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Solving Fermi-Hubbard-type models by tensor representations of backflow corrections
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The quantum many-body problem is an important topic in condensed matter physics. To efficiently solve
the problem, several methods have been developed to improve the representation ability of wave functions.
For the Fermi-Hubbard model under periodic boundary conditions, current state-of-the-art methods are neural
network backflows and the hidden fermion Slater determinant. The backflow correction is an efficient way to
improve the Slater determinant of free particles. In this work we propose a tensor representation of the backflow-
corrected wave function; we show that for the spinless t-V model, the energy precision is competitive or even
lower than current state-of-the-art fermionic tensor network methods. For models with spin, we further improve
the representation ability by considering backflows on fictitious particles with different spins, thus naturally
introducing nonzero backflow corrections when the orbital and the particle have opposite spins. We benchmark
our method on molecules in the STO-3G basis and the Fermi-Hubbard model with periodic and cylindrical
boundary conditions. We show that the tensor representation of backflow corrections achieves competitive or
even lower-energy results than current state-of-the-art neural network methods.
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I. INTRODUCTION

Exotic physical phenomena emerge when a large number
of microscopic particles interact with each other. Under-
standing phenomena such as superconductivity, quantum spin
liquids, and the quantum Hall effect requires solving the
quantum many-body problem with high accuracy. However,
solving the problem is challenging because the Hilbert space
of the solution grows exponentially with respect to the size of
the problem.

Several methods have been developed, but there are still
limitations. For example, exact diagonalization has high ac-
curacy, but the problem size is limited [1]. The density-matrix
renormalization group (DMRG) can solve one-dimensional or
quasi-one-dimensional systems [2], but the accuracy is not
satisfactory for two-dimensional systems. Quantum Monte
Carlo has no limitation on dimensions and has high precision,
but the computational complexity is too high for systems with
the “sign problem” [3]. The projected entangled-pair state
(PEPS) can solve the two-dimensional system under the open
boundary condition (OBC) with high accuracy; however, the
computational complexity is high, especially for the periodic
boundary condition (PBC) [4–6]. Recently, neural networks
(NNs) have shown potential for representing quantum many-
body states [7–23]. To solve Fermi-Hubbard-type models,
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one approach is the Jordan-Wigner transformation on the
Hamiltonian that treats the problem like solving a spin model
[15,16]. Another way is improving the single-particle Slater
determinants (SDs) by NN backflow transformations [17–19]
or multiplying the SD by a NN Jastrow factor [20]. The state-
of-the-art wave function named the hidden fermion Slater
determinant (HFSD) considers hidden fermionic particles and
calculates the determinant of an enlarged matrix [21].

Solving the ground state of the Fermi-Hubbard model near
1/8 doping is important for understanding the mechanism of
superconductivity; however, the ground state is challenging
to solve [24–28]. In mean-field theory, the Hamiltonian is in
a quadratic form, and the ground state is the Hartree-Fock
(HF) state. The wave function of the HF state is a Slater
determinant, which is an exact representation for particles
without interactions. For particles with interactions, the exact
representation is very challenging. One way to improve the
representation ability is to add a Jastrow factor before the
Slater determinant; many-body correlations are contained in
the Jastrow function. The backflow correlation improves the
representation ability by adding the positions of other particles
to the single-particle orbital [18,29–31]. Backflow corrections
on wave functions have been widely used in quantum chem-
istry [17,19]; however, for strongly correlated many-body
systems such as Fermi-Hubbard models, the precision is not
sufficiently high [18,21].

Although adding variational parameters can increase the
state representation ability of the variational wave func-
tion [17–19], more variational parameters lead to higher
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optimization difficulty, which is not beneficial for achieving
the ground energy [13]. In this work, we propose an efficient
way to increase the parameter number of the backflow-
corrected wave function using tensor representation. Namely,
each dimension of the tensor is an independent degree of
freedom in the backflow-corrected wave function. We show
that the tensor representation can achieve competitive or even
lower-energy results compared to state-of-the-art fermionic
PEPS (fPEPS) results for the spinless t-V model [5]. For
models with spin, we improve the representation ability by
considering backflow corrections on fictitious particles with
different spins, which leads to nonzero backflow correc-
tions when the particle and the orbital have different spins.
We numerically demonstrate that our method can achieve
energy precision competitive with state-of-the-art Restricted-
Boltzmann-Machine (RBM) results for molecules in the
STO-3G basis [15] and energy precision competitive with or
even better than state-of-the-art NN backflow [18] and HFSD
[21] results for the Fermi-Hubbard model.

