
PHYSICAL REVIEW B 109, 245105 (2024)

Initialization, manipulation, and readout of chiral qubits by bias and inhomogeneous
Zeeman field in triangular triple quantum dots

Yue Qi ,1 Wen-Jie Hou,2 Yuan-dong Wang,3,* and Jian-Hua Wei1,†

1Department of Physics, Renmin University, Beijing 100876, China
2Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China

3School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

(Received 29 December 2023; revised 21 March 2024; accepted 19 April 2024; published 3 June 2024)

We realize the initialization, manipulation, and readout of qubits in triangular triple quantum dots (TTQDs)
with theoretical and numerical simulation calculations. In the initialization, the degenerate ground states can
be split by adding a vertical magnetic flux or a bias voltage at the initial time. This is consistent with the
magnetoelectric equivalence proposed in previous work, and both cause chiral state splitting. In the manipulation,
we add an inhomogeneous Zeeman field to the TTQDs. Based on the Heisenberg model of the two-level system,
it is obtained that the applied Zeeman field gradient will cause Rabi oscillation of the two chiral states’ occupation
probability, which also corresponds to the manipulation of chiral qubits on the Bloch sphere. The Rabi cycle and
amplitude vary with the gradient of the Zeeman field and the internal chiral term, and numerical simulation
is consistent with the theoretical results. Finally, we give a possible readout method to use for the topological
blockage of chiral and conduction current. This method provides an alternative idea for qubits, which can realize
quantum coding by using the smallest chiral topological structure.
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I. INTRODUCTION

Quantum computing is the inevitable product of semicon-
ductor chip size breaking through the classical physical limits.
Encoding qubits using the quantum properties of electrons in
semiconductor quantum dots (QDs) is one of the most likely
candidates to achieve quantum computing [1–6]. In the QD
system, two quantum states can be easily obtained to char-
acterize the basic unit of quantum information, qubits, and
the target state of the system can be easily prepared. During
the manipulation of qubits, the QD system can also perform
arbitrary operations on a single qubit, thus implementing con-
trolled nongate operations [7–12].

Many investigations have discovered that any two-level
quantum system can be used as a qubit. The aim of quantum
information processing is to control and manipulate the dy-
namic behavior of qubit system to make it evolve according
to expectations [13]. In 1998 Loss and DiVincenzo pointed
out that the spin of electron in the semiconductor quantum
dot device can be used to prepare qubits, and the spin up
and spin down of electrons can be used to encode the qubits
|0〉 and |1〉 [14]. Petta et al. performed a coherent operation
on singlet-triplet qubits in the QD system [15]. They used
a nuclear magnetic field gradient to achieve coherent oscil-
lation. Manipulating by exchange interaction is easier than
single-electron spin qubits, and the magnetic noise associated
with causing qubits to be out of phase can be reduced in
the semiconductor environment [16–20]. This research mainly
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focuses on qubits formed in single and double QD systems,
using oscillating magnetic field and dynamic exchange inter-
action to cause qubit flipping and regulation. We will consider
how multiple spins are present to encode qubits with long
quantum decoherence time and required fault-tolerant quan-
tum computing [21–25]. Some researchers recently proposed
that using resonance theory on the triangle triple quantum dots
(TTQDs) encoding qubits has a greater advantage [26–31].
For example, Hsieh and Hawrylak et al. proposed a quan-
tum circuit theory based on electron spin to encode qubits in
TTQDs, using single chiral qubits for initialization, coherent
control, and measurement and implementing a nonlocal two-
qubit gate with long coherence time [32].

The TTQDs are the smallest structures that exhibit topolog-
ical properties, and their inner three spins can be extended into
chiral topological angles � = Ŝ1 · (Ŝ2 × Ŝ3). Previous studies
found when the symmetry or external field of half-fulling
TTQDs is changed, the spin and chiral degrees of freedom
are disrupted, resulting in the splitting of mixed quadruple
degenerate chiral states [33–36]. In one of the spin subspace,
the dominant states will flip with applied bias and vertical
magnetic flux. Meanwhile, the TTQDs system will excite
clockwise (CW) and counterclockwise (CCW) chiral circula-
tions, corresponding to the CW or CCW chiral states. Further
research found that in this topological structure, the chiral cur-
rent excited within a small bias can be equivalently replaced
by the vertical magnetic flux, showing the substitutability of
magnetoelectricity [36].

In this paper by comparison of the theoretical derivation
and simulation calculation results, we completed the initial-
ization, manipulation, and readout of hybrid qubits in the
doubly degenerate chiral ground states. The two chiral states
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FIG. 1. The chiral states regulate as qubits in the Bloch sphere
space, where clockwise (CW) |q+〉 and counterclockwise (CCW)
|q−〉 chiral states split in TTQDs as qubits |0〉 and |1〉. The pole and
azimuth angle θ and φ, expressed as the angle relative to the z axis
and x axis, respectively, can specify any state |ψ〉. Structural diagram
of TTQDs connecting two reservoirs with �L/R = 0.025 meV, where
the coupling strength between QDi and QDj (i, j = 1 − 3) is set to
t0. The system is half-filling, with S = 1/2 on each QD.

are equivalent and can be easily regulated by the external
bias and magnetic fields to encode qubits [36]. The TTQD
is shown in Fig. 1, in which the system is coupled to QD2 and
QD3 with hybridization �L = �R. During the initialization,
we can add vertical magnetic flux or bias to TTQDs. In a
fixed bias or equivalent vertical magnetic flux, two chiral
states dedegenerate, keeping the qubit in the CW or CCW
chiral state. In addition, both chiral qubits exist stably in the
spin subspace, so they are not affected by noise in a uniform
vertical magnetic field or bias voltage to realize electronic
controlling.

