏

j

S j, W =
∏
e∈γ

τ z
e , (A4)

where γ is a loop running along the bonds of the lattice. No-
tice that in order for there to be an emergent mixed anomaly
between V and W , the group extension of V by W , classified
by H2(Z̃q/2, Ẑ2) = Zgcd(q/2,2) has to be nontrivial, meaning
that q/2 has to be even, i.e., q is an integer multiple of 4.
Similar to the 1D case, due to the mixed anomaly between V
and W , W is SSB while V is preserved when h � 1. This
is the Z2 topological order enriched by Z̃q/2, classified by
H2(Z̃q/2,Z2 × Z2) = Zgcd(q/2,2) × Zgcd(q/2,2).

When h � 1, we have SSB for V with W preserved. There-
fore the bulk is q/2-fold degenerate, and each degenerate
ground state has additional degenerate edge states when there
is an open boundary. The argument is the same by considering
the two anticommuting symmetries V q/2 and W of the ground
states. Therefore this is again the Higgs/SPT phase. The Z̃q/2-
enriched topological order and the Ẑ2 1-form protected SPT
with q/2-fold bulk degeneracy are separated by a generalized
DQCP.

APPENDIX B: ELIMINATION OF GAUGE CONSTRAINTS

In the main text, based on the mixed anomaly between the
quotient Ũ(1) symmetry and the dual 1-form Ẑ2 symmetry in
the emergent gauge theory, we claimed that these two symme-
tries cannot both be on-site. This can be demonstrated easily
by eliminating the gauge constraints. The elimination may be
achieved by performing a unitary transformation consisting of
controlled gates and Hadamard transformations [101]. Here
we follow Ref. [33] to gain more intuition.

After gauging, i.e., implementing the gauge condition∏
e,i∈∂e σ x

e = (−1)ni , the onsite boson states are divided into
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the boson parity even sector and the parity odd sector, depend-
ing on the sign of the star operator

∏
e,i∈∂e σ x

e . Therefore the
new onsite boson basis can be denoted as |1, ñ〉 and | − 1, ñ〉,
where the first number labels the onsite boson parity, deter-
mined by

∏
e,i∈∂e σ x

e , and the second number labels the new
local boson states with ñ = 0, 1, 2, . . . in the corresponding
sector. Notice that we have a one-to-one correspondence be-
tween the new basis and the original ungauged basis, given by
|1, ñ〉 ↔ |2ñ〉 and | − 1, ñ〉 ↔ |2ñ + 1〉. Therefore no degrees
of freedom are lost, as it should be. Expressed in the new
basis, the boson number operator becomes

n̂i → 1 + ∏
e,i∈∂e σ x

e

2
2 ˆ̃ni + 1 − ∏

e,i∈∂e σ x
e

2
(2 ˆ̃ni + 1)

= 2 ˆ̃ni + 1 − ∏
e,i∈∂e σ x

e

2
. (B1)

The action of the boson creation/annihilation operator should
be accompanied with a flip in

∏
e,i∈∂e σ x

e since (−1)ni changes
sign. Consider the gauge invariant minimal coupling term
b†

i σ
z
ei j

b j . In the new basis,

b†
i σ

z
ei j

b j → Aiσ
z
ei j

B j . (B2)

where

Ai ≡ 1 + ∏
e,i∈∂e σ x

e

2
+ 1 − ∏

e,i∈∂e σ x
e

2
b̃†

i ,

Bi ≡ 1 + ∏
e,i∈∂e σ x

e

2
b̃i + 1 − ∏

e,i∈∂e σ x
e

2
. (B3)

In the new basis, the action of the dual 1-form Ẑ2 symmetry
remains unchanged as W = ∏

e∈γ σ z
e for closed loop γ , but

the Ũ(1) symmetry is now implemented by

X̃ (θ ) =
∏

i

exp

[
i

(
2 ˆ̃ni + 1 − ∏

e,i∈∂e σ x
e

2

)
θ

2

]
, (B4)

which is explicitly non-on-site. It is easy to see that X̃ (θ ) =
X̃ (θ + 2π ) for PBC. Combining Eqs. (B1) and (B2), we can
obtain the Hamiltonian of the Bose-Hubbard model (with the
zero-flux condition) expressed in the new basis where the
gauge constraints have already been encoded.