This paper is organized as follows: Sec. II A recalls back-
flow corrections on wave functions and introduces our method
of backflow corrections when the particle and the orbital have
different spins. Section II B introduces the tensor represen-
tation of the backflow-corrected wave function. Section III
presents the numerical results of our methods and compar-
isons with other state-of-the-art methods: the spinless t-V
model in Sec. III B, molecules in the STO-3G basis in
Sec. III C, and the Fermi-Hubbard model in Sec. III D. Finally,
the paper is concluded in Sec. IV.

II. METHODS

A. Backflow corrections of wave functions

The backflow correction is defined on the fictitious coordi-
nate rB

i , which not only depends on the position rα but also
depends on the positions of other particles [29]:

rB
α = rα +

∑

β

ηαβ[S](rβ − rα ), (1)

where rα are actual particle positions and ηαβ[S] are varia-
tional parameters depending on the many-body state |S〉 to
create a return flow of particles.

The backflow-corrected single-particle orbital for a spin
φB

k,σ is constructed by a linear combination of eigenstates of
the mean-field Hamiltonian φk,σ [18,30,31]:

φB
kσ (ri,σ ) = φkσ (ri,σ ) +

∑

j

ci j[S]φkσ (r j,σ ), (2)

where ci j[S] is a variational coefficient depending on the
many-body configuration |S〉. The orbital is φkσ (ri,σ ) =
〈0|ĉi,σ |φkσ 〉, where ĉi,σ is the annihilation operator on the ith
site with spin value σ .

Based on Eq. (2), backflow corrections are performed
on positions with a spin identical to that of the orbital;
meanwhile, the wave function is the product of two Slater
determinants:

w1(S) = det[MB,↑] det[MB,↓], (3)

with the element of the Slater matrix being

MB,σ
ik = φB

kσ (riσ ). (4)

Backflow corrections in the formation of Eqs. (3) and (4)
have been successfully used for the t-t ′ Hubbard model with
a large interaction of U [30,31], which mimics the effect of
the virtual hopping, thus leading to the correct superexchange
energy.

To improve the representation ability of the Hamiltonian
with couplings of spins, in addition to the original backflow
corrections, here we introduce an improvement by consider-
ing backflow corrections of the fictitious coordinate for one
spin rB

i,σi
depending on positions of other particles with oppo-

site spins:

rB
i,σi

= ri,σi +
∑

j

ηi j[S]
∑

σ j=±1

(r j,σ j − ri,σi ); (5)

therefore, the backflow correction for one particle at position
ri with spin σi is performed on fictitious particles at positions
r j with different spins of σ j .

Meanwhile, the backflow-corrected single-particle orbital
for a spin is constructed similarly to Eq. (2), except for the
summation on particle spins σ j :

φB
kσk

(ri,σi ) = φkσk (ri,σi ) +
∑

j

ci j[S]
∑

σ j=±1

φkσk (r j,σ j ), (6)

where ci j[S] are variational coefficients depending on the
many-body configuration |S〉. The total spin is conserved as
(N↑ − N↓)/2, where N↑ (N↓) is the particle number for spin
up (down), as the orbital φkσk (ri,σi ) is zero when σk �= σi and
nonzero when σk = σi.

The wave function is represented by the Slater determinant
of an N × N matrix,

w2(S) = det[MB], (7)

where MB
ik = φB

kσk
(ri,σi ) and N = N↑ + N↓ is the total particle

number.
In this paper, backflow corrections of Eqs. (2) and (6)

are denoted as BW1 and BW2, respectively. BW1 requires
a particle spin equal to the orbital spin in order to achieve
nonzero backflow correction terms. However, in the case of
BW2, because of the summation on σ j , there are nonzero
backflow correction terms for arbitrary configurations of the
orbital spin σk and the particle spin σi.

Therefore, the major difference between BW1 and BW2 is
in the matrix in the Slater determinant; the matrix is depicted
in Fig. 1. In the matrix, the particle and the orbital have iden-
tical spin in submatrices 1 and 4; meanwhile, in submatrices
2 and 3 the particle and the orbital have opposite spins. For
BW1, submatrices 2 and 3 are undefined, and no backflow
corrections are performed. For BW2, there are nonzero back-
flow corrections in all submatrices.