The manipulation of qubits can utilize quasistatic Zee-
man field gradients to achieve rapid flipping between chiral
states through chiral interactions. The double chiral qubits
rotate around the bipole of the Bloch sphere to achieve qubit
manipulation. In the simulation process, we use the proba-
bility of projection onto a target chiral state to characterize
any qubit and found that the occupation probability of chiral
states shows the Rabi oscillation. Through further theoretical
derivation, we could observe that the Rabi oscillation cycle
and amplitude have a qualitative relationship with the internal
chirality and the external static Zeeman field gradient. To
compare the simulation with the theoretical formula, we get
a series of simulation results by hierarchical equations of
motion (HEOM) calculation [37], and the oscillation cycle
variation trend is in good agreement with theoretical deriva-
tion results.

In order to give a convenient readout method, we found that
the direction of the internal chiral circulation can characterize
the dominant chiral states, while it is difficult to measure the
internal circulation directly in the experiment. Therefore, we
use the chiral topological blockage effect between conduction
and chiral current to read out qubits. The conduction current
evolution with time, which can be easily measured [35,38],

is used to characterize the chiral current and read out the
dominant chiral qubits.

II. THEORETICAL METHODS

The total Hamiltonian for the quantum open system is

HT = Hdots + Hres + Hcoup, (1)

where Hres represents the Hamiltonian of the electrode part,
and we treat the electrode as a giant regular fermion reservoir
ensemble with a noninteracting electron gas. The Hamiltonian
for the QDs can be represented as

Hdots =
3∑

i=1

εn̂i +
3∑

j=1

Ujn̂ j↑n̂i↓ +
3∑

i, j=1

∑
s=↑,↓

ti j d̂
†
isd̂ js. (2)

Here ε = −U/2 to maintain particle-hole symmetry, and
n̂ js = d̂†

jsd̂ js represents the operator of the occupation number
on the QDj , while ti j represents the coupling strength between
the QDi and QDj . In this work ti j = t0 is taken to ensure the
TTQD symmetry.

Under the vertical magnetic field, the original second-order
perturbation theory is no longer applicable, and a third-order
superexchange interaction needs to be introduced [39–42].
By perturbing the electron exchange coupling ti j in Hdots, we
obtain the following effective Hamiltonian [43–45]:

Heff = −t (1 − n)
∑
jk,s

(d̂†
jsd̂ks + H.c.)

+ J
∑
j<k

(
Ŝ j Ŝk − 1

4
n̂ j n̂k

)
+ χ Ŝ1(Ŝ2 × Ŝ3). (3)

The third term is the chiral interaction term, the operator
of the chiral interaction is Ŝ1 · (Ŝ2 × Ŝ3), and the chiral coeffi-
cient is χ = 24t12t13t23 sin(2π
/
0)/U 2, where 
 is the flux
passing through the TTQD.

The electrode is regarded as a free electron gas without
interaction, so

Hres =
∑

α∈L,R

∑
κs

(εακs + μα )ĉ†
ακsĉακs, (4)

with μL = eV/2 = −μR. εακs is the energy of the electrode
electrons in the state of the α-electrode, κ-momentum, and
s-spin, and ĉ†

ακs and ĉακs are the generation annihilation
operators of the electron in the reservoir, respectively. The
decoherence part of chiral qubits is mainly defined by this
part. The TTQDs system-reservoir coupling is described as
Hcoup = ∑

κs(tL2ĉ†
Lκsd̂2s + tR3ĉ†

Rκsd̂3s + H.c.), and the linear
coupling coefficient between the quantum dot and electrode
is tL2, tR3 is the coupling coefficient between QD2 and the left
electrode, and the coupling coefficient between QD3 and the
right electrode, respectively, thus forming the coupling matrix.

The HEOM approach investigates the properties of quan-
tum dots in both equilibrium and nonequilibrium states via
the reduced density operator, which has a universal formalism
for an arbitrary system Hamiltonian; thus, it can be used to
accurately solve the three-impurity Anderson model [41]. The
HEOM approach is established based on Feynman-Vernon
influence functional path-integral theory [46] without any ap-
proximations, and implemented with Grassmann algebra for
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fermion dissipations [47]. Basically, the HEOM is a non-
perturbative method for general quantum systems coupled to
reservoir baths that satisfy Grassmann Gaussian statistics. The
reduced density matrix and a set of auxiliary density matri-
ces are the basic variables in HEOM. Basing on the linear
response theory of quantum open systems, the HEOM can
obtain dynamical observables of strongly correlated quantum
impurity systems accurately and efficiently [41,48]. At time
t , the reduced system density operator, ρ(t ) = trresρT(t), is
related to the initial value at time t0 via the reduced Liouville-
space propagator G(t, t0) by

ρ(t ) = G(t, t0)ρ(t0). (5)

The influence of bath enters the equations of motion with
M exponentiations. The auxiliary density operators (ADOs)
{ρn

j = ρ j1... jn} are determined by the time derivative of the
influence functional. The final form can be reduced to the
following compact form (the detailed derivation process can
be found in the Appendix):

ρ̇
(n)
j1··· jn

= −
(

iL +
n∑

r=1

γ jr

)
ρ

(n)
j1··· jn

− i
∑

j

A j̄ ρ
(n+1)
j1··· jn j

− i
n∑

r=1

(−)n−r C jr ρ
(n−1)
j1··· jr−1 jr+1··· jn

. (6)

In a three-spin TTQD system, there are two subspaces:
one is the space with total spin Stot = 3/2, the other is a sub-
space whose total spin is Stot = 1/2. Considering the subspace
Sz = −1/2, the chirality degenerate states split into CW and
CCW chiral states [36]: |q−1/2

