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Robustness and scattering behavior of topological phonons in crystalline materials
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Topologically protected edge states of phonons are commonly believed to be immune to backscattering
according to previous theoretical works. However, the scattering behavior of the numerous topological phonon
(TP) states discovered in natural crystalline materials in recent years has not been concretely examined. In the
present work, our analysis of the spring model device shows that the topologically protected phonon edge mode
will also be scattered if a suitable backscattering channel is constructed. Based on atomistic S-matrix method,
we extend phonon band unfolding technique and explore the robustness of TP transport in zigzag graphene
nanoribbon (ZGNR) device through first-principles calculation. Our results show that TP edge states in ZGNR
experience strong scattering because the bulk phonon modes provide backscattering channels for TPs in the
local band gaps. These computational results indicate that topological phonon edge states located within local
band gaps, in ZGNRs or even in other nanomaterials, may not exhibit the robustness as expected. Exploring TP
states within natural full band gaps of crystalline materials may present a more effective strategy for mitigating
backscattering challenges.
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I. INTRODUCTION

Topological phononics has been garnering significant inter-
est as an analog to topological electronics due to its intriguing
characteristics [1–11]. In recent years, as researchers delve
deeper into this field, an ever-growing number of topolog-
ical phonon (TP) states have been discovered in various
natural crystalline materials. Similar to the topological clas-
sifications in electronic systems, TPs in crystalline materials
can been theoretically categorized into several distinct types,
including Dirac phonons [12–14], Weyl phonons [15–18],
nodal-line phonons [19–21], nodal-ring phonons [22,23],
topological acoustic phonons [24–26], high-order TPs [27],
and so on. The existence of these diverse TP states has height-
ened expectations for their potential applications in phonon
devices [6,28,29], topological transport [30–35], magnon-
phonon coupling [36–38], non-Hermitian topology [39,40],
twisted materials [41,42], and so on.

Due to the distinct statistical properties of phonons com-
pared to electrons, there is no concept of Fermi surface in
phonon band structures [9]. Therefore, unlike topological
insulators in electronic systems, when a system possesses
topologically protected phonon surface states, its bulk phonon
modes still participate in phonon transport. In previous works,
it has been proved that in honeycomb spring model lattice,
the TP edge modes remain highly robust than bulk modes
[2,6,7,30]. These TP modes are located within full band gaps
(FBGs), where FBG refer to band gap that exists throughout
the entire Brillouin zone. However, in the process of transport
of TP edge modes, the presence of bulk phonon modes may
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introduce some additional scattering, especially when the TP
modes are located in a local band gap (LBG) of the phonon
spectrum [13,15,17,19,20,26]. The LBG here signifies the
presence of a band gap only within a specific range of wave
vectors in the Brillouin zone. It need to be mentioned that the
TPs in crystalline materials are typically found in the LBG of
the phonon spectrum due to the lack of an efficient mechanism
to break the time-reversal symmetry and open a full band gap.
Therefore, in crystalline materials, the robustness of TP edge
states in transport process needs to be reassessed.

In this work, we quantitatively investigate the transmission
of every individual TP edge states during the phonon transport
process. The computational analysis of spring mode devices
shows the scattering mechanism of TP edge mode during
transport. Intuitively, when there are suitable backscattering
channels, the topologically protected edge states of phonons
can also be scattered. Furthermore, taking zigzag graphene
nanoribbon as an example [13,26], we investigate transport
behaviors of every individual TP mode located within LBGs.
Here, we extend phonon band unfolding technique based on
the S-matrix method [43,44], so that it is possible to show
the transmission coefficient of every TP in LBGs. Our result
shows that bulk phonon modes create backscattering channels
for TPs, leading to increased scattering of TP states in zigzag
graphene nanoribbon (ZGNRs) compared to bulk phonon
modes. Therefore, the expected strong robustness of TP edge
states within LBGs, whether in graphene nanoribbons (GNRs)
or other nanomaterials, may not be valid.

