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Global hybrid exchange-correlation energy functionals within generalized Kohn-Sham density functional
theory have long been established as part of the standard repertoire for electronic structure calculations. Accurate
electronic band structures of solids are indispensable for a wide variety of applications and should provide a
sound prediction of phonon-induced band gap renormalization at finite temperatures. We employ our previously
introduced formalism of general hybrid functionals within the approximate density functional tight-binding
(DFTB) method to present insights into the accuracy of temperature dependent band gaps obtained by a dielectric
dependent global hybrid functional. The work targets the prototypical group-IV semiconductors diamond and
silicon. Following [Zacharias et al. Phys. Rev. Lett. 115, 177401 (2015)], we sample the nuclear wave function
by stochastic Monte Carlo integration as well as the deterministic one-shot procedure [M. Zacharias and F.
Giustino, Phys. Rev. B 94, 075125 (2016)] derived from it. The computational efficiency of DFTB enables
us to further compare these approaches, which fully take nuclear quantum effects into account, with classical
Born-Oppenheimer molecular dynamic (BOMD) simulations. While the quantum mechanical treatments of
Zacharias et al. yield band gaps that are in good agreement with experiment, calculations based on BOMD
snapshots inadequately describe the renormalization effect at low temperatures. We demonstrate the importance
of properly incorporating nuclear quantum effects by adapting the stochastic approach to normal amplitudes that
arise from the classical equipartition principle. For low temperatures, the results thus obtained closely resemble
the BOMD predictions, while anharmonic effects become important beyond 500 K. Comparisons between DFTB
parametrized from semilocal DFT, and global hybrid DFTB, suggest that Fock-type exchange systematically
yields a slightly more pronounced electron-phonon interaction, and hence stronger gap renormalization and
zero-point corrections.
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I. INTRODUCTION

Semiconductors form the backbone of modern electronic
devices, playing a pivotal role in the development of tech-
nology that permeates various aspects of our daily lives. As
devices operate over a range of temperatures, the temperature
dependence of the electronic band gap becomes a critical
factor in ensuring stable and reliable operation. Since the
mid-20th century, various practitioners [1–7] have found that
the band gap of traditional semiconductors such as Ge, Si,
and GaAs decreases with temperature. Subsequently, several
empirical equations have been introduced and fitted to the
experimental data [6], with the Varshni equation [4] arguably
being one of the most widely adopted empirical models. Its
accuracy has led to the redshift of the gap with temper-
ature often being referred to as the Varshni effect. For a
more detailed historical review, we refer to Ref. [8]. While
most semiconductors obey Varshni’s effect, materials with
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opposing behavior, such as copper halides [9] and metal halide
perovskites [10,11], have been identified more recently. The
blueshift of the band gap with temperature is known as the
inverse Varshni effect.

Usually, the Varshni effect is caused by an interplay of lat-
tice expansion [12–18] and electron-phonon renormalization
(EPR) [8,19–23]. EPR refers to the impact of phonon-induced
atomic vibrations on the electronic structure, encompassing
zero-point motion renormalization (ZPR) and thermal vibra-
tion at finite temperatures. In fact, the ZPR can be as large
as 0.6 eV [20] and 0.37 eV [24,25] for the direct and indirect
band gap of diamond, respectively.

First-principles calculations of the optical properties of
solids at finite temperature are usually based on either
molecular dynamics (MD) simulations [26–28], second-order
perturbation theory (PT) [8,19–22,29,30], or effective struc-
tures using a stochastic [31] or one-shot [32] disorder
approach based on the decomposition of the vibrational
problem into normal modes. The first of these approaches
computes temperature dependent band gaps as a time average
of MD snapshots. In practice, solids require computationally
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expensive large supercell calculations to sample the phonon
wave-vector space, yet MD-based approaches naturally in-
clude anharmonic vibrational modes beyond the harmonic
approximation. A limitation of classical MD is its neglect
of nuclear quantum effects, spuriously yielding the classical
Boltzmann statistics for phonons and ignoring zero-point mo-
tion. However, path-integral molecular dynamics can recover
the correct Bose-Einstein statistics and zero-point motion ef-
fects at the expense of computational efficiency [33–35]. In
the second category, the Allen-Heine-Cardona theory [36],
which describes the thermal shift of the electronic energies
on the basis of second-order perturbation theory within the
adiabatic or nonadiabatic harmonic approximation, can be
employed to obtain the temperature dependence of the elec-
tronic structure. For instance, Giustino et al. [20] computed
unperturbed band structures with the GW approximation [37]
and treated lattice dynamics at the level of density func-
tional perturbation theory (DFPT) [38–40]. The third type of
approach generates effective structures with frozen phonon
displacements, generated as a sum over Bose-Einstein dis-
tribution weighted normal modes [41–45]. A comprehensive
review of the special displacement method is provided in
Ref. [46]. Most recently, Zacharias et al. [47] extended the
special displacement method to enable efficient calculations
of temperature dependent anharmonic phonon dispersions and
electron-phonon couplings in strongly anharmonic systems,
such as metal halide perovskites.