± 〉 = 1√
3
(|↑↓↓〉 + e± i2π

3 |↓↑↓〉 +
e± i4π

3 |↓↓↑〉). The chiral current occurs, whose magnitude
is approximately equal to the conduction current between
QDs, Ĵα=L/R(t ) = Ĵt = i

∑
μs tr[ρ†

αμs(t )d̂us − d̂†
μsρ

−
αμs(t )]. We

can define the chiral current using the Feynman-Hellman
theorem [41,46,49,50]:

Ĵc = − e

h̄

〈
∂Ĥdots

∂φ

〉
= −24e

h̄

t12t13t23

U 2
〈Ŝ1 · (Ŝ2 × Ŝ3)〉. (7)

In this Sz = −1/2 subspace, the Hamiltonian of the two-state
|q−1/2

± 〉 in the TTQDs system is given as (see Appendix for
detailed derivation process) [50,51]

HBz =
(

E0 + χ W1 + iW2

W1 − iW2 E0 − χ

)
, (8)

where Bzi (i = 1 − 3) represents the additional local Zeeman
field on the QDi:

E0 = −(Bz1 + Bz2 + Bz3) − J,

W1 = 2Bz1 − Bz2 − Bz3,

W2 =
√

3i(Bz2 − Bz3). (9)

The eigenvalues of this matrix are given by

E+ = E0 +
√

W 2
1 + W 2

2 + χ2,

E− = E0 −
√

W 2
1 + W 2

2 + χ2, (10)

and |W | =
√

W 2
1 + W 2

2 . The probability that TTQDs system
in the state |q+〉 will be found in the arbitrary state

Pq+→q+ (t ) = ρq+q+ = 1 − |W |2
χ2 + |W |2 sin2

(
(E+ − E−)t

2h̄

)
.

(11)

Therefore, Rabi oscillations in chiral two-level systems can
be achieved by adding nonuniform static Zeeman fields to
TTQDs. Equation (11) is called the Rabi formula, showing
the probability oscillation with angular frequency.

III. RESULTS AND DISCUSSION

A. Initialization chiral qubits in TTQDs

According to the previous study in TTQDs system [36],
magnetoelectric regulation between the two chiral states is
equivalent. In the small bias range, the chiral term caused by
the bias can be replaced by the vertical magnetic flux, which is
called the equivalent magnetic flux. As shown in Fig. 2(a), the
Jc as functions of bias (−0.06 < V < 0.06 mV) and vertical
magnetic flux have the same changing tendency. The equiv-
alent magnetic flux acts as a function of bias (−0.05 < V <

0.05 mV) with the same chiral term in circular TTQDs and
are shown in the figure. The corresponding relationship be-
tween the bias and equivalent magnetic flux is approximately
linear. By adding bias or vertical magnetic flux to the TTQDs,
we can split the double degenerate chiral states |q±〉 in spin
Sz = −1/2 subspace.

In the initialization, we mainly study the TTQDs under C3v

symmetry with t0 = 0.25 meV. The TTQD is weakly coupled
with lead �L = �R = 0.01 meV and the temperature set as
kBT = 0.02 meV. As shown in Fig. 2(b), when we add the
magnetic flux 
/
0 = 0.06 perpendicular to the TTQD ring
at the initial time t = 0 ps, the occupancy probability of the
two chiral states |q−1/2

± 〉 changes with the evolution time. We
can see when the vertical magnetic flux is added to the system,
the two chiral states split at the initial time and can remain
stable for a long time. Here only the evolution graphs of the
reduced density matrix diagonal elements of the two chiral
states over time t are given when the evolution time is up
to 6000 ps. Ultimately, the difference between the two chiral
states is ρq+q+ − ρq−q− = 0.32, which is enough for the two
quantum states to achieve complete separation in the SZ =
1/2 subspace, thus preparing two initial qubits to accomplish
initialization.

At the same time, when we add the bias in TTQDs at the
initial time t = 0 ps, the evolution of the occupancy proba-
bility of the two chiral states over time is shown in Fig. 2(c).
When we initialize the TTQDs with pure electricity, the two
chiral states |q±〉 will degenerate at t = 0 ps, with populations
ρq+q+ = ρq−q− . As we apply bias V = 0.05 to the TTQDs,
the two chiral states split with the evolution time. The dif-
ference between the occupation probabilities becomes larger
with t and finally reaches stabilization at t = 6000 ps with
ρq+q+ − ρq−q− = 0.2. Therefore, in the initialization, we can
add vertical magnetic flux or external bias to the TTQDs at
the initial evolution time t = 0 ps. Both initialization methods
can split the two chiral states sufficiently in spin subspace to
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FIG. 2. (a) In the small bias range (−0.06 mV to 0.06 mV), comparison of the chirality due to the bias (black line) and vertical magnetic
flux (red line). The TTQDs is in symmetrical configuration, t0 = 0.25 meV, � = 0.01 meV, ε = −U/2 = −0.5 meV, under kBT = 0.02 meV.
The illustration is a fitting of the equivalent magnetic flux and bias. (b) When the vertical magnetic flux 
/
0 = 0.06 is used for initialization,
the occupancy probability of the two chiral states (ρnn) changes with the evolution time. The population probability of the CW chiral state
(ρq+q+ ) is shown by the red curve, and the CCW chiral state (ρq−q− ) is the black line. (c) When the bias V = 0.05 mV is applied in the TTQDs
to achieve initialization, the occupancy probability of the two chiral states changes with t . The unit of evolution time is set to the ps.

prepare two stable initial qubits on the Bloch sphere, where
|q−1/2

+ 〉 acts as qubit |0〉 and |q−1/2
− 〉 as qubit |1〉.