II. TWO-DIMENSIONAL SPRING MODEL DEVICES

To begin, let us take 2D phonon devices as an example for
the investigation of transport behaviors exhibited by TP states.
The atomistic Green’s function method is usually used to
provide the phonon transmission �(ω) as a function of ω
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FIG. 1. Device transmission spectrum of honeycomb lattice.
(a) Schematic of the two-dimensional device constructed from
honeycomb lattice. Blue and gray points represent the sublat-
tices with masses mA and mB = mA, respectively. The red solid
line and the black dashed line represent massless springs with
stiffness k1 and k2 = 0.05k1, respectively. The time-reversal (T )
symmetry is broken by introducing gyroscopic coupling [2].
(b) Mode-resolved transmission spectrum of the phonon modes
from the left lead to the right lead. (c) Total transmission coefficient
� of the phonon modes from the left lead as a function of ω.

through the Caroli formula [45,46]. In order to assess the
transmission of every individual phonon mode, the atom-
istic S-matrix method proves to be an effective research tool
[43,44,47,48]. Using this method, we can obtain the flux-
normalized transmission matrix t for phonon transmission
from the left lead to the right lead [see Supplemental Material
[49] for more details]. The matrix element tm,n represents the
transmission amplitude of mode n from the left thermal lead
to mode m of the right thermal lead. Therefore, by summing
across all phonon channels in the right thermal lead, we can
obtain the transmission coefficient (TC) of mode n from the
left thermal lead, as follows:

�L
n (ω) =

∑
m

|tm,n|2. (1)

Next, we consider a 2D phonon device shown in Fig. 1(a).
The device is constructed from a classic harmonic honeycomb
lattice. Here, the theoretical framework for lattice interactions
is drawn from the results presented in Ref. [2]. By introducing
gyroscopic coupling into this system, the time-reversal (T )
symmetry is broken. The phonon modes of the leads can be
described using the eigenvalue equation

[M̃−1/2K(q)M̃−1/2 − ω2]U = 0, (2)

where ω and U represent the eigenfrequency and eigenstate,
respectively. K is the stiffness matrix as a function of Bloch
wave vector q and M̃ is the mass matrix which has the follow-
ing form:

M̃ =

⎛
⎜⎝

M̃1 0 0

0 . . . 0
0 0 M̃N

⎞
⎟⎠. (3)

The gyroscopic coupling is included through the mass matrix.
Reference [2] shows the matrix element of M̃:

M̃ν =
(

mν iαν

−iαν mν

)
. (4)

For simplicity, we assume that the AB sublattices in a
honeycomb lattice primitive cell have the same mass matrix,
i.e., mA = mB = 1 and αA = αB = 0.3, where α represent the
spinner constant of the gyroscope. Besides, the red solid line
and the black dashed line in Fig. 1(a) represent linear springs
with stiffness values of k1 = 1 and k2 = 0.05, respectively.

To assess the robustness of the topological edge state of
the leads, we vary the width of the central scattering region
[Fig. 1(a)]. This alteration leads to an energy level mismatch
between the central region and the thermal leads, leading to
the scattering of phonon modes. Figures 1(b) and 1(c) depict
the transmission characteristics of the phonon modes from
the left lead. In Fig. 1(b), the mode-resolved transmission
function is projected onto the phonon band of the left lead.
The transport of the TP edge modes are almost unaffected
by backscattering, although the TC of other phonon modes
is close to zero. Figure 1(c) displays the phonon transmission
spectrum �(ω) calculated using Caroli formula. W1(3) in the
legend signifies that the narrowest width of the scattering
region is 1(3) times of the width of a hexagonal lattice units
[yellow-shaded range in Fig. 1(a)], while WL corresponds to
a perfect lattice with no scattering. Notably, the TCs for TP
modes remain largely constant (� ∼ 1) as the width of the
central scattering region increases, whereas the TCs for other
phonon modes experience a moderate increase. The calcula-
tions indicate that the TP edge modes here are immune to
backscattering.

For comparison, as shown in Fig. 2(a), we further consider
a similar 2D device constructed of square lattice, the TP states
of which have also been studied systematically in Ref. [2].
Here, we adopt values for the parameters similar to those in
the hexagonal lattice above, i.e., mA = mB = 1, αA = αB =
0.3, k1 = 1 and k2 = 0.5. Figs. 2(b) and 2(c) display the trans-
mission of phonon modes from the left thermal lead at varying
widths of the central region. For example, the yellow-shaded
range in Fig. 2(a) corresponds to a width of two square lattice
units, denoted as W2. Clearly, when the central scattering
region has a width of W2, not only is the transport of bulk
modes affected, but there is also a notable scattering impact on
the transport of the two TP edge states within the FBG around
1.5 ω0. However, as the width of the central region increases
from W2 to W10, the TCs of the TP edge modes gradually
approach 1, while the TCs of the bulk phonon modes also
increase to some extent. Figure 2(c) and its insets also provide
a visual representation of this phenomenon.