B. Tensor representation of backflow corrections

We evaluate the state representation abilities of BW1 and
BW2 by using tensor representations of backflow-corrected
wave functions. Each dimension of the tensor is an inde-
pendent degree of freedom in the backflow-corrected wave
function denoted by Eqs. (2) and (6).
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FIG. 1. The matrix in the Slater determinant for N particles, with
N↑ and N↓ being the particle numbers for spin up and spin down,
respectively. The spin on the horizontal (vertical) axis denotes the
spin of the particles (orbitals).

The tensor has representation ability beyond what is
provided by the linear combination of eigenstates of the
mean-field Hamiltonian, as it includes many more variational
parameters. Compared to the backflow corrections for specific
configurations of s(ri ) and s(r j ) [30,31], it includes all possi-
ble configurations. Furthermore, it can represent higher-order
correlations, such as two-body correlations in the calculation
of self-energy based on the diagrammatic perturbation expan-
sion [31,32].

Here we assume coefficients ci j in Eqs. (2) and (6) depend
on local configurations s(ri ) and s(r j ) instead of |S〉 for sim-
plicity [30,31]. Independent degrees of freedom in both BW1
and BW2 are the position ri,σ , the orbital number of φkσ ,
the summation index j, and configurations s(ri ) and s(r j ).
Therefore, the total dimension of the tensor is

[M, N, d, Q, d], (8)

where the dimension M equals the site number and the di-
mension N equals the total particle number. The first and
second d’s are for configurations s(ri ) and s(rk ), respectively.
Q denotes the index of i as well as indexes in the summation
of j considered in either Eq. (2) or Eq. (6).

When considering backflow corrections of nearest neigh-
bors of the ith particle, the matrix element in the Slater
determinant is assigned by indexing the tensor:

MB
ik = g[i, k, s(ri ), i, s(ri )] +

∑

〈q,i〉
g[i, k, s(ri ), q, s(rq )], (9)

where g is the tensor representation of the wave function, with
the dimension defined in Eq. (8). The forward calculation gen-
erates the wave-function coefficient w(S) defined by Eq. (3)
for BW1 and Eq. (7) for BW2.

For the backward calculation of w(S), the gradient with
respect to one matrix element MB

ik is

∂ det MB

∂MB
ik

= Cik, (10)

where the cofactor Cik is an element of an N × N matrix,
defined as the determinant of a matrix obtained by eliminating
row i and column j from the original matrix. Expanding
the matrix MB along one column or one row with Laplace

expansion, we have

det MB · δik =
N∑

j=1

Ci jM
B
k j, det MB · δik =

N∑

j=1

CjiM
B
jk,

(11)

namely,

CMB = MBC = det MB · I. (12)

Therefore, the backward of parameter g is given by

∂w(S)

∂g[i, k, s(ri ), q, s(rq )]
= inv(MB)ik · w(S). (13)

In the variational Monte Carlo (VMC), forward and back-
ward calculations of the wave-function coefficient w(S) are
necessary when collecting one MC sample. The forward is
achieved by calculating the Slater determinant of the N × N
matrix, and the backward is achieved by inverting the matrix.
The complexity of calculating either the determinant or the
inverse of matrix MB is O(N3).

III. NUMERICAL INVESTIGATIONS

In this section we numerically demonstrate that backflow
corrections under the tensor representation have strong repre-
sentation abilities. We benchmark on three types of models:
(1) the spinless fermionic t-V model on the square lattice un-
der the OBC, (2) several molecules in the STO-3G basis, and
(3) the spinful Fermi-Hubbard model on rectangular lattices
with the PBC and cylindrical boundary condition (CBC).

For the spinless t-V model, backflow corrections can
achieve state-of-the-art energy results compared to those of
the PEPS. For molecules in the STO-3G basis, BW2 has better
precision than BW1, and energies obtained with BW2 are
competitive to state-of-the-art results. For the Fermi-Hubbard
model, both BW1 and BW2 achieve competitive or even
lower-energy results compared to state-of-the-art methods like
NN backflow and the HFSD. Furthermore, energies obtained
with BW2 are lower compared to those of BW1 on finite-size
lattices.

A. Optimization methods

The wave function is first optimized using the VMC
method and then further optimized by a Lanczos step. In
VMC, the energy and the αth parameter’s gradient are evalu-
ated through the Markov chain Monte Carlo (MCMC) process
[5,6]:

E = 〈Eloc〉, Gα = 2
〈
ElocOα

loc

〉 − 2〈Eloc〉
〈
Oα

loc

〉
, (14)

where the local energy is Eloc(S) = ∑
S′

w(S′ )
w(S) 〈S′|Ĥ |S〉,

Oloc(S)α = 1
w(S)

∂w(S)
∂α

, and 〈· · · 〉 denotes the average of
MCMC samples.