B. Manipulation the chiral qubits in TTQDs

Next, we study the qubit manipulation process in TTQDs
system. According to theoretical derivation, we get that the
qubit regulation can be simulated by adding static a nonuni-
form Zeeman field to the QDs in a chiral two-level system.
At time t , the probability of CW chiral state |q−1/2

+ 〉 = |0〉
is represented as Eq. (13). In order to simplify the formula,
we make the Zeeman field in the z direction added onto QD2

and QD3 the same, and add different fields on QD1 to achieve
the Zeeman field gradient, with Bz2 = Bz3 	= Bz1. So W2 = 0,
and the Rabi oscillation amplitude and cycle between the two
chiral states can be expressed:

Aq+→q+ (t ) = A = 4(Bz1 − Bz2)2

4(Bz1 − Bz2)2 + χ2
, (12)

T = 2π h̄√
4(Bz1 − Bz2)2 + χ2

, (13)

which is called the Rabi oscillation. Thus, qubit oscillation
between |0〉 and |1〉 states can be manipulated by adding a
nonuniform Zeeman field to QD1 and QD2 or by changing the
internal chiral interaction term χ in TTQDs.

As shown in Fig. 3, we add nonuniform Zeeman fields with
different gradients (�Bz = 0.01, 0.02, 0.04) to the TTQDs
after the initialization t = 3000 ps; the two chiral states’ pop-
ulation |q±〉 are functions of the evolution time t . We find
that with the increase of the gradient �Bz = Bz1 − Bz2, the

oscillation frequency of the two chiral states’ occupation
probability ρq±q± will also accelerate, corresponding to the
shorter period of the Rabi oscillation, while the oscillation
amplitude is not significantly changed. This corresponds well
to the qualitative trend of formulas (16) and (17).

As shown in Fig. 3(a), when the Zeeman field gradient
�Bz = 0.01 is added, the oscillation frequency of two chiral
states is slow and decays quickly. Near t = 4000 ps, the two
chiral states are gradually decoherenced, thus qubit regulation
cannot be realized. However, with the increase of the Zeeman
fields’ gradient (�Bz = 0.02, 0.04), the oscillations of the two
qubits are accelerated and the decoherence time is longer,
which is shown in in Figs. 3(b)–3(d). As shown in Fig. 3(b),
when the magnetic field gradient is 0.02, the decoherence
time can be extended to t = 5000 ps. The oscillation of two
chiral states’ occupancy probability is further accelerated at
�Bz = 0.04, seen in Figs. 3(c) and 3(d), and the decoherence
time can be extended to around t = 8000 ps. Before this, the
two-state system evolved a nearly perfect Rabi oscillation.
The time evolution of the two chiral states’ occupation prob-
ability is enlarged at t = 2800–3200 ps, shown in Fig. 3(d).
The Rabi flipping of the two chiral states is realized at the end
of initialization (t = 3000 ps) by the nonuniform Zeeman field
�Bz. This further demonstrates that Rabi oscillations of qubits
|0〉 and |1〉 on Bloch sphere can be achieved by adding �Bz to
TTQDs, while the oscillation cycle of qubits and decoherence
time is closely related to the magnitude of �Bz.

In order to verify the relationship between the Rabi cycle
and Zeeman field gradient �Bz in formula (17), we consider
only the evolution of the CW chiral state occupation popula-
tion as time in different Zeeman field gradient �Bz = 0.02
(red curve), �Bz = 0.03 (blue curve), �Bz = 0.04 (green
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FIG. 3. After the initialization (t = 0 − 3000 ps) with bias V = 0.05 mV, a constant Zeeman field gradient �Bz = Bz1 − Bz2 is added at
t = 3000 ps. When Bz1 = −0.01, Bz2 = −0.02 and Zeeman field gradient �Bz = 0.01, the evolution of the two chiral states’ population ρq±q±
with the time t is shown (a). When the Zeeman field gradient increases to �Bz = 0.02 (Bz1 = −0.01, Bz2 = −0.03), the evolution of the two
chiral states’ population with time after t = 3000 ps is shown (b). (c, d) As �Bz increases to 0.04 (Bz1 = −0.01, Bz2 = −0.05), the two chiral
states’ population are as functions of t . We capture the evolution process of t = 2800–3200 to enlarge (c), which is shown as (d). The TTQDs
system maintains equilateral symmetry, and the other parameters remain unchanged.

curve), and �Bz = 0.05 (purple curve), as shown in Fig. 4(a).
At this time, we fixed the TTQDs structure unchanged as
above and obtained that the internal chiral term under steady
state is χ = −38 meV. As the �Bz increases, it can be seen
that the Rabi cycle gradually shrinks. For quantitatively com-
paring the results of theoretical and HEOM calculations, we
obtained the the Rabi cycle of HEOM simulations (red curve)
and theoretical calculations (black curve) under different �Bz

from a series of images, as shown in Fig. 4(b). We can see that
the two results fit well, which further proves that in TTQDs,
the qubits can be controlled directionally for a long time by
an externally �Bz. Moreover, these chiral qubits have strong
stability and controllability in the topological structure, which
can resist the influence of external noise on qubits to regulate
with a long decoherence time.