The interesting contrast lies in the fact that there is al-
most no scattering when the TP modes transport in devices
composed of a hexagonal lattice, whereas there is signifi-
cant scattering in devices constructed with a square lattice.
This seems to contradict the traditional idea that topologi-
cal states are immune to backscattering, but it is not hard
to explain this peculiar scattering phenomenon intuitively.
Figure 3 presents schematic diagrams depicting the spatial
distribution of TP edge states in the two different lattices
with same frequency. For the square lattice, as the system
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FIG. 2. Device transmission spectrum of square lattice. (a) Schematic of the two-dimensional device constructed from square lattice. Blue
and gray points represent the sublattices with masses mA and mB = mA, respectively. The red solid line and the black dashed line represent
massless springs with stiffness k1 and k2 = 0.5k1, respectively. The time-reversal (T ) symmetry is broken by introducing gyroscopic coupling
[2]. (b) Mode-resolved transmission spectrum of the phonon modes from the left lead to the right lead under different width of the central
scattering region. (c) Total transmission coefficient � of the phonon modes from the left lead as a function of ω.

gradually narrows in the open boundary direction, the topo-
logical edge states at the left and right boundaries overlap
in real space [Fig. 3(a)]. This overlap leads to a probabil-
ity for the forward-propagating topological state at the left
boundary to scatter with the backward-propagating topolog-
ical state at the right boundary. In other words, during the
overlap process, the backward-propagating topological states
at the right boundary provide backscattering channels for the
forward-propagating topological states at the left boundary.
Moreover, as the extent of wave function overlap between
the two topological edge modes increases, the probability of
backscattering for this topological mode in the phonon device
also increases.

However, the localization of TP edge states within the
hexagonal lattice is extremely high [2]. Even when the width
of the scattering region reduces to W1, the edge states at two
boundaries still have almost no overlap [Fig. 3(b)]. Hence,
the TP edge states in hexagonal lattice can remain practi-
cally unaffected by backscattering. Therefore, we can draw
the following conclusion: a phonon mode remains immune
to backscattering in the absence of backscattering channels.
In other words, even TP edge states have a probability of
scattering if there are suitable backscattering channels.

By conducting a comparative analysis of the spring model
devices, we derive the concept of a backscattering chan-
nel. These channels for a phonon mode correspond to other
phonon eigenmodes with opposite group velocities, and their
density distributions of states in real space overlap. The

(a) (b)

Square Lattice Honeycomb Lattice

FIG. 3. Diagram of the wave function distribution of the topo-
logical phonon edge states with same frequency in real space.

presence of backscattering channels ensures that a phonon
mode will undergo backscattering. In the square lattice model,
we achieve an overlap of topological modes from different
boundaries in real space by narrowing the width of the central
region of the device. Given that the topological modes at these
boundaries exhibit opposite group velocities, we successfully
establish backscattering channels for these topological modes.
The topology patterns protected by T symmetry in the square
lattice are thus backscattered.

III. ROBUSTNESS OF TOPOLOGICAL
PHONONS IN GRAPHENE

Based on the understanding of phonon scattering mecha-
nism, taking the ZGNR as an example, we further explore
the transport behavior of TP states in nanomaterials. Recently,
the nodal-ring phonons and Dirac phonons in bulk graphene
have been observed experimentally [50]. However, the TP
edge states of ZGNR in phonon band are located in LBGs
[13,25,26]. The bulk modes may provide potential scattering
channel for the TP modes. Therefore, it is needed to be re-
assessed for the robustness of TP edge states distributed in the
LBG like ZGNR.

A. Force constant for ZGNR

We adopt the Vienna ab initio simulation package (VASP)
[51,52] to perform the first-principles calculations based on
density functional perturbation theory (DFPT) [53]. A vac-
uum layer of 20 Å is used for all the open boundary systems.
The FCs of the 7 × 7 × 1 supercell of graphene is extracted
by using the PHONOPY code [54], and the FCs of ZGNRs and
nanodevices are obtained by employing the phononic tight-
binding method from the DFPT data.