Note that the quantity ˆ̃N = ∑
i

ˆ̃ni itself is not conserved.
Instead, the term (1 − ∏

e,i∈∂e σ x
e )/2 contributes a fractional

charge 1/2 to ˆ̃N . By invoking the “electromagnetic duality”
for the Z2 gauge field: σ x ↔ σ z, we can regard the zero-
flux condition

∏
e∈∂ p σ z

e = 1 as the new “Gauss law” for the
“gauge field” σ x while

∏
e,i∈∂e σ x

e as the new “magnetic”
flux operator. Thus the new magnetic flux carries a fractional
charge under ˆ̃N , a manifestation of the mixed anomaly. Since
the anomalous system may be viewed as a boundary of an
SPT phase in the (3 + 1)D bulk, as mentioned in Ref. [33],
it is natural to envision a discrete realization of the bulk by
decorating the magnetic monopoles of the Ẑ2 gauge field with
unit charges under Ũ(1), which is an analog of the continuum
construction in Ref. [102].

FIG. 7. (a) Schematic diagram for the energy levels in the grand
canonical ensemble, where parity even and parity odd states coexist.
�P=±1

GCE is the gap in the parity even/odd sector and �GCE is the true
gap above the doubly degenerate ground state. (b) The upper bound
μU and the lower bound μL for the chemical potential in order to have
unit filling at different system sizes. The inset shows the difference
between the two bounds. The parameters used are t = 0.5 and U =
1.0.

APPENDIX C: GRAND CANONICAL ENSEMBLE IN 1D

In Sec. III, we used canonical enemble (CE) in 1D for
simplicity since the particle number conservation cannot be
violated due to the Mermin-Wagner theorem. In this Ap-
pendix, we support this statement by presenting some DMRG
results for the Z2-gauged Bose-Hubbard model in the context
of grand canonical ensemble (GCE) where the total particle
number can vary. GCE is more general and it allows en-
ergy levels consisting of both even and odd parity states [see
Fig. 7(a)]. The existence of states with different parities is a
consequence of the boundaries when using OBC, where the
parity operator P = σ1/2σL+1/2 can still take values ±1. How-
ever, GCE is computationally more challenging in DMRG
since particle number is not fixed. On the other hand, we
observed numerically that as long as the chemical potential
μ is carefully tuned to ensure unit filling for the GCE ground
state, both the ground state and the next excited state have
no fluctuations in total boson number, i.e., they have fixed
boson number. A nice consequence of this observation is that
the GCE low energy states can now be related to those of
the CE, which renders the numerical calculation easier and
more tractable for larger system sizes. We can still show
that the superfluid phase is a gapless SPT phase with double
degeneracy.

The GCE Hamiltonian HGCE(μ, N̂ ) is related to the CE
Hamiltonian HCE(N̂ ) as the following,

HGCE(μ, N̂ ) = HCE(N̂ ) − μN̂, (C1)

where N̂ is the total boson number operator. As mentioned
previously, the chemical potential μ can be tuned to achieve
a ground state with unit filling and fixed boson number, i.e.,
〈N̂〉 = L in the ground state. Here L is the number of boson
sites which for simplicity is taken to be even. Notice, however,
that the proper μ has a strong size dependence. To carry out a
finite size scaling of the gap, we extract the thermodynamical
information by bounding the gap as follows.

For a typical set of parameters both the gap in the parity
even sector �P=+1

GCE and the gap in the parity odd sector �P=−1
GCE

are much larger than the true gap �GCE which is between a
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parity even state and a parity odd state [Fig. 7(a)]. Note that
the ground state is exactly doubly degenerate as in the CE.
The GCE ground state energy is given by

EGCE(μ, L) = ECE(L) − μL, (C2)

and satisfies the following conditions:

EGCE(μ, L) � EGCE(μ, L ± 1), (C3)

which implies

μL ≡ ECE(L) − ECE(L − 1)

� μ � ECE(L + 1) − ECE(L) ≡ μU . (C4)

Figure 7(b) shows the system size dependence of the lower
and upper bounds of the chemical potential based on Eq. (C4).
The two bounds converge to μ∞ ≈ −0.254 in the thermody-
namic limit, which is also reflected in the inset showing the
difference between the bounds approaching 0.

Both �P=±1
GCE decay to zero following a power law 1/L.

Furthermore, the true gap is given by

�GCE = min{EGCE(μ, L + 1) − EGCE(μ, L),

EGCE(μ, L − 1) − EGCE(μ, L)}
= min{μU − μ,μ − μL}
� μU − μL. (C5)

Since μU − μL is shown to decay to 0 in the thermodynamic
limit as 1/L [see inset of Fig. 7(b)], the bulk gap �GCE also
decays to 0 at least as fast as 1/L.

APPENDIX D: ANOMALY ACTION

In this Appendix, we provide more details regarding the
’t Hooft anomalies that show up in the main text. We will
emphasize the comparison between the mixed anomaly from
gauging a finite subgroup [31] and the emergent anomaly
through separation of gapped and gapless degrees of freedom
[18].