In addition, from formula (17), we can also find that the
Rabi cycle is also related to the internal chiral interaction term
χ of TTQDs. Therefore, we also calculate the evolution of
the Rabi oscillation with time when only the Coulomb re-
pulsive interaction (U = −2ε = 0.8, 1, 1.2 meV) of TTQDs
is changed and other parameters remain unchanged, as seen
in Fig. 5(a). When the Coulomb repulsion energy between
QDs is U = −2ε = 0.8 meV (black cuve), the steady-state
chiral interaction of the TTQD is χ = −28.3 meV, and in U =
−2ε = 1 and U = −2ε = 1.2 meV, the chiral interaction term
becomes larger, which is χ = −37.4 and χ = −57.8 meV, re-
spectively. With the increase of the chiral interaction, the Rabi
cycle is correspondingly shortened, obtained by simulation
as 240, 250, and 270, ps respectively. We also compare the
theoretical formula (17) and HEOM calculation, and the Rabi
cycle changes with different chiral terms χ and the two results

can also be well fitted, as shown in Fig 5(b). This also verifies
that in TTQDs, it is possible to realize the Rabi oscillation
of the two chiral states system as qubits by regulating both
�Bz and the internal chiral terms χ . Moreover, the specific
manipulation of the Rabi cycle and amplitude can be predicted
by formulas (16) and (17), thus achieving qubit manipulation
in the Bloch sphere.

C. Readout of chiral qubits

In this part, we discuss the readout of chiral qubits. The
direction of the chiral circulation can represent the cor-
responding output chiral state at this time; that is, if the
chiral current direction is CW, then Jc < 0 corresponds to
the chiral state |q+〉 as qubit |0〉. When Jc > 0, the chiral
current direction transforms into CCW and the dominant
chiral state |q−〉 as qubit |1〉. However, the chiral circula-
tion is an internal effect of TTQDs, and it is difficult to
measure in experiment. Considering the blocking relationship
between the conduction current Jt and the chiral current Jc,
we propose to use the easily measured Jt evolution to charac-
terize the Jc, so as to read out the dominant chiral qubits at
this time.

As shown in Fig. 6, we give the evolution of Jc and Jt

with time under �Bz = 0.01 (black curve) and �Bz = 0.02
(red curve). We find that the overall change trend of Jc is
similar to Jt . When �Bz = 0.01, the Rabi oscillation cycle
is relatively large, seen in Fig. 6(a). At this time, when the
evolution time t = 3080 ps, the chiral current flip point ap-
pears. In t = 3000–3080 ps, Jc < 0, and the direction of chiral
circulation is CW corresponding to the dominant state is |q+〉,
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FIG. 4. (a) After initialization, the TTQD system is added with
different magnetic gradients (�Bz = 0.01, 0.02, 0.03, 0.04), and the
evolution of the CW chiral state |q+〉 = |0〉 occupation probability is
within t = 3000–3300 ps. Other system parameters must be consis-
tent with those described above. (b) The Rabi cycle is calculated as a
function of �Bz by theoretical equation (17) and HEOM simulations.

while in t = 3080–3240 ps, chiral circulation transforms into
CCW, Jc > 0, corresponding to |q−〉. As for �Bz = 0.02, the
Rabi cycle gets shorter as �Bz gets larger with the transition
point t = 3040 ps. In t = 3000–3040 ps, chiral circulation is
CW, Jc < 0, and reads out as |q+〉, while in t = 3040–3160 ps,
Jc > 0 as |q−〉.

The trend of the Jt is approximately the same as that of Jt

after initialization t1 = 3000 ps, shown in Fig. 6(b). We find
that the peak value of Jc over time t is easy to find, defined
as tmax, corresponding to half of the time between t1 = 3000
and the peak value, ts = (tmax − t1)/2, that is, the reversal
time of the chiral circulation. In the evolution time t1 < t < ts,
the internal dominant chiral state is |q+〉, and the subsequent
ts < t < 3ts is |q−〉, where the readout qubit is respectively
|0〉 or |1〉. Therefore, we can easily measure the evolution of
the conduction current over time in the experiment so as to
obtain the corresponding chiral circulation trend to determine
the reversal time ts. Using the chiral topological frustration
effect, we can fix the chiral state at any time and readout the
chiral qubits in TTQDs.

FIG. 5. (a) In TTQDs, when different Coulomb repulsion energy
(U = −2ε = 0.8, 1, 1.2 meV) carries different chiral terms, the evo-
lution of CW chirality with time t . (b) The Rabi cycle is calculated as
a function of χ by theoretical equation (17) and HEOM simulations.
Other parameters are consistent with those above.

IV. DISCUSSION

If an inhomogeneous charge noise is introduced to a single
quantum dot, rapid decoherence is induced. For example,
Weymann used the real-time diagrammatic technique up to the
second order to determine the conductance and charge noise
in a triangular triple quantum dot system [52]. It is found that
in the transport state of dark state and Coulomb blocking, the
charge noise is usually hyper-Poisson, the chiral blocking can
be relieved by the cotunneling process, and the corresponding
Fano factor is reduced. However, the qualitative results in this
paper are not affected by the charge noise acting on single
quantum dot. The decoherence time can still be maintained,
and the chiral qubit can be manipulated by adjusting the
external bias and the internal chiral interaction.