The force constant (FC) matrix �A of a free-standing
ZGNR must satisfy the acoustic sum rule (ASR) [26], i.e.,

∑
i( j)

�i j = 0. (5)
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FIG. 4. Phonon band structures of zigzag graphene nanorib-
bon (ZGNR) in different edge local potential. (a) Schematic of
the ZGNR. (b), (c), and (d) show the phonon band structures
with different value of δ. The plotting range of each subplot in
(d) corresponds to the region outlined by the red box in (a). Specif-
ically, the frequency (y label) variation range for subplots in (d) is
(13 THz, 33 THz), and the change in fractional coordinates of the
wave vector (x label) is (K = 0.3, K′ = 0.7).

While another format of FC matrix (�U ), dealing like the
electronic system, is shown in Ref. [13], i.e.,

�ii = � j j, i �= j. (6)

Here, atoms near the boundary experience external forces
from surroundings of the system. In the majority of previous
works, the FCs of open-boundary systems satisfy Eq. (6). The
FC in this case has a format as follows:

� = �A + �L, (7)

where �A represents the part that satisfies the ASR, and �L

denotes the influence generated by a edge local potential.
Given the previous research on topological phonons, which

involves two approaches regarding whether the force con-
stant undergoes ASR correction, it is necessary to compare
and discuss the robustness of topological phonons during the
transport process under different degrees of ASR correction
in order to obtain results of broader significance. Therefore,
we assume �L = δ × (�U − �A), such that when δ = 0, �

satisfies Eq. (5), and when δ = 1, � satisfies Eq. (6). Conse-
quently, we can investigate the transport characteristics of TP
edge states as δ varies from 0 to 1.

B. Phonon dispersion of ZGNR

As depicted in Fig. 4(a), we have constructed a ZGNR
with a thickness of 20 layers, where the light blue background
signifies that the atoms at the nanoribbon edges are subject
to the influence of edge local potential. Next, we use Eq. (7)
to establish the FCs of the nanoribbon, ensuring that when
δ = 1, �ii = �b

kk , where �b
kk represents the on-site terms of

Pa1 Pa2

Pb1 Pb2

Pc1 Pc2

0.0 0.2 0.4 0.7 1.0

1.0

0.0 0.2 0.4 0.7 1.0

0.0 70.030.0

0.0

0.3 70.030.0 0.10.0 0.3

0.00.3 0.30.4 0.6 4.0 6.01.0 1.0

FIG. 5. Local density of state (LDOS) of the phonon states
marked in Fig. 4(b) in different edge local potential. The red numbers
in each subgraph represent the value of δ.

bulk graphene atoms. Figures 4(b) and 4(c) show the phonon
band structures of the ZGNR in the two specific states, δ = 0
and δ = 1, respectively. These results align well with previous
works [13,26]. The TP edge states of interest, which are
marked as Ma, Mb, and Mc in Fig. 4(c), are located within
the region highlighted by a red rectangular frame in Fig. 4(b).
Therefore, we conduct further calculations to investigate the
evolution of the phonon band structure within the region
corresponding to the red rectangular frame as δ increases at
intervals of 0.1 [Fig. 4(d)]. As δ gradually increases from zero,
the ASR is broken, leading to the disappearance of acous-
tic modes. Correspondingly, the edge states of topological
acoustic phonons (Mb) begin to merge into the bulk modes,
as illustrated by the green lines in Fig. 4 [see Supplemental
Material [49] for more details]. Conversely, in the vicinity of
30 THz, gradually emerging twofold degenerate edge modes
(Mc) appear within the LBG. Besides, it is worth noting
that the optical topological modes (Ma) near 15 THz persist
throughout the process of δ variation, even though their group
velocities experience a reversal.

To provide a more intuitive representation of the changes
in the edge states described above, as shown in Fig. 5, we
proceed with calculations of the real-space local density of
states (LDOS), which correspond to the black dots marked in
Fig. 4(b). The corresponding wave vector for each of these
states is q = 0.45. To capture the crucial information about
the LDOS variations, we perform different samplings for three
sets of points with respect to δ. The red numbers represent
the values of δ corresponding to the LDOS. Obviously, as the
value of δ changes from 0 to 1, the LDOS of Pa1/Pa2 remains
distributed at the edge of the nanoribbon, and the LDOS of
Pb1/Pb2 transitions from an edge state to a bulk state, and
the LDOS of Pc1/Pc2 shifts from a bulk state to an edge
state. Interestingly, the LDOS of Pc1 and Pc2 initially do not
synchronize, which is due to the fact that these two modes
have not yet degenerated when δ is small.