The density functional tight-binding (DFTB) [48,49]
method consistently applies carefully chosen approxima-
tions to the Kohn-Sham (KS)-DFT and generalized KS-
DFT [50–52] energy functionals, providing relatively accurate
schemes that can be applied to extended systems with re-
quirements for large unit cells or long-timescale molecular
dynamics, which otherwise prevent treatment by higher-level
methods. Naturally, the shortcomings of (semi)local DFT
are inherited by KS-DFTB, e.g., resulting in a similar un-
derestimation of band gaps for similar basis set sizes. The
recently introduced extension to general hybrid functionals
for periodic systems [53] enables us to gain insights into the
performance of dielectric dependent global hybrid function-
als within the DFTB method for describing the band gap of
materials at finite temperatures.

In this paper, we parametrize (hybrid) DFTB for the
prototypical nonpolar covalent semiconductors with indirect
band gaps, i.e., diamond and Si. These parameters are then
used to compare the stochastic and one-shot approaches
of Zacharias et al. with classical Born-Oppenheimer MD
(BOMD) simulations. The intention is to investigate the ac-
curacy of temperature dependent band gap predictions by a
dielectric dependent global hybrid functional at the DFTB
level of theory, in particular the influence of exact exchange
on electron-phonon renormalization.

This work is structured as follows: In Sec. II, we briefly
review the periodic hybrid DFTB formalism of Ref. [53] and
special displacement method of Zacharias et al., with a focus
on the stochastic and one-shot approaches adopted throughout
this work. Section III describes the process of generating (hy-
brid) DFTB parameters for the prototypical semiconductors
diamond and Si, based on the popular Perdew-Burke-
Ernzerhof hybrid (PBEh) [54] functional, where the exact

exchange fraction is chosen according to the inverse of the
orientationally averaged and ion-clamped macroscopic di-
electric constant 1/ε∞

r . Computational details are provided
in Sec. IV. Section V discusses the phonon-induced band
gap renormalization obtained by the two special displace-
ment methods, as well as classical BOMD simulations in an
isothermal-isobaric (NPT) ensemble. This leads to a discus-
sion of the impact of incorporating proper nuclear quantum
effects and anharmonicity at certain temperature regions.
For these group-IV semiconductors, our work indicates that
(hybrid) DFTB is capable of qualitatively reproducing ex-
perimental data for the temperature dependent band gap of
solids, but that quantitative accuracy depends on the employed
electronic parametrization. We close with a summary of our
findings and by providing a brief outlook in Sec. VI.

II. THEORY

All quantities in this section are given in Hartree-based
atomic units.

A. Periodic hybrid DFTB

The density functional tight-binding (DFTB) [48,49]
method fills the gap between first-principles electronic struc-
ture methods and conventional semiempirical schemes. While
being two to three orders of magnitude faster than ab initio
DFT, it remains sufficiently accurate and paves the way to
tackle problems usually considered to be out of reach for
quantum mechanical atomistic simulations.

Self-consistent charge (SCC)-DFTB [49] expands the
Kohn-Sham total energy functional around a reference elec-
tron density ρ0, up to second order in the density fluctuations
δρ,

E [ρ0 + δρ] = E (0)[ρ0] + E (1)[ρ0, δρ] + E (2)[ρ0, (δρ)2],
(1)

where ρ0 is commonly constructed as a superposition of
atomic densities of neutral spin-free atoms.

The zeroth-order (so called repulsive) term solely depends
on the reference density ρ0, which is of key importance for
the transferability of DFTB parameters to different chemical
environments. In practice, the repulsive term is commonly ap-
proximated as a sum of short-range atomic pair potentials and
fitted to an ab initio reference [49]. Many-body corrections
to this term have been recently addressed, for example by
employing neural networks [55,56] or force fields [57].

In DFTB, Kohn-Sham (KS) orbitals are expanded into a
small valence-only basis set {φμ(r)} that arises from first-
principles calculations of neutral, spin-unpolarized pseudo-
atoms [58],[

−�

2
+ veff [ρatom] +

(
r

r0

)n]
φμ = ε̃μφμ. (2)

In addition to the effective potential veff of KS-DFT, a con-
finement potential of power n gives rise to free parameters of
the electronic structure part of the method, in particular the
so-called compression radii r0. Note that generally different
confining radii are used for the density and wave function.

The Hamiltonian H and overlap S matrix elements are then
evaluated in a two-center approximation and pretabulated for
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high-symmetry orbital configurations as a function of dis-
tance in Slater-Koster tables [59]. Applying the Slater-Koster
transformations to the coordinate system of the solid and solv-
ing the resulting generalized eigenvalue problem for periodic
systems, ∑

ν

cνi(k)[Hμν (k) − εiSμν (k)] = 0 ∀i, (3)

self-consistently, yields eigenvector coefficients cνi(k) and
eigenvalues εi of eigenstate i, with orbital indices μ, ν.