V. SUMMARY

In conclusion, we propose an alternative chiral qubit model
in the TTQD topological structure. According to previous
studies, the internal chiral interaction can be stimulated by
applying vertical magnetic flux or bias voltage, presenting
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FIG. 6. (a) In TTQDs, when Bz1 = −0.01, Bz2 = −0.02 (black
curve) and Bz1 = −0.01, Bz2 = −0.03 (red curve), the evolution of
chiral current Jc with time t , and (b) the evolution of conduction
current Jt with time t . Other parameters are consistent with those
above.

chiral states from splitting. We use this minimized topology to
initialize chiral qubits by the bias voltage. In the manipulation,
we added a nonuniform Zeeman field in TTQDs to make the
chiral qubits’ oscillation. The Rabi cycle of the theoretical for-
mula and the simulation results fit well, which further proves
that qubit manipulation in TTQDs is feasible and control-
lable. Finally, we use the chiral topological blockage effect to
characterize the chiral current by the conduction current
changes so as to realize the qubit readout. The qubit ini-
tialization, manipulation, and readout based on the smallest
topological ring can be realized in the experiment, which has
a certain guiding role for the experiment.
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APPENDIX

1. Anderson impurity model

The total system Hamiltonian which can be described by
the Anderson impurity model is [33,53,54]

HT = Hdots + Hres + Hcoup. (A1)

The TQD system-reservoir coupling is described as Eq. (4).
The linear coupling coefficient between quantum dot and elec-
trode is tL2, tR3 is the coupling coefficient between QD2 and
the left electrode, and the coupling coefficient between QD3
and the right electrode, respectively, thus forming the coupling
matrix. ĉ†

ακs in the first term represents the generation operator
of the state on the left electrode. d̂2s denotes the annihilation
operator on QD2, and in the second term corresponds to the
generation operator of the state on the right electrode and the
annihilation operator on QD3.

2. The theoretical derivation of manipulating qubits

When the Zeeman field is applied, the Hamiltonian of the
system can be written as Eq. (3). In order to simplify, we set
ε = −U/2 = −0.5 meV to keep the system in the particle-
hole symmetry that each QD is half-filling with the occupation
n = 1, and the first term reduces to zero:

HBz =
∑

α=1−3

gμBSαB + J
∑
j<k

(
Ŝ j Ŝk − 1

4
n̂ j n̂k

)

+ χ Ŝ1(Ŝ2 × Ŝ3), (A2)

χ = 24t12t13t23 sin(2πφ/φ0)/U 2. (A3)

In the Sz = −1/2 subspace, the quadruplet states degener-
ate into clockwise (CW) and counterclockwise (CCW) chiral
states |q−1/2

± 〉 = 1√
3
(|↑↓↓〉 + e± i2π

3 |↓↑↓〉 + e± i4π
3 |↓↓↑〉):

H11 = 〈q−1/2∗
+ | HBz |q−1/2

+ 〉 = −(Bz1 + Bz2 + Bz3) − J + χ,

(A4)

H22 = 〈q−1/2∗
− | HBz |q−1/2

− 〉 = −(Bz1 + Bz2 + Bz3) − J − χ,

(A5)

H12 = 〈q−1/2∗
+ | HBz |q−1/2

− 〉 = 2Bz1 − Bz2 − Bz3, (A6)

H21 = 〈q−1/2∗
− | HBz |q−1/2

+ 〉 = H12 = 2Bz1 − Bz2 − Bz3.

(A7)

The Hamiltonian can be expressed by the spin Pauli
matrix as

HBz = E0σ0 + W1σx − W2σy + χσz, (A8)

245105-7



QI, HOU, WANG, AND WEI PHYSICAL REVIEW B 109, 245105 (2024)

and let

sin θ = |W |√
W 2

1 + W 2
2 + χ2

,

cos θ = χ√
W 2

1 + W 2
2 + χ2

,

tan θ = |W |
χ

.

(A9)

Now, eigenvectors for E+ and E− can be found from

|E+〉 =
(

cos (θ/2)
eıφ sin (θ/2)

)
(A10)

and

|E−〉 = sin

(
θ

2

)
|q+〉 − eıφ cos

(
θ

2

)
|q−〉. (A11)

So

|q+〉 = cos

(
θ

2

)
|E+〉 + sin

(
θ

2

)
|E−〉, (A12)

|q−〉 = e−ıφ cos

(
θ

2

)
|E+〉 − e−ıφ sin

(
θ

2

)
|E−〉. (A13)

Suppose the system starts in state q+ at time t = 0,

|ψ (0)〉 = |q+〉 = cos

(
θ

2

)
|E+〉 + sin

(
θ

2

)
|E−〉. (A14)

After time t , the state evolves as

|ψ (t )〉 = e
−iĤt

h̄ |q+〉
= e

−iĤt
h̄ |ψ (0)〉

= cos

(
θ

2

)
e

−iE+t
h̄ |E+〉 + sin

(
θ

2

)
e

−iE−t
h̄ |E−〉

=
[

(cos θ − 1)

(
sin

(E+ − E−)t

2h̄
e

−i(E++E− )t
2h̄

)
|q+〉

+ sin θ

(
sin

(E+ − E−)t

2h̄
e

−i(E++E− )t
2h̄

)
eiφ|q−〉

]

= e
−i(E++E− )t

2h̄

(
cos

(E+ − E−)t

2h̄

− i cos θ sin
(E+ − E−)t

2h̄

)
|q+〉

+ e
−i(E++E− )t

2h̄ (−i sin θ sin
(E+ − E−)t

2h̄
)eiφ|q−〉

= e−iαt/h̄(cos β|q+〉 + sin βeiφ |q−〉)

= U (t )(cos β|q+〉 + sin βeiφ |q−〉). (A15)

The matrix U(t ) is called the time evolution matrix (which
comprises the matrix elements of α = E++E−

2 = E0). It is eas-
ily proved that U(t ) is unitary, meaning that U†U = 1.

The probability amplitude of finding the system at time t
in the state q− is given by

〈 q−|ψ (t )〉 = eıφ sin

(
θ

2

)
cos

(
θ

2

)(
e

−ıE+t
h̄ − e

−ıE−t
h̄

)
,

(A16)

and the probability that a system in the state |ψ (t )〉 will be
found to be in the arbitrary state q− is given by

Pq+→q− (t ) = |W |2
χ2 + |W |2 sin2

(
(E+ − E−)t

2h̄

)
. (A17)

At the same time, the oscillation amplitude

Aq+→q+ (t ) = sin2(θ ) = |W |2
χ2 + |W |2 = W 2

1 + W 2
2

W 2
1 + W 2

2 + χ2
.