The variational parameters are updated according to the
gradient descent method. Here we adopt only the first-order
gradient descent due to the low optimization difficulty of
the tensor representation. Because of the limited MC sample
number, we take the sign of the gradient and apply a constant
step size δ: α′ = α − δsgn(Gα ). Such a parameter updating
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scheme was successfully used to optimize high-dimensional
tensors like the PEPS [5,33,34].

A Lanczos step further improves the representation ability
of the wave function |	p=0〉 by considering an additional wave
function |	⊥

p=0〉 orthogonal to |	p=0〉 [13,35]:

|	p=1〉 = A|	p=0〉 + B|	⊥
p=0〉, (15)

where A and B are parameters to be determined and |	p=0〉 is
the wave function obtained after the VMC. The orthogonal
wave function is built by |	⊥

p 〉 = 1
σp

(Ĥ − Ep)|	p〉, where

the energy expectation Ep = 〈	p|Ĥ |	p〉 and the variance
σ 2

p = 〈	p|(Ĥ − Ep)2|	p〉. Because it is necessary to calculate
〈	p=0|Ĥ2|	p=0〉 in the Lanczos optimization, the complexity
for one Lanczos optimization is O(N5). After the Lanczos
optimization is completed, the complexity for calculating one
coefficient for the Lanczos optimized wave function wp=1(S)
is O(N4).

B. Spinless t-V model

The Hamiltonian of the spinless t-V model reads

Ĥ = −t
∑

〈i, j〉
(ĉ†

i ĉ j + H.c.) + V
∑

〈i, j〉
n̂in̂ j, (16)

where t is the hopping strength and V is the interaction
strength between nearest neighbors. ĉ†

i (ĉi) creates (destroys) a
particle on the ith site, and the particle number operator n̂i =
ĉ†

i ĉi. We set t = 1 through our investigations. The maximal
occupation per site is ni = 1 for the spinless t-V model. We
investigate the half-filling case n = 1/2, so that the particle
number is half of the total site number on the 10 × 10 square
lattice.

We benchmark on lattices with the OBC to compare the
results with the state-of-the-art fPEPS method [5]. The fPEPS
is optimized by the imaginary-time-evolution method called
the simple update and then by the VMC [5,6,33,34]. The
complexity of calculating a w(S) is O(D3D3

c ), where D is
the bond dimension and Dc is the bond truncation dimen-
sion. As reported in a previous study [5], for the t-V model
with V = 2, Dc ≈ 3D is well converged, and D = 8 gives
a1 × 10−4 relative energy error compared to extrapolated in-
finite D. However, Dc = 3D is not well converged when
V = 0 [5]. Because of the high complexity with respect to
D and Dc as well as the high requirement of Dc/D, it is very
challenging to optimize fPEPS with a large bond dimension.
Because D = 8 gives high precision and Dc ≈ 3D is well
converged when V = 2, here we use D = 8 and Dc = 4D
as the reference. For our benchmark cases, the fPEPS takes
longer than our BW method when calculating one w(S). Fur-
thermore, it is impossible to perform Lanczos optimizations
for fPEPS.

For the spinless model, backflow corrections are performed
for one orbital based on Eq. (1). Energy comparisons for
different interaction strengths V are denoted in Table I. In
Table I, results for the HF state are achieved by representing
the spinless HF orbital φk (ri ) by a tensor with the dimension
of [M, N], where M is the site number and N is the total
particle number. p = 0 is the result obtained with the tensor

TABLE I. Comparison of energies (per site) for the spinless t-V
model on a 10 × 10 square lattice under the OBC; the total particle
number is 50. p = 0 (p = 1) denotes the wave function before (after)
one Lanczos step. Reference energies are obtained with the fPEPS
method [5].

V HF state p = 0 p = 1 fPEPS

0.45 −0.6103 −0.6132 −0.6134 −0.6129
1 −0.4561 −0.4617 −0.4620 −0.4620
2 −0.2961 −0.2997 −0.2999 −0.2999

representation of backflow corrections, and p = 1 is the result
of one Lanczos step for the p = 0 wave function. Backflow
corrections are considered on nearest neighbors of ri; namely,
the dimension Q defined in Eq. (8) includes site ri as well as its
nearest neighbors, and therefore, Q = 5. The parameter num-
ber of fPEPS is O(2ND4), where N is the site number. The
parameter number based on the tensor dimension defined in
Eq. (8) is 100 000; however, the parameter number of fPEPS is
approximately 819 200, and thus, our method has many fewer
parameters than fPEPS.