Incorporating Fock-type exchange, as required for the hy-
brid exchange-correlation functionals employed in this work,
leads to the additional energy contribution [53]

Ex,CAM = 1

2

∑
k

wk

∑
μν

�Hx,CAM
μν (k)�Pνμ(k), (4)

with k-point weights wk normalized as
∑

k wk = 1, density
fluctuations �Pνμ(k), and Hamiltonian matrix elements

�Hx,CAM
μν (k) = − 1

8

∑
λκ

∑
ghl

�Pλκ (g + h − l)Sλμ(h)Sκν (l)

× [
γ CAM,HF

μν (g) + γ CAM,HF
μκ (g − l)

+ γ CAM,HF
λν (g + h) + γ CAM,HF

λκ (g + h − l)
]

× e−ik·g. (5)

According to the Coulomb-attenuating method (CAM) [60],
the parameters α, β, and ω determine the fraction of global
and long-range Fock-type exchange, as well as the value
of the smooth range-separation function between the long-
and short-range contributions. For brevity, this parametric
dependency of Eq. (5) is absorbed into the modified CAM
γ function, γ CAM,HF

μν = αγ fr,HF
μν + βγ lr,HF

μν , of DFTB. The
parametrizations γ fr,HF

μν and γ lr,HF
μν represent the Coulomb-type

integrals with either the full- or long-range kernel, respec-
tively, as defined in Eqs. (32) and (33) of Ref. [53].

A more comprehensive description of the DFTB method
and its extensions is provided in Refs. [58,61].

B. Special displacement method

In this section, we briefly recapitulate the stochastic [31]
and one-shot [32] approaches of Zacharias et al. for calcu-
lating temperature dependent band gaps of solids. From the
theory of Williams [62] and Lax [63], originally developed
to study the vibrational broadening of the photoluminescence
spectra of defects in solids, Zacharias et al. derived an expres-
sion for the imaginary part of the dielectric function at finite
temperature T . This approach yields the optical spectrum
over the full frequency range and can be directly compared
to experimental data. We are specifically interested in the
temperature dependent band gap Eg(T ) and analogously write

Eg(T ) = 1

Z

∑
n

e− En
kBT 〈Eg(x)〉n, (6)

with the canonical partition function Z =∑
n exp[−En/(kBT )], energy of a nuclear quantum state

En in the Born-Oppenheimer approximation, and Boltzmann
constant kB. We evaluate the band gap Eg(x) of a particular

configuration x of all atomic coordinates with clamped nuclei.
To this end, large supercells (see below) of the target system
are simulated at the � point, and the band gap is taken to
be the smallest energy difference between occupied and
unoccupied bands. This protocol automatically provides the
indirect band gap in relevant systems.

Each expectation value 〈·〉n is with respect to the nth
nuclear quantum state. We follow Zacharias et al., evaluate
Eq. (6) in the harmonic approximation, and apply Mehler’s
formula [64,65], yielding

Eg(T ) =
∏
ν

∫
exp

[−x2
ν

/(
2σ 2

ν,T

)]
√

2πσν,T

Eg(x) dxν . (7)

The harmonic oscillator wave function
exp[−x2

ν/(2σ 2
ν,T )]/(

√
2πσν,T ) contains Gaussian widths σν,T

associated with the νth normal coordinate xν , Bose-Einstein
occupations nν,T , and zero-point vibrational amplitudes lν ,

nν,T = {exp[�ν/(kBT )] − 1}−1, (8)

lν = (2Mp�ν )−
1
2 , (9)

σν,T = √
2nν,T + 1lν . (10)

Here, �ν denotes the angular vibrational frequency of the
νth normal mode, i.e., harmonic oscillator, and, in line with
Refs. [31,32], we choose the proton mass Mp to be our ref-
erence mass. The stochastic approach to Eq. (7) employs
importance-sampled Monte Carlo integration [42] and aver-
ages over multiple atomic configurations with displacements,

�Rκα =
√

Mp

Mκ

∑
ν

eκα,νxν, (11)

of atom κ with mass Mκ , along the Cartesian direction α.
Diagonalizing the dynamical matrix of the system yields
(gauge-corrected) eigenmodes eκα,ν in ascending order with
respect to their eigenfrequencies �ν . We can find a unique
back-transformation to Eq. (11) by exploiting the orthogonal-
ity of the rows and columns of the eigenvectors,

xν = 1√
Mp

N∑
κ=1

√
Mκ

3∑
α=1

�Rκαeκα,ν . (12)

For a supercell of N atoms, the normal amplitudes xν of
Eq. (11) are then generated from a set of 3N − 3 (i.e., transla-
tional modes removed) random numbers 0 < t < 1,

xν =
√

2σν,T erf−1(2t − 1), (13)

where erf−1 refers to the inverse error function.
In Ref. [32], Zacharias et al. provide a formal proof that in

the limit of large supercells, a single atomic configuration is
sufficient to evaluate Eq. (7). To make a clear distinction, we
denote the atomic displacements of this deterministic one-shot
method by �τκα ,

�τκα =
√

Mp

Mκ

∑
ν

(−1)ν−1eκα,νσν,T . (14)

Note that the different eigenmodes in Eq. (14) contribute
with alternating signs. An improved numerical evaluation of
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Eq. (7) at fixed supercell size can be achieved by considering
a hierarchy of atomic configurations, generated by iteratively
partitioning the set of modes in two halves and applying a sign
swap on one of the resulting subsets [32]. Below, we will an-
alyze the accuracy of the one-shot method and investigate the
convergence properties of the hierarchical approach towards
the exact result.