(A18)

We set Bz2 = Bz3, so W2 = 0 and

Aq+→q+ (t ) = A = 4(Bz1 − Bz2)2

4(Bz1 − Bz2)2 + χ2
. (A19)

Taking arbitrary phase angle φ, we can write

exp(iφ) = 1

tan θ
2

χ −
√

W 2
1 + W 2

2 + χ2

W1 + iW2

= 1

W1 + iW2

√
A −

√
A

1−A√
A − √

1 − A

= 1

W

√
A(1 − A) − √

A√
A(1 − A) − (1 − A)

. (A20)

The probability is oscillatory with angular frequency

ω = E+ − E−
2h̄

=
√

χ2 + |W |2
h̄

=
√

4(Bz1 − Bz2)2 + χ2

h̄
,

(A21)

which is simply the unique Bohr frequency of the system and
also called the Rabi frequency.

3. The detailed derivation for the HEOM approach

The HEOM approach investigates the properties of quan-
tum dots in both equilibrium and nonequilibrium states via
the reduced density operator, which has a universal formal-
ism for an arbitrary system Hamiltonian; thus, it can be
used to accurately solve the three-impurity Anderson model
[41,44,50,51,55]. The HEOM approach is established based
on Feynman-Vernon influence functional path-integral the-
ory [46] without any approximations, and implemented with
Grassmann algebra for fermion dissipations [47]. Basically,
the HEOM is a nonperturbative method for general quantum
systems coupled to reservoir baths that satisfy Grassmann
Gaussian statistics. The reduced density matrix and a set of
auxiliary density matrices are the basic variables in HEOM.
Based on the linear response theory of quantum open systems,
the HEOM can obtain dynamical observables of strongly cor-
related quantum impurity systems accurately and efficiently
[41,48].

245105-8



INITIALIZATION, MANIPULATION, AND READOUT OF … PHYSICAL REVIEW B 109, 245105 (2024)

Let |ψ〉 be an arbitrary basis set defined in system space,
and ψ = (ψ,ψ ′). Therefore ρ(ψ, t ) = ρ(ψ,ψ ′, t ). From the
Feynman-Vernon influence functional, the path-integral ex-
pression for the reduced Liouville-space propagator is

G(ψ, t ; ψ0, t0) =
∫ ψ[t]

ψ0[t0]
DψeiS[ψ]F[ψ]e−iS[ψ ′]. (A22)

Here S[ψ] is the classical action of the reduced system.
F[ψ] is the influence functional determined by the Grassmann
variables of the system-environment coupling f †

αis(t )dis[ψs] +
H.c. The operators f †

αis(t ) and fαis(t ) are the reservoir opera-
tors defined by

f †
αis(t ) ≡ eiHαt

(∑
k∈α

V ∗
αkisc

†
αks

)
e−iHαt (A23)

and

fαis(t ) ≡ eiHαt

(∑
k∈α

Vαkiscαks

)
e−iHαt . (A24)

The influence functional can be evaluated using the Wick
theorem and the second-order cumulant expansion method,
because all the other higher order cumulants are zero at the
thermodynamic Gaussian average for noninteraction leads. As
a result, the ensemble average of the second-order cumulants
is connected to the reservoir correlation functions C±

αi js(t ),
defined as

C+
αi js(t ) = 〈 f †

αis(t ) fα js(0)〉res (A25)

and

C−
αi js(t ) = 〈 fαis(t ) f †

α js(0)〉res, (A26)

where 〈·〉res stands for the ensemble average of the reservoirs,
and the time translation invariance is used. All LCFs in a
form different from that in Eq. (A25) and Eq. (A26) are zero
because the lead operators f †

αis(t ) and fαis(t ) satisfy Gaussian
statistics. The reservoir spectral density function is defined as

Jαi js(ω) ≡ 1

2π

∫ ∞

−∞
dteiωt 〈{ fαis(t ), f †

α js(0)}〉. (A27)

with the simplified notation σ = +,− and σ̄ = −σ , the reser-
voir correlation functions are associated with the spectral
density functions via the fluctuation-dissipation theorem

Cσ
αi js(t ) =

∫ ∞

−∞
dωeiσωt f σ

α (ω)Jσ
αi js(ω), (A28)

where J−
αi js(ω) = Jαi js(ω), J+

αi js(ω) = Jα jis(ω), and f σ
α (ω) =

1/(1 + eσβα (ω−μα ) ) is the Fermi-Dirac function for the elec-
tron (σ = +) or hole (σ = −) at the temperature βα =
1/kBTα . For linear coupling with a noninteracting reservoir,
the reservoir spectral density function can be evaluated as
Jαi js(ω) = ∑

k V ∗
αkisVαk jsδ(ω − εαk ). After applying the Wick

theorem and Grassmann algebra, the final expression of the

influence functional F is

F[ψ] = exp

{
−

∫ t

t0

dτR[τ, {ψ}]
}
. (A29)

where R[τ, {ψ}] = i
h̄2

∑
αisσ Aσ̄

is[ψ(t )]Bσ
αis[t,ψ]. Here Aσ̄

is
and Bσ

αis are the Grassmann variables defined as

Aσ̄
is[ψ(t )] = dσ

is [ψ (t )] + dσ
is [ψ ′(t )] (A30)

and

Bσ
αis[t,ψ] = −i

[
Bσ

αis(t, ψ ) − B′σ
αis(t, ψ

′)
]
, (A31)

with

Bσ
αis(t, ψ ) =

∑
j

∫ t

0
dτCσ

αi js(t − τ )dσ
js[ψ (τ )] (A32)

and

B′σ
αis(t, ψ

′) =
∑

j

∫ t

0
dτCσ̄∗

αi js(t − τ )dσ
js[ψ

′(τ )]. (A33)