C. Mode-resolved phonon transmission spectrum
of ZGNR device

Finally, we compute the phonon transmission spectrum
for the nanodevice shown in Fig. 6(a). Similar to the spring
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FIG. 6. Transmission spectrum of zigzag graphene nanoribbon
(ZGNR) device. (a) Schematic diagram of the ZGNR device con-
figuration. (b) Mode-resolved transmission spectrum of the phonon
modes from the left thermal lead to the right thermal lead.

model discussed above, we introduce phonon scattering by
reducing the width of the central region of the nanoribbon
while ensuring that the edges of the device remain in a zigzag
configuration. The TP edge states here are all situated within
LBGs, making it impossible to get their TC from Caroli
formula. Therefore, the use of the mode-resolved method is
essential in this context. A cutoff radius of 6.5 Å is ap-
plied to the FCs of this device here. The principal layer of
the thermal leads contains three primitive unit cells. There-
fore, the wave vectors of the mode-resolved transmission
spectrum will be in a folded Brillouin zone [44,48]. Here, we
extend the band-unfolding technology and make it possible to
show the transmission coefficient of every individual TP edge
states. The unfolding technique for phonon mode-resolved
transmission spectrum in this paper is also suitable for other
crystalline materials. (see Supplemental Material [49] for
more details.) By unfolding the Brillouin zone, we correlate
the mode-resolved transmission spectrum with the phonon

band structure of the thermal leads, as shown in Figs. 6(b)
(see Supplemental Material [49] for more details.)

As shown in Fig. 6(b), when δ = 0, the TCs of Ma and
Mb are very low, while the TC of Mc is quite high. When
δ = 1, the TC of Mb have increased significantly. However,
both Ma and Mc exhibit relatively low TCs. Moreover, due
to their relatively small group velocities, there are only a few
phonon modes contributing to transport in Ma and Mc.

Through comparative analysis, we observe that Mb and
Mc exhibit significantly higher TC values when transitioning
into bulk states compared to when they are in the edge states.
Conversely, Ma consistently maintains low TC values, likely
due to its continuous presence as boundary states.

IV. DISCUSSIONS AND PERSPECTIVE

In this study, we initially discuss the behavior of topolog-
ical phonon edge states protected by T symmetry in spring
model devices under the gyroscopic effect. Through compar-
ative analysis between honeycomb and square lattices, we
extract the concept of backscattering channels. These chan-
nels correspond to eigenmodes with opposite group velocities,
and their density distributions in real space overlap, leading
to backscattering of phonon modes. We then delve into the
robustness of TPs in ZGNRs through first-principles calcula-
tions, focusing on the scattering mechanism of backscattering
channels. The TP edge modes in ZGNRs are located within
LBGs, with numerous backscattering channels provided by
co-frequency bulk modes, resulting in significant scattering
during transport. It should be noted that both the spring model
and first-principles calculations discussed here only account
for elastic scattering, excluding considerations of anharmonic
effects, electron-phonon coupling, magnon-phonon coupling,
and similar factors.

In summary, we elucidate the scattering mechanism of
TPs: they experience backscattering if suitable backscatter-
ing channels are present. In crystalline materials, achieving
a strong T symmetry broken effect to open a full band gap in
the phonon spectrum is challenging. Consequently, TP states
in crystalline materials are typically found within LBGs in
previous works. On the one hand, research on ZGNR devices
reveals that TPs in crystalline materials generally lack ro-
bustness during transport. On the other hand, our calculations
about the phonon band structure of ZGNR also indicate that
the presence of edge local potentials can significantly affect
the configuration and even the existence of TP edge modes.
And for open-boundary nanostructures, the presence of dan-
gling bonds typically leads to non-negligible edge local poten-
tials. Therefore, the robustness of the existence and transport
properties of TP edge states in crystalline materials may not
be as strong as initially expected. Exploring TP states in FBG
may be a effective way to avoid backscattering channels.
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