Compared to the p = 1 results, the relative errors of the HF
state are of the magnitude of 10−3 for V = 0.45 and 10−2 for
V = 1, 2; meanwhile, backflow corrections decrease relative
errors to a magnitude of 10−4 for all cases. As shown in
Table I, both p = 0 and p = 1 have energy precisions com-
petitive to that of the fPEPS.

The energy convergence of VMC for the spinless t-V
model with V/t = 1 is depicted in Fig. 2. The initial energy of
−0.4561 is from the HF state. After the HF state is converged,
we continue the optimization by adding backflow corrections,
within the initial energy from the HF state. The energy con-
verges smoothly after backflow corrections are added. The
parameter updating step size is δ = 5 × 10−4, and the MC
sample number for each step is 128 000. The interval between
two MC samples is the total site number. The converged en-
ergy per site is −0.4617, while the reference energy obtained
with the fPEPS is −0.4620.

FIG. 2. The energy convergence of the first-order gradient de-
scent for the spinless t-V model with V/t = 1 on the 10 × 10 lattice
under the OBC. The MC sample number is 128 000, and the parame-
ter updating step size δ = 5 × 10−4. The converged energy per site is
−0.4617, while the reference energy obtained by fPEPS is −0.4620.
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TABLE II. Comparison of energies achieved using several meth-
ods for molecules in the STO-3G basis. M is the equivalent site
number, and N is the particle number. All energy results achieved
with BW1 and BW2 are evaluated by p = 0 wave functions. Energy
results from CCSD(T) and RBM are from the literature [15].

Molecule M N BW1 BW2 CCSD(T) RBM

H2O 14 10 −75.0211 −75.0222 −75.0231 −75.0232
NH3 16 10 −55.5197 −55.5276 −55.5281 −55.5277
C2 20 12 −74.6816 −74.6876 −74.6876 −74.6892
N2 20 14 −107.6629 −107.6747 −107.6738 −107.6767

C. Molecules in the STO-3G basis

The Hamiltonian for molecules in the second quantization
form is

Ĥ =
∑

i j

ti j ĉ
†
i ĉ j +

∑

i jkm

ui jkmĉ†
i ĉ†

k ĉ j ĉm, (17)

where the label i denotes the fermionic mode, with ti j be-
ing the one-body interaction and ui jkm being the two-body
interaction. ĉ†

i (ĉi) creates (destroys) a particle on the ith
fermionic mode. The structure of a molecule in STO-3G is
obtained from the literature [15], and we use the software
package PYSCF [36] to generate coefficients of ti j and ui jkm,
with a maximum iteration number of 500. We first optimize
a HF state for each molecule without two-body interactions,
then continue the optimization by adding backflow corrections
from the HF state.

Here we treat spins by considering additional lattice sites;
thus, a HF orbital with spin φkσ (ri,σ ) is represented by a tensor
with dimensions of [M, N], where M is the equivalent site
number and N is the total particle number. The equivalent site
number is twice the total orbital number because of the spin
on site. Configurations on each equivalent site are occupation
and nonoccupation; thus, d = 2. For backflow corrections, we
consider backflow terms from all equivalent sites; thus, the
dimension of the tensor is defined by Eq. (8) with Q = M.

A challenge of solving molecules is the locality of the
ground state in the total Hilbert space, as the ground state
is nearly classical. Therefore, the optimization easily gets
stuck on local minima, especially when a large MC sample
number is used in the initial optimization steps. To avoid local
optimizations, we stop the optimization after hundreds of op-
timization steps, then continue the optimization by enforcing
MCMC starting from the configuration based on the Pauli
exclusion principle. For each case, we start from 44 800 MC
samples in initial optimization steps. After 1000 opti-
mizations, we use roughly 70 000 MC samples for each
optimization step, with the interval between two MC samples
equal to the number of equivalent sites.

Energy comparisons are denoted in Table II. Each energy
of both BW1 and BW2 is obtained using the minimum value
of the last 20 optimization steps. From Table II, energy preci-
sion achieved with BW1 is lower than that achieved by BW2,
and energy results obtained with BW2 are competitive with
state-of-the-art results obtained with coupled-cluster theory
with single, double, and partially triple excitations [CCSD(T)]
and RBM [15]. From Table II, RBM achieves better energy

precision than BW. RBM is efficient for molecules in the
STO-3G basis because the wave function is easy to represent
and does not demand the full expressibility of BW.