The LCFs play the role of memory kernels that can be
expanded by a series of exponential functions with the im-
plementation of the fluctuation-dissipation theorem together
with the Cauchy residue theorem and the Padé spectrum de-
composition scheme of the Fermi function

Cσ
αi js(t ) =

M∑
m=1

ησ
αi jsme−γ σ

αi jsmt . (A34)

The influence of the bath enters the equations of motion with
M exponentiations. The auxiliary density operators {ρn

j =
ρ j1... jn} are determined by the time derivative of the influence
functional. The final form can be reduced to the following
compact form:

ρ̇
(n)
j1··· jn

= −
(

iL +
n∑

r=1

γ jr

)
ρ

(n)
j1··· jn

− i
∑

j

A j̄ ρ
(n+1)
j1··· jn j

− i
n∑

r=1

(−)n−r C jr ρ
(n−1)
j1··· jr−1 jr+1··· jn

, (A35)

where the index j ≡ (σ sn) corresponds to the transfer of an
electron to or from (σ = +/−) the impurity state; and the
Grassmannian superoperators A j̄ ≡ Aσ̄

is and C j ≡ Cσ
i jsm are

defined via their fermionic actions on an operator Ô as A j Ô ≡
[d̂ σ̂

is , Ô] and C j Ô ≡ η j d̂σ
is Ô + η∗

j Ôd̂σ
is , respectively. The on-

dot electron interactions are contained in the Liouvillian of
impurities, L· ≡ [Hdot, ·]. Here ρ0(t ) = ρ(t ) = trresρtotal(t ) is
the reduced density matrix, and {ρ j1... jn (t )n; n = 1, . . . , L} are
auxiliary density matrices, with L denoting the truncation
level. The transient current through the electrode α is

Iα (t ) = i
∑
μs

trsys[ρ
†
αμs(t )d̂us − d̂†

μsρ
−
αμs(t )], (A36)

where ρ†
αμs = (ρ−

αμs)† is the first-tier auxiliary density oper-
ator obtained by solving Eq. (A35). The influence of the α

reservoir can be characterized completely by the hybridization
function Jαuvs(ω) ≡ π

∑
ks tαkust∗

αkvsδ(ω − εαks). The function

245105-9



QI, HOU, WANG, AND WEI PHYSICAL REVIEW B 109, 245105 (2024)

FIG. 7. When a uniform Zeeman field Bz1 = Bz2 = Bz3 and
�Bz = 0 is added to the TTQD system after initialization, the oc-
cupancy probability of the two chiral qubit states will evolve with
time t . Bz1 = Bz2 = Bz3 = −0.01 meV (a) and Bz1 = Bz2 = Bz3 =
−0.05 meV (b). Other structural parameters are consistent with those
above.

is assumed to have a Lorentzian form here. In other words,

Jαuvs(ω) = δuvδu1
�αW 2

(ω − μα )2 + W 2
(A37)

with bandwidth W and chemical potential μα . Moreover, the
spectral density function for the ith QD with μ-spin can be

written as

Aiμ(ω) = 1

π
Re

{ ∫ ∞

0
dt{Caiμa†

iμ
(t ) + [Caiμa†

iμ
(t )]∗}e−iωt

}
,

(A38)
and A(ω) = �iμAiμ(ω).

The HEOM approach has many advantages, such as a
general form of the system Hamiltonian, which is applica-
ble to a wide range of system parameters without additional
derivation and programming efforts. The HEOM approach is
nonperturbative, which can be used to treat quantum impurity
systems from the perspective of open dissipative dynamics. In
principle, the HEOM formalism is formally accurate for non-
interacting electron reservoirs. It has the ability to achieve the
same level of accuracy as the the numerical renormalization
group and quantum Monte Carlo approaches [54].

4. Adding uniform Zeeman field to TTQDs

In this part, we discuss the influence of the chiral qubit
manipulation over time when a uniform Zeeman field is
added, setting as Bz1 = Bz2 = Bz3 and �Bz = 0. According
to formulas (12) and (13), Rabi oscillation will disappear
when a uniform Zeeman field is added to the system, with
Aq+→q+ (t ) = 0 and ω = 0.

In order to verify the correspondence between the the-
oretical formula and the HEOM calculation in the uniform
Zeeman field, we use the HEOM equation to simulate the
evolution of the two chiral qubit states after the initialization
with two different uniform Zeeman fields Bz1 = Bz2 = Bz3 =
−0.01 meV and Bz1 = Bz2 = Bz3 = −0.05 meV, which is
shown in Figs. 7(a) and 7(b). In the initialization process, the
system can still split into two stable chiral states due to the
existence of chiral terms Ŝ1 · (Ŝ2 × Ŝ3). However, in the pro-
cess of external uniform magnetic field �Bz = 0 regulation,
the Rabi cycle disappears because the uniform magnetic field
cannot make the chiral qubit state oscillate. However, with
the increase of the external uniform Zeeman field, the occu-
pancy probability of the two chiral states will increase more
significantly. This is related to the fact that the large external
field energy destroys the degeneracy of the spin subspace,
and thus the energy level transition occurs in the spin space
Sz = 1/2 and Sz = −1/2 [18,31,52]. The theoretical formulas
and simulation results are perfectly fitted and corresponded.
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