Consider the following central extension

1 → Z2
i−→ U(1)

π−→ Ũ(1) → 1. (D1)

Here i is inclusion and π is projection. The extension cor-
responds to the nontrivial element e in H2(Ũ(1),Z2) = Z2.
To Let G = U(1) be the total global symmetry free from
anomalies. Then we can turn on a flat background gauge field
AU(1) on a closed (1 + 1)D spacetime M. Then

AU(1) = i(AZ2 ) + r(AŨ(1) ), (D2)

where r lifts AŨ(1) into AU(1) and satisfies π (r) = Id. The
flatness of AU(1) implies that the AZ2 sees the flux of AŨ(1):

dAZ2 = e(AŨ(1) ) = dAŨ(1)

2π
mod 2, (D3)

where we have omitted r for simplicity. We can gauge the Z2

subgroup of U(1) by making AZ2 dynamical which we will
denote as aZ2 . Then

daZ2 = e(AŨ(1) ) = dAŨ(1)

2π
mod 2. (D4)

After gauging Z2, there is a dual quantum symmetry Ẑ2

showing up [103]. It can again be coupled to its background
field AẐ2 as follows:

S = π i
∫

M
AẐ2 ∪ aZ2 . (D5)

Since aZ2 is not closed when AŨ(1) is nontrivial, as a result
of Eq. (D4), there is an mixed anomaly between the dual
symmetry Ẑ2 and quotient Ũ(1) which is characterized by an
anomaly action in a (2 + 1)-D dimensional bulk Y

ω = 1

2
AẐ2 ∪ daZ2 = 1

2
AẐ2 ∪ dAŨ(1)

2π
, (D6)

where AẐ2 and AŨ(1) are extended to the bulk Y . When M =
∂Y , the anomaly is canceled. In the main text, the gauge theory
is emergent, so the mixed anomaly is also emergent in the low
energy theory.

In Ref. [18], the Z2 group is not gauged but gapped out
by interactions in the sense that Z2 only acts nontrivially on
the gapped degrees of freedom while Ũ(1) is the symmetry
that acts nontrivially on the low energy degrees of freedom.
Turning on the background fields, we arrive at Eq. (D3) as
well. If the symmetry Ũ(1) acting on the gapless degrees of
freedom has an emergent anomaly, it is possible to construct
a gapless SPT phase.

In particular, if U(1) is broken to Z4, then since
H2(Z4, U(1)) = 0, there is no gapped SPT phase in 1D. How-
ever, an intrinsically gapless SPT phase can exist when there
is an emergent anomaly, which is captured by

ω = 1
2 AZ2 ∪ dAZ2 (D7)

in the higher-dimensional bulk Y . Indeed, since the total sym-
metry group G = Z4 is anomaly-free, the low energy anomaly
ω(AZ2 ) must be compensated by a counterterm α(AZ2 , AZ̃2 )
satisfying the anomaly vanishing equation [18]

ω(AZ2 ) = dα(AZ2 , AZ̃2 ). (D8)

Here AZ̃2 is the background field of the quotient symmetry
Z̃2 ≡ Z4/Z2 acting on the gapped degrees of freedom. The
partition function then may be written as

Z = e2π i
∫

Y ω(AZ2 )e−2π i
∫

M α(AZ2 ,AZ̃2 ). (D9)

One solution to the anomaly vanishing equation is given
by α(AZ2 , AZ̃2 ) = AZ2 ∪ AZ̃2/2. The gauge invariance of the
partition function under AZ2 → AZ2 + dλZ2 then necessarily
implies the existence of an edge mode of the 1D system.

If the total symmetry is G = Z′
2 × U(1), the Z2 subgroup

of U(1) can be gapped so that the symmetry acting on the
gapless degrees of freedom is Z′

2 × Ũ(1). If the low energy
theory has a mixed anomaly

ω = 1

2
AZ′

2 ∪ dAŨ(1)

2π
, (D10)

then the anomaly vanishing equation yields

α = 1
2 AZ′

2 ∪ AZ2 . (D11)

Consequently, the gauge invariance of the partition function
requires the existence of an edge mode. The form of ω and α
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is very similar to those we discussed in the main text. We also
note that the similarity between Eqs. (D6) and (D10).

In the main text, the Z2 subgroup of U(1) is the parity
P = ∏

i(−1)ni . Unlike the gapping mechanism in Ref. [18],
in Sec. III A, P is gapped out (when PBC is used) due
to the emergent gauge constraints arising from the terms
−K

∑
σ x

i−1/2(−1)niσ x
i+1/2 in the Hamiltonian when K is large.