D. Fermi-Hubbard model

The Hamiltonian of the Fermi-Hubbard model is

Ĥ = −t
∑

〈i j〉,σ
(ĉ†

iσ ĉ jσ + H.c.) + U
∑

i

n̂i↑n̂ j↓, (18)

where t is the hopping strength and U is the strength of on-site
interactions. ĉ†

iσ (ĉiσ ) creates (destroys) a particle of spin σ on
the ith site, and the particle number operator n̂iσ = ĉ†

iσ ĉiσ . For
the Hubbard model with spin, double occupations are allowed.
We set t = 1 through our investigations. In each optimization
step, there are roughly 44 800 MC samples for calculating
gradients, and the interval between two samples is the lattice
size.

We first demonstrate the advantage of our single-tensor
representation by comparing it to the original backflow. In
this work, we represent the original form of the wave function
defined in either BW1 or BW2 by two separate tensors. The
first tensor represents coefficients ci j with the dimensions of
[M, Q, d, d], where M is the site number, Q = 5 denotes the
position ri as well as its nearest neighbors, and d = 4 denotes
the degrees of freedom per site. The second tensor represents
the HF orbital φk (ri,σ ) with the dimensions of [M, N, 2],
where N is the total particle number and the dimension of 2
denotes the spin.

To represent the backflow-corrected wave function
by a single tensor, the dimension of the tensor is
[M, N, 2, d/2, Q, d], where d = 4 denotes the degrees of free-
dom per site. In the tensor, the dimension of 2 is for σi, and the
dimension of d/2 denotes whether there is double occupation
on ri. In comparison to the dimension defined in Eq. (8), we
divide the first d in order to distinguish the double occupation.
Q = 5 denotes the position ri as well as its nearest neighbors.

Figure 3 denotes energy comparisons between the original
backflow and the single-tensor representation on the 4 × L
lattice with the PBC; the filling of the Hubbard model is n =
0.875. Each energy result is evaluated with the p = 0 wave
function. From Fig. 3, for either BW1 or BW2, the original
backflow has much worse energy precision than the single-
tensor representation. For either the original backflow or the
single-tensor representation, BW2 has better energy precision
than BW1. The HF wave function is represented by a tensor
with the dimensions of [M, N, 2], and it reaches −0.5330 for
L = 8, −0.5398 for L = 12, and −0.5658 for L = 16. Thus,
backflow corrections achieve better energy precision than the
HF state. Table III compares the energies of BW1, BW2,
and other state-of-the-art methods on square lattices under the
PBC. For results obtained with BW1 and BW2 in Table III, we
first optimize a HF state under U = 0 and then add backflow
corrections and continuing optimizations; each energy value
is evaluated with the p = 1 wave function using 48 000 MC
samples, and the interval between two MC samples is the
lattice size.

For cases of half filling n = 1, the reference energies are
from auxiliary-field quantum Monte Carlo (AFQMC) [27].
On the 6 × 6 lattice, the relative error is 1.7 × 10−2 for BW1
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FIG. 3. Comparison of energies (per site) of two kinds of ten-
sor representations of backflow corrections for the Fermi-Hubbard
model with n = 0.875 and U = 8 on the 4 × L lattice with the PBC.
“Original BW” denotes the coefficient ci j , and the HF orbitals are
represented by two separate tensors. “BW” denotes the backflow-
corrected wave function is represented by a single tensor. Each
energy is evaluated by the p = 0 wave function.

and 4.0 × 10−3 for BW2. On the 8 × 8 lattice, the relative
error is 1.4 × 10−2 for BW1 and 4.2 × 10−3 for BW2. On
the 10 × 10 lattice, the relative error is 1.4 × 10−2 for BW1
and 4.5 × 10−3 for BW2. On the 10 × 10 lattice, the relative
error is 1.4 × 10−2 for BW1 and 4.5 × 10−3 for BW2. From
Table II, BW2 has better energy precision than BW1.

For the more challenging case of 1/8 doping, n = 0.875,
Ref. [1] and Ref. [2] in Table III are from NN backflow
[18] and the HFSD [21], respectively. To clearly compare
the energies, energies for filling n = 0.875 on 4 × L lattices
with the PBC are depicted in Fig. 4. For the p = 0 results,
BW1 achieves satisfactory energies compared to NN back-
flow; however, the energy precision is not competitive with
the HFSD on the 4 × 8 lattice. However on the 4 × 16 lattice,
BW1 achieves lower energy than the HFSD. For all lattice
sizes, BW2 achieves better precision than BW1, and BW2
achieves lower energies than those from NN backflow. A
Lanczos step can significantly improve the energy precision
for all cases. For p = 1 cases, both BW1 and BW2 achieve

