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Non-Fermi-liquid behavior of the scattering rate in the three-orbital Emery model
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Motivated by the recent findings on the T -linear electronic scattering rate in the two-dimensional Hubbard
model, we have investigated the three-orbital Emery model and its temperature-dependent electronic and
quasiparticle scattering rates by adopting dynamical cluster quantum Monte Carlo simulations. By focusing on
two characteristic site energies εp of O-2p orbital relevant to cuprates and nickelates separately, our exploration
discovered that, for εp = 3.24 relevant to cuprates, the scattering rate can exhibit a linear-T dependence at
low temperature for a range of intermediate densities. In contrast, for larger εp = 6.0 presumably relevant to
nickelates, a wide range of densities support a downturn of the scattering rate below the temperature scale
T ∼ 0.1 with possibly two consecutive nearly linear-T regimes connected via a smooth crossover around
T ∼ 0.1. Furthermore, the temperature-dependent quasiparticle scattering rate generically departs from the unity
slope as predicted by the Planckian dissipation theory. Our presented work provides valuable insights on the
extensively studied three-orbital Emery model, particularly on the quantitative examination of non-Fermi-liquid
features of scattering rates.

DOI: 10.1103/PhysRevB.109.245102

I. INTRODUCTION

As a central topic in condensed matter physics, non-Fermi-
liquid (NFL) phenomenology is ubiquitous and has been
extensively studied in a wide variety of materials [1–9]. One
notable manifestation of NFL behavior is the strange metallic
phase in cuprate superconductors [2,4,8,9], where a T -linear
scattering rate 1/τ ∼ T is observed at quite a wide tem-
perature regime [10], while the Landau Fermi-liquid theory
conventionally predicts that 1/τ ∼ T 2 in most metals at low
temperatures. As an experimental mystery, the NFL features
like transport properties distinct from the normal Fermi liq-
uid have attracted much attention in the past decades [2–4].
Theoretically, the notion of Planckian dissipation, namely
the universal Planckian limit on the scattering rate, has been
proposed [3,11,12]. There have been numerous studies on
this T -linear scattering rate and other NFL properties in
the framework of two-dimensional Hubbard model [13–24].
In addition, theoretical analysis [25–30] and even ultracold
atomic experiments [31] have provided much insight on these
topics as well. Specifically, the recent study adopting dy-
namical cluster approximation demonstrated that the linear-T
dependence of electronic scattering rate was discovered to
occur in a limited range of doping levels for the square lattice
model [23]. Interestingly, for triangular lattice, the most recent
study uncovered two distinct doping regimes with different
origins of T -linear behavior [24].

One significant issue in the study of unconventional super-
conductors (SC) is the proper minimal model that captures
the essential low-energy physics. In spite of the success of
the one-band Hubbard model and its variants in understanding
unconventional SC, their common intrinsic assumption is that
the parent compounds, which are sometimes charge-transfer
insulators, e.g., cuprate SC [32], can instead be modeled as

effective Mott insulators. For this single-band Hubbard model,
although there is consensus on the absence of SC at hole
doping δ = 1/8, it is still highly debated on the existence of
SC at other dopings [33–35].

Alternatively, the three-orbital Emery model [36] provides
a more realistic representation of the copper oxide planes as it
explicitly incorporates the Cu dx2−y2 and the two ligand O-2pσ

orbitals in a unit cell. Owing to its more degrees of freedom,
the Emery model has been extensively studied with various
many-body methodologies in the past decades [37–50]. Given
that it provides a natural extension so that offers a more
accurate depiction of cuprate SC compared to the single-band
Hubbard model, it is imperative to ascertain whether it also
hosts the linear-in-T behavior of the scattering rate at low tem-
peratures. Note that due to the complexity originating from
the multiorbital nature, it remains a challenge of achieving
consensus on many aspects of its physics [49,51,52]. Further-
more, we believe that the three-orbital Emery model would
be particularly important in light of the most recent exper-
imental demonstration of the cupratelike electronic structure
of infinite-layer nickelates [53,54] implying that in some sense
the two different families of unconventional SC can be reason-
ably investigated in a common framework.

To this goal, we have explored the NFL behavior of the
electronic scattering rate of the two-dimensional Emery model
in different doping levels. The additional O degree of freedom
introduces one important tuning parameter, namely the site
energy εp of O-2p orbital compared to the 3d orbital (εd = 0 is
fixed). Considering that the recently discovered nickelate SC
[55–59] has been proven to have larger charge-transfer energy
� ≡ εp − εd than cuprates [60–62], we focused on two char-
acteristic site energies εp of O-2p orbital relevant to cuprates
and nickelates, respectively, to uncover its significant impact
on the NFL behavior. Specifically, our simulations revealed
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that, for εp relevant to cuprates, the electronic scattering rate
shows linear-T dependence in a wide range of densities but the
interception extrapolated to T = 0 are always tiny or negative.
Intriguingly, the increment of εp leads to distinct behavior of
the scattering rate, where there exist two consecutive tem-
perature intervals for different slopes of linear-T behavior.
Our investigation would not only deepen our understanding of
the fundamental NFL features within Emery model governing
the materials like cuprates but also unlock new connections
between these two superconducting materials in a common
theoretical framework.