Williams-Lax theory treats the nuclei quantum mechani-
cally and deals with their statistics in a consistent manner.
In order to rationalize results from MD simulations, we ex-
perimented with a hybrid Williams-Lax scheme that is based
on classical statistics. According to the equipartition princi-
ple (EQP), in thermal equilibrium each normal mode has an
average total energy of kBT , with exactly half of the energy
assigned to the kinetic and potential terms. By expressing the
potential energy of a normal mode via the spectral decompo-
sition of the dynamical matrix, it follows that〈

x2
ν

〉eqp

T
= kBT

Mp

1

�2
ν

. (15)

Performance of the Monte Carlo integration of Eq. (7) with
the stochastic normal amplitudes,

xeqp
ν =

√
2

√
kBT/Mp

�ν

erf−1(2t − 1), (16)

analogously to Eq. (13), gives rise to an approach that we
term MC(eqp) in the following. In the limit of high temper-
atures, Eq. (13), which fully takes nuclear quantum effects
into account and yields Bose-Einstein statistics for phonons,
approaches Eq. (16).

III. HYBRID DFTB PARAMETERS

The electronic parameters, established for the purpose of
carrying out the investigations in Sec. V of this work, have
been generated using the SKPROGS [66] parametrization suite.

Reference [67] provides the web repository that is the
primary address for obtaining Slater-Koster sets, which have
been generated by the DFTB community. Although general
purpose parametrizations of carbon and silicon exist, with
prime examples being the matsci-0-3 [68,69] and pbc-0-3 [70]
sets for solids in materials science, they all share certain
limitations. Restrictions arise from resorting to a minimal
basis, generally leading to a poor representation of conduction
bands in particular, compatibility pitfalls due to the choice
of superposition strategy [49] (potential vs density superposi-
tion), or employing superseded exchange-correlation density
functionals. Arguably, the siband-1-1 [71] parameters pose an
exception in the sense that they produce an accurate silicon
band structure. However, siband-1-1 is fitted to experimental
reference data, which emphasizes the demand for parameters
that are consistently fitted to the Hamiltonian that DFTB
strives to resemble, which is, in fact, DFT.

To address this, we reparametrized the elements car-
bon and silicon following a semiautomatic approach, while
focusing on their respective diamond structure (Fd3m), de-
noted as C-dia and Si-dia throughout. Both elements are
represented by an extended basis that includes unoccupied
3d polarization orbitals. The respective density compression
radii match those of the pbc-0-3 set, as have been found

TABLE I. Orientationally averaged, ion-clamped, macroscopic
dielectric constants and fractions α = 1/ε∞

r of Fock-type exchange
used in the current work.

Material ε∞
r α Ref.

Si-dia 11.25 0.089 [76]
C-dia 5.55 0.180 [76]

to have a minor influence on the electronic band structure.
We generated Slater-Koster files (in density superposition
mode) on a nonequidistant grid of wave-function compression
values, and performed an exhaustive grid search, reveal-
ing candidates yielding satisfactory band structures. In order
to quantify the agreement with first-principles DFT, a loss
function is constructed that monitors the dispersion of the
highest occupied and lowest unoccupied bands. DFT ref-
erences are computed using the FHIAIMS [72–74] software
package and numeric atom-centered orbitals as specified by
the “tight” species defaults. The procedure is carried out for
PBE-parametrized [75] DFTB, consistently using the same
functional for the reference calculations. We assume that the
resulting tuned electronic parameters, such as compression
radii and confinement power, hold for the dielectric dependent
global hybrid pendant DD-PBEh [54] as well, which is an ap-
proximation to reduce the parametrization effort, establishing
both semilocal and hybrid DFTB parametrizations. For the
latter, Table I provides the employed fractions of Fock-type
exchange, as obtained from the inverse orientationally aver-
aged, ion-clamped, macroscopic dielectric constant of the two
target materials. The final atomic compression radii, as listed
in Table II, are selected by hand from the set of candidates
from the automatic grid search. To prevent overfitting, we
ensure reasonable transferability by further including the band
structure of zinc-blende structured silicon carbide (SiC-zb)
as part of the manual parameter selection process. Compar-
isons to semilocal and hybrid DFT references are provided in
Fig. S1 of the Supplemental Material [77], indicating excel-
lent transferability to the SiC-zb compound.

Extension of the basis of C and Si by unoccupied 3d
polarization orbitals comes with one major challenge: the
associated positive on-site energy of the unbound scattering
state is neither well defined nor numerically stable for the
isolated neutral pseudo-atom calculations of Eq. (2), which
build the basis for generating Slater-Koster files. We there-
fore treat the respective 3d on-site energy of C and Si as
free, exchange-correlation functional dependent, parameters.
Consequently, in the case of the material-specific dielec-

TABLE II. Wave function and density compression radii as well
as the power of the confinement potential entering Eq. (2) of the
newly established carbon and silicon parameters in Sec. III.

rwave
0 [a0]

Element s p d rdensity
0 [a0] pconf

C 3.50 5.00 2.35 7.0 2
Si 3.75 3.75 4.25 6.7 10
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TABLE III. Unoccupied d-orbital on-site energies in Hartree
atomic units, as obtained from the DOS-fitting procedure and sub-
sequent manual fine tuning outlined in Sec. III.