TABLE III. Comparison of energies (per site) of the Fermi-
Hubbard model on rectangular lattices with the PBC and U = 8.
Reference energies for n = 1 are from the AFQMC [27]. For n =
0.875, values for Ref. [1] are from NN backflow [18], and those for
Ref. [2] are from the HFSD [21]. All energy results for BW1 and
BW2 are evaluated using p = 1 wave functions.

n Lattice size BW1 BW2 Ref. [1] Ref. [2]

1 6 × 6 −0.5186 −0.5257 −0.5278(5)
8 × 8 −0.5188 −0.5241 −0.5263(8)

10 × 10 −0.5181 −0.5230 −0.5254(8)

0.875 4 × 8 −0.7591 −0.7633 −0.755 −0.7633
4 × 12 −0.7608 −0.7636 −0.746
4 × 16 −0.7597 −0.7618 −0.746 −0.753
4 × 20 −0.7566 −0.7591
4 × 24 −0.7577 −0.7595

FIG. 4. Energy comparisons for the Fermi-Hubbard model on
4 × L lattices under the PBC and U = 8. The filling is n =
0.875. Red upward-pointing triangles denote NN backflow, green
downward-pointing triangles denote HDFS. BW1 energy results of
p = 0 (p = 1) are denoted by left-pointing (right-pointing) trian-
gles. BW2 energy results of p = 0 (p = 1) are denoted by squares
(circles).

better energy precision than NN backflow, and BW2 achieves
better energy precision than the HFSD.

Compared to the DMRG energy of −0.7659 for a system
size of 4 × ∞ (open, PBC) [18], our energy of −0.7595 for
4 × 24 is still higher. Because only nearest neighbors of ri are
considered in our backflow corrections, our energy precision
can be improved by considering further backflow corrections.
In addition to comparisons of energies, we compare the spin
correlation functions of BW1 and BW2 for the half filling
n = 1. The spin correlation function is defined as [27]

C(x, y) = 〈S(0, 0)S(x, y)〉, (19)

where S(x, y) is the spin operator with coordinates (x, y)
[27]. Translational symmetry is preserved statistically; thus,
the reference point (0,0) is averaged on the whole lattice to
reduce statistical error. Figure 5 depicts the spin correlation
functions for lattice sizes of 6 × 6, 8 × 8, and 10 × 10 under
U = 8. From Fig. 5, long-range order is clearly seen in both
BW1 and BW2; however, BW1 gives larger absolute values of
correlation functions compared to BW2. The magnetization is
defined as the spin structure factor:

M2
2 = 1

N

N∑

i=1

(−1)xi+yiC(xi, yi ). (20)

For BW1, magnetizations for 6 × 6, 8 × 8, and 10 × 10 are
0.1554, 0.1524, and 0.1534, respectively. For BW2, magneti-
zations for 6 × 6, 8 × 8, and 10 × 10 are 0.0975, 0.1003, and
0.0751, respectively. Compared to references in the literature
[27], values of C(x, y) and M2

2 obtained with BW2 are more
reasonable than those obtained with BW1. For n = 0.875, we
compare the spin densities of BW1 and BW2, as depicted in
Fig. 6. In Fig. 6, the spin density is defined as the average spin
value at each site 〈Si〉. Because of the PBC, the spin density
is ideally uniform, and the spin density is ideally zero because
the total spin of the ground state is zero.

On the 4 × 8 lattice, from Figs. 6(a) and 6(b), the ground
state obtained with BW2 has a more uniform spin density
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FIG. 5. Comparison of spin correlation functions 〈S(0, 0)S(x, y)〉 for BW1 (solid line) and BW2 (dashed line) for different lattice sizes;
the filling is n = 1, and U = 8. The relative distance is defined as d = √

x2 + y2; all results are evaluated with p = 1 wave functions.

than that obtained with BW1. On the 4 × 24 lattice, Figs. 6(c)
and 6(d) depict the spin density for BW1 and BW2, respec-
tively. From Fig. 6, the ground state achieved with BW2 has
a more uniform spin density than that achieved with BW1.
It is notable that the ground energy achieved with BW2 is
only 2.4 × 10−3 lower than that achieved with BW1; thus,
BW2 has more representation ability than BW1. Based on the
results for the PBC, we investigate BW2 in cases in which
ground states are supposed to have stripe orders, such as
rectangular lattices under the CBC in the literature [26,28].
The boundary conditions are open along the shorter boundary
(x) and periodic along the longer boundary (y). To break the
degeneracy from the translational symmetry, a pinning field is
applied on both shorter boundaries: vi↑ = −vi↓ = (−1)ix+iyv0

for iy = 1 and iy = Ly.