W = ∏
i σ

z
i+1/2, a UV symmetry, effectively becomes the dual

symmetry of P. Consequently, there is an emergent mixed
anomaly ω between W and Ũ(1) as in Eq.(D6). On the other
hand, we argued in the main text that there is a term α = AW ∪
AP/2 that dictates the SPT edge modes. P and W being UV
symmetries, the anomaly in α when AŨ(1) is not flat requires it
to be canceled by other terms. Indeed, the emergent anomaly

ω serves the purpose if dAP = daZ2 = dAŨ(1)

2π
mod 2 where

aZ2 is the emergent Z2 gauge field. Not surprisingly, the
anomaly is identical to that in Eq. (D10) after we identify W
with Z′

2. This explains the resemblance between Eqs. (D6)
and (D10).

There is a subtlety if M has boundaries. Boundary con-
ditions need to be chosen properly to guarantee the emergent
(dynamical) gauge-invariance. In principle, the true symmetry
acting on the gapless modes are W and Ũ(1), regardless of
whether OBC or PBC is used. In the main text, P is in-
terpreted as a UV symmetry, and thus physical. When PBC
is used, it is fully gapped. When OBC is used, it also acts
nontrivially on the low energy modes. The gauge-invarinace
of α = AW ∪ AP/2 under AP → AP + dλP already implies the
existence of edge modes when OBC is used, irrespective of the
existence of the mixed anomaly. This is because W can termi-
nate on the edges such that dAW �= 0 mod 2. It is the delicate
cooperation of both α and ω through ’t Hooft anomalies that
determines the nature of the intrinsically gapless SPT phase
protected by W and U(1) as discussed in Sec. III.

The discussion above about the mixed anomaly between
the quotient symmetry and the dual symmetry after gauging
a finite subgroup can be generalized to arbitrary dimensions
[31]. In dD, the dual Ẑ2 symmetry is (d − 1)-form, and
the anomaly action is given by ω = i

2

∫
Y AẐ2 ∪ dAŨ(1). Here,

AẐ2 is a d-form background field. If the symmetry Ẑ2 again
coincides with a UV symmetry W and the gauge theory is
emergent as we have discussed in the main text, we then
again have an SPT phase with α = AẐ2 ∪ AZ2/2, which is
again canceled by ω. If both U(1) and Ẑ2 are preserved, then
we may have a higher dimensional intrinsically gapless SPT
phase. On the other hand, if Ũ(1) is spontaneously broken
as in the Higgs phase, the SPT phase coexists with gapless
Goldstone modes.

APPENDIX E: PERTURBATIONS BY σx AND σz IN THE 1D
BOSE-HUBBARD MODEL

Here we provide further numerical details on the effects
of perturbations in the 1D Bose-Hubbard model. Specifically,
we consider two types of perturbations: hx

∑
i σ

x
i+1/2, which

commutes with the effective gauge constraint from the K term
but explicitly breaks the W symmetry, and hz

∑
i σ

z
i+1/2, which

preserves the W symmetry but violates the effective gauge
constraint.

FIG. 8. Gap scaling with system size when the σ x perturbation
is added. The 1/L behavior already shows up for relatively small
system sizes. Parameters used: t = 0.5, U = 1, hx = 0.1, and
K = 10.

1. Perturbation by σx

The exact edge degeneracy in the 1D case discussed in the
main text relies crucially on the existence of the W symmetry.
Therefore we would expect the edge degeneracy to disappear
once the W -breaking σ x terms are added to the Hamiltonian.
Figure 8 shows that by adding even a small such perturbation
(hx much smaller than the other couplings in the Hamiltonian),
the degeneracy is immediately lifted, and the gap follows a
1/L scaling, with L being the system size. This means the
gapless system no longer have edge modes, hence becomes
topologically trivial.

2. Perturbation by σz

Another interesting type of perturbation is the σ z term.
While it preserves the W symmetry, it locally anticommutes
with the effective gauge constraint from the large K term. Re-
call that the localized action of boson parity on the edges, i.e.,
P = σ x

1/2σ
x
L+1/2, derives from the effective gauge constraint

being exactly implemented when K flows to infinity at low
energy. Therefore it is reasonable to expect that if there is a
sufficiently large gauge-violating term then P will no longer
be exactly localized on the edges, meaning that P can no
longer be separated as two independent σ x operators in a clean
manner. Instead, there will be longer range terms effectively
that lead to the hybridization of the two edge modes, splitting
the exact degeneracy. This intuition is verified by Fig. 9,

FIG. 9. Gap scaling with system size when the σ z perturba-
tion is added. It shows an exponential decay. Parameters used: t =
0.5, U = 1, hz = 5, and K = 10. Here we called hz perturbation,
but in fact it has to be of the same order with K for a sizable gap to
show up even for small system sizes.
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which further shows that the gap from degeneracy split-
ting decays exponentially with system size. Therefore the
effective gauge-violating perturbation could lift the exact

degeneracy in the fixed point gapless SPT phase and the orig-
inal exactly localized edge modes now become exponentially
localized.
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