εd [Ha]

Material PBE DD-PBEh

C-dia 0.4415 0.4740
Si-dia 0.0496 0.0909

tric dependent DD-PBEh functional, the on-site energies are
treated as material-specific parameters, whereas they solely
depend on the element for the PBE functional. Depending on
the material, the ill-defined unoccupied on-site energies result
in qualitatively incorrect band structures due to an incorrect
energetic ordering of states. As a drastic example, an incorrect
choice could lead to C-dia being metallic. To address this
pitfall, we again resort to a semiautomatic procedure that in a
first step, yields an estimate of the unoccupied on-site energies
in the system by fitting the total density of states (DOS) of the
respective material to its DFT reference. Since DFTB is only
expected to yield reliable results for a window of a few elec-
tronvolts around the Fermi level, the loss function is restricted
to a range that includes the valence band maximum and con-
duction band minimum. We used a gradient-free procedure
based on Bayesian optimization [78] to iteratively optimize
the unoccupied on-site energies. A subsequent manual fine
tuning resulted in the on-site energies of Table III.

Figure S2 in the Supplemental Material [77] contains
the electronic band structures of C-dia and Si-dia, calcu-
lated on the PBE- and DD-PBEh-parametrized DFTB levels
of theory. To compute the self-consistent density, we re-
sorted to a Monkhorst-Pack [79] k-point sampling of at least
13×13×13 throughout, including for the respective DFT ref-
erences. Around the valence band maximum, even minimal
basis DFTB usually provides an accurate description of the
bands and our parameters follow this trend as well. As is well
known, the extended basis leads to significant improvements
in the conduction bands [80]. These states are usually insuf-
ficiently described by a minimal basis, to an extent that for
a minimal basis, both materials appear to have a direct band
gap. But, the basis set is far from being complete, generally
leading to flatter bands in k space, and a compromise between
an accurate description around the direct and indirect band
gaps is evident. For Si-dia, the tuning procedure of the unoc-
cupied on-site energy essentially shifts the conduction bands.
Since the loss function is restricted to an energy window that
includes the conduction band minimum but not the direct gap
of Si-dia, the parametrization exhibits good agreement in the
region around the conduction band minimum, i.e., the indirect
band gap. However, this results in an underestimation of the
direct gap as large as 1.3 eV, afflicting both the semilocal and
hybrid parametrization. In contrast, the conduction band edge
of C-dia is not only composed of the 3d orbitals, and hence
the tuning procedure does not lead to flawless agreement of
the indirect band gap with the DFT reference. We find an
overestimation of the indirect band gap of C-dia of about
0.8 and 0.6 eV for the semilocal and hybrid parametrizations,

respectively. The vicinity of the � point, i.e., the direct band
gap of C-dia, is reasonably well represented however.

IV. COMPUTATIONAL DETAILS

All DFTB-based calculations are performed using the
DFTB+ software package [61]. The computational efficiency
of conventional DFTB and our hybrid formalism, as imple-
mented in DFTB+, has been demonstrated and discussed in
Ref. [53]. For instance, a single-point calculation of a super-
cell containing 1000 atoms, performed at the hybrid DFTB
level using eight message passing interface (MPI) processes,
takes about 10 minutes using an Intel Xeon 8362. Born-
Oppenheimer molecular dynamic simulations are computed in
an isothermal-isobaric (NPT) ensemble with a time step of 1.0
fs, using a Nosé-Hoover chain thermostat [81] and a Berend-
sen barostat [82]. For the thermostat, a coupling strength of
500 cm−1 is used, while the barostat operates isotropically at
a pressure of 1 atm (101 325 Pa) and 0.5 ps timescale. Trajec-
tories are computed for 5×5×5 supercells of the conventional
unit cell of C-dia and Si-dia (1000 atoms), using the pbc-
0-3 [70] parameters at the non-SCC-DFTB level of theory,
without charge self-consistency. We verified that the contri-
butions of self-consistent iterations (as in SCC-DFTB) have
only a negligible influence on the results, so that the additional
computational effort can be omitted. Newton’s equation of
motion is propagated over a total of 100–150 ps, with the
lattice constant extrapolated as part of an intermediate restart,
in order to accelerate the pressure equilibration. The extrap-
olation is based on the observation that the lattice constant
approaches a temperature dependent supremum and restarts
the MD at an estimated upper bound calculated from fitting a
limited growth function to a first segment of each trajectory.
Snapshot geometries are extracted randomly within the last 50
ps of the trajectories, with a minimal time separation of 10 fs.
Based on the snapshots, we performed single-point calcula-
tions in the �-point approximation using the functionals PBE-
and DD-PBEh-DFTB, employing the parameters of Sec. III.
Convergence of the band gap with supercell size is depicted
in Fig. S3 in the Supplemental Material [77]. We compute
band gaps as a time average of 500 snapshot calculations for
each temperature that is considered. The standard deviation
provides an estimate of the amount of variation between the
individual snapshots.

The fitness of the pbc-0-3 parameters to accurately de-
scribe phonon-induced phenomena is validated by calculating
the phonon band structures of C-dia and Si-dia using the
PHONOPY [83,84] code. We used 8×8×8 supercells built from
the respective primitive unit cell (1024 atoms) and performed
single-point calculations at the � point. Figure S4 in the Sup-
plemental Material [77] illustrates the resulting phonon band
structures, indicating reasonable agreement with experimental
references in line with the conclusions of Ref. [85].