FIG. 6. The spin density of the Fermi-Hubbard model with filling
n = 0.875 and U = 8 under the PBC, evaluated using the p = 1
wave function. On the 4 × 8 lattice, the spin density obtained with
(a) BW1 and (b) BW2. The spin density on the 4 × 24 lattice ob-
tained with (c) BW1 and (d) BW2.

Figures 7(a)–7(d) depict the spin density and the hole den-
sity under the CBC, evaluated for the p = 1 wave function.
Figures 7(a) and 7(b) depict the 4 × 16 lattice for filling
n = 0.875 and U = 8, with pinning field strength v0 = 0.25.
The reference energy from DMRG is −0.7713, and BW2
achieves an energy of −0.7640 for p = 0 and −0.7678 for
p = 1. The relative energy error is 9.4 × 10−3 for p = 0 and
4.5 × 10−3 for p = 1. Figures 7(c) and 7(d) denote the 4 × 20
lattice, filling n = 0.9, and U = 6, with pinning field strength
v0 = 0.5. BW2 achieves a ground energy of −0.8485 for p =
0 and −0.8516 for p = 1. Compared to the energy reported
by DMRG (−0.8352), BW2 is 1.6 × 10−2 lower for p = 0
and 1.9 × 10−2 lower for p = 1. The stripe patterns depicted
in Figs. 7(a) and 7(c) match those from both AFQMC and
DMRG [26,28].

Furthermore, we benchmark BW2 on lattices as large as
8 × 16, with the PBC in both directions, filling n = 0.875,
and U = 8. To break the degeneracy from the translational
symmetry, a pinning field is applied on both shorter bound-
aries with field strength v0 = 0.25. With the interval between
two MC samples being the lattice size, it takes roughly 2 min
for one optimization step with a total of 44 800 MC samples
on 128 AMD EPYC 7742 CPU cores. The converged energies
are −0.7748 for p = 0 and −0.7784 for p = 1. Figures 7(e)
and 7(f) denote the spin density evaluated for the p = 1 wave
function and the hole density, respectively. The spin density
pattern matches that on the 4 × 16 lattice, which demonstrates
the valid state representation ability of BW2 for large lattices.

IV. CONCLUSIONS

We showed that tensor representations of backflow cor-
rections after a Lanczos optimization have sufficient repre-
sentation abilities to achieve state-of-the-art ground energies.
Because the tensor representation is easy to optimize, first-
order gradient descent is feasible.

For systems with spins, the representation ability can be
further improved by considering backflow corrections on dif-
ferent spins, and we naturally introduced nonzero backflow
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FIG. 7. The spin density and the hole density achieved with BW2 on rectangular lattices under (a)–(d) the CBC and (e) and (f) the PBC,
with a pinning field applied on both short edges. (a) and (b) depict the 4 × 16 lattice, with filling n = 0.875. (c) and (d) depict the 4 × 20
lattice, with filling n = 0.9. (e) and (f) depict the 8 × 16 lattice, with filling n = 0.875.

corrections where the particle and the orbital have opposite
spins. By numerical demonstrations for molecules in the STO-
3G basis and the finite-size Fermi-Hubbard model, we showed
that BW2 has a better representation ability than BW1. Fur-
thermore, we showed that BW2 is capable of solving systems
with large lattice sizes.

For the Fermi-Hubbard model, compared to the NN back-
flow [18], the input of the NN is the total many-body
configuration |S〉. In either BW1 or BW2, backflow terms are
limited to nearest neighbors of the position ri, and the energy
precision can be improved by considering backflow terms
with further distances [21]. The HFSD considers a matrix
larger than N × N in the Slater determinant by introducing
additional hidden particles. Here in either BW1 or BW2, the
size of the matrix is kept as N × N , and the enhanced repre-
sentation ability is achieved by additional degrees of freedom
introduced by backflow correction terms in the N × N matrix.

In our tensor representations, backflow corrections were
performed between two sites; however, the representa-
tion ability can be, in principle, improved by considering
higher-order correlations, and thus, considering backflow

corrections from the perspective of the Green’s function
is feasible. The representation ability can be improved
by increasing variational parameters; thus, the application
of neural networks based on the tensor representation is
feasible. We hope our work gives some insight into devel-
oping numerical methods for solving quantum many-body
systems.
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