For the special displacement-based approaches, we relax
pristine diamond and silicon bulk and build a 5×5×5 su-
percell of the respective conventional unit cell. We solve
the vibrational problem on the basis of the pbc-0-3 parame-
ters, by first calculating the Hessian matrix of the supercells
using DFTB+ and a finite-difference step of 10−4 a0. Subse-
quently, the dynamical matrix is constructed and diagonalized
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at q = 0, using the MODES code (part of the DFTB+ software
package). A first postprocessing step involves the sorting of
eigenfrequencies and corresponding eigenvectors in ascend-
ing order. We also fix the gauge of each vibrational mode
by choosing the sign of each eigenvector so that its first
nonzero element is positive. Translational modes with zero
frequency are omitted in each sum over normal modes. The
3N − 3 pseudorandom numbers {t} of Eqs. (13) and (16)
are generated from scrambled Sobol’ [86,87] numbers, as
implemented by the SciPy project [88,89]. Atomic masses
are taken from the pbc-0-3 parameters, which assume isotope
averages weighted by natural abundance. We perform �-point
single-point calculations on all geometries generated by either
of the special displacement methods. To ensure comparabil-
ity between all methods, in terms of the underlying lattice
expansion, the equilibrated lattice constants obtained as a
time average over the 500 MD snapshots mentioned above
are assumed throughout. All lattice constants are listed in
Table S1 in the Supplemental Material [77]. Figure 3 further
illustrates the values of Table S1 and provides experimental
and semiempirical references, as discussed later in Sec. V.

V. RESULTS AND DISCUSSION

In the following, we discuss the merits and drawbacks of
several methods to account for EPR effects within the DFTB
formalism. Naturally, different temperature regions impose
specific demands on the underlying theory. While an ade-
quate description at low temperatures strongly depends on
nuclear quantum effects, i.e., correct Bose-Einstein statistics
for phonons in particular, anharmonicity may be negligible for
the relatively rigid covalent materials considered in this work.
In contrast, the high-temperature limit might be influenced by
sizable anharmonic contributions, whereas the phonon occu-
pation approaches classical equipartition and nuclear quantum
effects are diminishing.

The methods under consideration include MC integration
and one-shot evaluation (OS) of Eq. (7), Born-Oppenheimer
molecular dynamic simulations (MD), and a modified MC
scheme, that replace the quantum normal amplitudes of
Eq. (13) with their classical distribution of Eq. (16) derived
from the EQP. Since the MC and OS schemes assume Bose-
Einstein statistics for phonons, they are expected to provide
an adequate description at moderate temperatures, including
ZPR. However, MC and OS are formulated in terms of the
harmonic approximation and therefore lack any anharmonic
contributions. MD simulations, in contrast, neglect nuclear
quantum effects such as ZPR, but consider anharmonicity.
MC(eqp) takes neither of these effects into account and con-
stitutes a valuable tool in order to rationalize the differences
between the various methods.

Table IV lists the indirect band gap ZPR of C-dia and
Si-dia at the PBE- and DD-PBEh-DFTB levels of theory.
In fact, obtaining reliable estimates of ZP corrections from
experimental data is highly nontrivial. Monserrat et al. [90]
studied the sensitivity towards the employed extrapolation
scheme and found that the same experimental data of the
indirect gap of C-dia taken from Ref. [24] yields ZP correc-
tions ranging from −290 to −510 meV, depending on the
extrapolation scheme. The most accurate result is obtained

TABLE IV. Indirect band gap zero-point renormalization (ZPR)
calculated at the PBE- and DD-PBEh-DFTB levels of theory, us-
ing the electronic parameters established in Sec. III. The stochastic
Monte Carlo evaluation of Eq. (7) is based on 5×5×5 supercells of
the conventional unit cell.

ZPR [meV]

Material PBE-DFTB DD-PBEh-DFTB

C-dia −465 −487
Si-dia −78 −90

by a fourth-order phonon dispersion model, which suggests
an experimental ZPR of −410 meV [90]. Somewhat older
experimental estimates of −340 [91] and −370 meV [25]
are in good agreement with ab initio local density approxi-
mation (LDA)-DFT data, among others, such as −330 [21],
−334 [92], −343 [93], −344 [94], and −345 meV [32].
Our results for C-dia tend to overestimate the ZPR effect
compared to most of the references, yet both the semilocal
and hybrid DFTB values fall within the uncertainty range
determined in Ref. [90]. Comparing semilocal and hybrid
DFTB suggests that Fock-type exchange admixed to the
density functional approximation systematically predicts a
slightly stronger electron-phonon interaction and ZPR, fol-
lowing the trend of GW quasiparticle corrections [45,95].
However, while incorporating Fock-type exchange induces an
increase of the high-temperature slope of the indirect band gap
of C-dia by a few percent, it falls short of the approximately
40% found by Antonius et al. [45] for the direct gap and
many-body corrections to DFPT. The ZPR of the indirect
band gap of silicon has been computed at 56 [21], 57 [32],
58 [94], and 60 meV [92]. Measurements report 62 [22,96]
and 64 meV [25]. Again, our results tend to overestimate
the renormalization effect, which might be an artifact of not
fully converged k- and q-point sampling, as illustrated in
Figs. S3 and S6 in the Supplemental Material [77]. In particu-
lar, Fig. S6 suggests that the ZPR of Si-dia actually converges
to the mentioned references for larger supercell sizes. Fig-
ure 1 shows the phonon-induced band gap renormalization
for temperatures up to 1000 K. Experimental references are
fitted by Varshni’s equation to guide the eye and provide
an extrapolation to higher temperatures, for which no data
points are available. In the particular case of measurements
by Cheng et al., we depict the Varshni fit by a dashed seg-
ment. This is to emphasize that the extrapolation has to be
treated with caution since the high-temperature experimental
data seem to indicate a different trend. Given that absolute
values of the band gap are strongly underestimated by the
PBE functional (as evident from Fig. S8 in the Supplemental
Material [77]), we compare the temperature-induced changes
instead. Note that all methods without zero-point motion, i.e.,
MD and MC(eqp), are shifted by the respective ZPR obtained
within the MC scheme. There are clearly visible differences
between the methods at lower temperatures. Nuclear quantum
effects, as captured by the special displacement methods, are
neglected by classical MD simulations, leading to substantial
errors at low temperatures for the latter. Since our BOMD
simulations do not yield the correct Bose-Einstein statistics
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(a) (b)

FIG. 1. Phonon-induced band gap renormalization, of (a) diamond and (b) silicon, calculated at the PBE- and DD-PBEh-DFTB levels of
theory, using the electronic parameters established in Sec. III. Comparison is made between stochastic Monte Carlo integration (MC), either
based on normal amplitudes of Eq. (13) or Eq. (16) and Born-Oppenheimer molecular dynamic simulations (MD). Classical schemes are
shifted by the respective zero-point renormalization ZPR(MC) obtained within the MC scheme, that is, Ē 0

g = Eg(T = 0 K) + ZPR(MC) for
MD and MC(eqp). Solid lines refer to experimental references fitted by Varshni’s equation to guide the eye and provide an extrapolation (see
main text) to higher temperatures. Further computational details are provided in Sec. IV. Experimental references are taken from Ref. [97]
(black up-triangles), Ref. [24] (brown triangles left), and Ref. [98] (black down-triangles).

for phonons, but rather compliance with the EQP, modes of
higher energy are disproportionately excited with increasing
temperature, leading to a distinct slope already apparent at low
temperatures. As demonstrated, e.g., for diamond in Ref. [99],
it is precisely these higher-energy modes that exert the
strongest influence on the alteration of the band gap.

In fact, Fig. S7 in the Supplemental Material [77] pro-
vides evidence that for low temperatures, our BOMD yields
normal mode amplitudes in remarkable agreement with the
equipartition theorem, indicating that the thermostat works
as intended. For high temperatures, however, this correspon-
dence noticeably deteriorates due to the growing importance
of anharmonicity. It is therefore not surprising that we find
an excellent agreement of the classical (harmonic) MC(eqp)
scheme with BOMD at low temperatures, suggesting that
the discrepancy with respect to the quantum MC approach

is predominantly rooted in the underlying phonon statistics.
BOMD is inherently inadequate to address phonon-induced
gap renormalization at low temperatures and a proper treat-
ment of nuclear quantum effects is indispensable. Results
exhibiting the same qualitative trends as the experimental
references, and thus Varshni’s equation, are obtained only via
the original MC method. By comparing MC(eqp) with MD
data, we further infer that anharmonic contributions become
sizable when exceeding roughly 500 K. By about 1000 K,
anharmonic contributions for C-dia and Si-dia are as large as
0.1 and 0.05 eV, respectively, with important repercussions
for the interpretation of the quantum MC data. In principle,
the MC results require a correction for these anharmonic
contributions. In light of this, the flawless agreement with the
measurements of Clark et al. for C-dia at high temperatures
appears accidental; anharmonicity corrected results would,

(a) (b)

FIG. 2. Convergence analysis of the one-shot approach (OS) to Eq. (7), for (a) diamond and (b) silicon, with respect to the number of
sign configurations (indicated in round brackets). The phonon-induced band gap renormalization is calculated at the DD-PBEh-DFTB level of
theory, using the parameters described in Sec. III. Insets (boxes marked with orange dashed lines, linked by arrows to the main plot) are shown
to clarify the differences between data points by displaying them on a finer energy scale. Further computational details are provided in Sec. IV.

245103-7



TAMMO VAN DER HEIDE et al. PHYSICAL REVIEW B 109, 245103 (2024)

(a) (b)

FIG. 3. Temperature dependent lattice constants of (a) diamond and (b) silicon bulk, computed as a time average over 500 Born-
Oppenheimer MD snapshots. Snapshot geometries are extracted randomly within the last 50 ps of the trajectories, with a minimal time
interval of 10 fs. At low temperatures, the qualitative discrepancy between BOMD simulations of this work and measurements arises from
neglecting quantum nuclear effects, as discussed in Sec. V. Further computational details, including, e.g., the thermo- and barostat settings
of the isothermal-isobaric (NPT) ensemble, are provided in Sec. IV. Experimental references are taken from Ref. [100] (black up-triangles),
Ref. [101] (green triangles right), Ref. [102] (purple rhombs), Ref. [103] (brown triangles left), and Ref. [15] (blue circles), in addition to the
semiempirical quasiharmonic model (QHM) of Reeber and Wang [14] (dashed line).

in fact, overestimate the renormalization. For Si-dia, in con-
trast, such a correction would yield even closer agreement
with experiment. In line with the observations made when
computing the ZPR, Fock-type exchange admixed to the den-
sity functional approximation predicts a slightly stronger gap
renormalization. However, the effect is small and somewhat
concealed by the deviation between the methods. During our
work, we further observed that the one-shot approach does
not exactly reproduce the converged Monte Carlo integration
of Eq. (7), which we think requires further investigation.
In Ref. [32], Zacharias et al. proved that OS converges to-
wards MC in the limit of large supercells and sufficient sign
configurations. Figure 2 shows the convergence of the OS
approach with respect to the number of sign configurations,
in comparison with converged MC integration. In the case
of Si-dia, the OS results systematically approach MC when
increasing the number of sign configurations. For C-dia, the
improvement is barely worth the additional computational
effort and a significant discrepancy remains, even including
eight sign configurations. Since all of the MC-based results
shown in this work converged in the course of <10 random
samples in line with Ref. [31], there is no point in iterating
the sign hierarchy any further than eight configurations, as
the OS approach has already lost its efficiency edge over the
stochastic evaluation. Therefore, we must note that although
the OS method provides an extremely efficient and mostly
accurate approximation to the fully converged solution, the
inclusion of additional sign configurations is of limited use, at
least for the systems considered in this work. However, not ev-
ery electronic structure method is inherently accurate enough
for this slight discrepancy to actually matter. The same find-
ings emerge from Fig. S9 in the Supplemental Material [77],
which contains an equivalent study at the PBE-DFTB level of
theory.

We close with a brief discussion of the impact of thermal
expansion. Figure 2(a) highlights the slightly incorrect slope
of the MC results at low temperatures, which is a consequence

of the incorrect underlying temperature dependent lattice con-
stants extracted from equilibrated BOMD trajectories. This
is caused by the neglect of nuclear quantum effects, which
leads to a qualitative distinction between measurements and
classical MD, as illustrated by Fig. 3. The effect of pure lattice
expansion is presented in Fig. S5 in the Supplemental Mate-
rial [77] for PBE- and DD-PBEh-DFT(B). We find that the
band gap of C-dia decreases with temperature, with opposing
behavior in the case of Si-dia. However, in comparison with
the electron-phonon renormalization, the effect is small to an
extent that it has been neglected in other works [31,32].

VI. SUMMARY AND CONCLUSION

We have investigated phonon-induced band gap renor-
malization at the semilocal and dielectric dependent global
hybrid DFTB levels of theory, for the prototypical indirect
semiconductors diamond and silicon. The work is based
on newly generated electronic DFTB parameters, follow-
ing a general semiautomatic parametrization workflow. It
compares results obtained from a stochastic and one-shot
approach to Williams-Lax theory with BOMD simulations.
To this end, the parametrization is established for equilib-
rium structures calculated at the corresponding DFT level of
theory, neither explicitly targeting application to EPR stud-
ies nor incorporating experimental data. We find that DFTB
provides qualitatively correct temperature dependent band gap
renormalizations. Quantitative agreement with experiment,
however, might be difficult to achieve using Williams-Lax the-
ory. Zero-point renormalization (ZPR) estimates were still not
fully converged for supercells containing roughly 2000 atoms.
Dielectric dependent global hybrid DFTB, which admix Fock-
type exchange with the density functional approximation,
systematically yields slightly stronger electron-phonon inter-
actions, including the ZPR.

A proper treatment of nuclear quantum effects is indis-
pensable to obtain the same qualitative trends as seen in
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experiment. BOMD grossly overestimates the renormaliza-
tion at low temperatures, a consequence of the underlying
classical phonon statistics. We further studied the influence
of nuclear quantum effects by employing a modified stochas-
tic special displacement method based on normal amplitudes
derived from EQP, which exhibits excellent agreement with
classical BOMD calculations at low temperatures. This hybrid
method allowed us to disentangle the contribution of quantum
statistics and anharmonic corrections in a qualitative fashion.
We also performed a convergence analysis of the one-shot
approach, revealing a small residual discrepancy with respect
to fully converged Monte Carlo integration that, especially in
the case of diamond, remains even for up to eight sign con-
figurations. The comparison of gap values at different orders
is therefore not a good indicator for convergence. Still, the
OS method is an extremely efficient and accurate method at
temperatures below 500 K.

Distinguished by its computational efficiency, DFTB al-
lowed us to compare different theoretical approaches using
a consistent electronic structure method over a wide tempera-
ture range. DFTB retains full access to different treatments of
the electron-electron interaction, e.g., it allows investigation

of the influence of varying (range-separated) exchange-
correlation functionals on the final result. In the future,
we envision application of path-integral MD with DFTB to
incorporate both nuclear quantum and anharmonic effects in
sufficiently large unit cells, a regime previously considered to
be out of reach for first-principles methods.

The data and Slater-Koster files that support the findings of
this study are available within the paper and its Supplemental
Material [77].
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