II. MODEL AND METHOD

The three-orbital Emery model [36,51,52] is defined as
H = K0 + Kpd + Kpp + Vdd + Vpp with

K0 = (εd − μ)
∑

iσ

nd
iσ + (εp − μ)

∑
iασ

np
iασ ,

Kpd =
∑

〈i j〉ασ

t i, j,α
pd (d†

i,σ p j,α,σ + p†
j,α,σ di,σ ),

Kpp =
∑

〈 j j′〉αα′σ

t j, j′,α,α′
pp (p†

j,α,σ p j′,α′,σ + p†
j′,α′,σ p j,α,σ ),

Vdd = Udd

∑
i

nd
i,↑nd

i,↓,

Vpp = Upp

∑
j,α

np
j,α,↑np

j,α,↓, (1)

where d†
i,σ (di,σ ) creates (annihilates) a hole with spin σ

(=↑,↓) in dx2−y2 orbital at site i; while p†
j,α,σ (p j,α,σ ) creates

(annihilates) a hole with spin σ (=↑,↓) in the pα (α =
x, y) orbital. nd

iσ = d†
iσ diσ are the number operators; 〈.〉

means a sum over nearest-neighbor orbitals. Udd and Upp are
the strengths of the d and p onsite interactions, respectively.
The chemical potential μ controls the total hole density ρ,
where εd and εp are the site energies of the d and p or-

bitals, respectively. t i jα
pd = tpd (−1)ηi j and t j j′αα′

pp = tpp(−1)β j j′

are the nearest-neighbor d-p and p-p hopping integrals. In
the hole language, ηi j and β j j′ take values ±1 following the
conventions. In hole language, the phase convention is ηi j = 1
for j = i + 1

2 x, α = x or j = i − 1
2 y, α = y and ηi j = 0 for

j = i − 1
2 x, α = x or j = i + 1

2 y, α = y. In addition, β j j′ = 1
for j′ = j − 1

2 x − 1
2 y or j′ = j + 1

2 x + 1
2 y and β j j′ = 0 for

for j′ = j − 1
2 x + 1

2 y or j′ = j + 1
2 x − 1

2 y, α = x and α′ = y
or α = y and α′ = x, respectively. Other conventions are also
applicable due to the gauge invariance [51]. Unless otherwise
stated, we use the parameters listed below (in units of eV):
Udd = 7.5, Upp = 0, tpd = 1.13, tpp = 0.49, εd = 0. Note
that we do not adopt Udd = 8.5 in the literature to alleviate
the sign problem in our simulations with large dynamical
cluster approximation (DCA) cluster Nc = 16, which should
not qualitatively modify our results presented here.

In this work, we have endeavored to solve the two-
dimensional three-orbital Emery model at low temperatures
using the dynamical cluster approximation [63–65] with the
continuous-time auxiliary-field (CT-AUX) quantum Monte
Carlo (QMC) cluster solver [66]. As an advanced quantum

many-body numerical method, DCA evaluates the physical
quantities in the thermodynamic limit via mapping the bulk
lattice problem onto a finite cluster embedded in a mean-field
bath in a self-consistent manner [63,64], which is realized
by the convergence between the cluster and coarse-grained
(averaged over a patch of the Brillouin zone around a spe-
cific cluster momentum K) single-particle Green’s functions.
In particular, the short-range interactions within the cluster
are treated exactly with various numerical techniques, e.g.,
CT-AUX used in the present study; while the longer-ranged
physics is approximated by a mean field. Therefore, increas-
ing the cluster size systematically approaches the exact result
in the thermodynamic limit. The finite size of the cluster
is essentially approximating the whole Brillouin zone by a
discrete set of K points so that the self-energy �(K, iωn) is
a constant function within the patch around a particular K and
a step function in the whole Brillouin zone. Generically, the
quantum embedding methods including DCA have better mi-
nus sign problems than the finite-size QMC simulations. More
discussions on DCA technique and its insight on the strongly
correlated electronic systems can be found in Ref. [64].

Our focused physical quantity is the electronic scattering
rate γk ≡ −Im�(m)(K, ω = 0). Precisely, for a desired K,
we fit the imaginary part of self-energy −Im�(K, iωn) at a
few lowest Matsubara frequencies, e.g., n = 0, 1, 2.... to an
mth order polynomial function of iωn and then extrapolate
this polynomial to ω = 0. Although the m value and largest
n can affect the extrapolation generically, our results show
qualitatively similar trend of T dependence of γk at low tem-
peratures for different m and n values (not shown). Hence,
the conventional m = 2 at the lowest three (n = 0, 1, 2)
Matsubara frequencies are chosen for the extrapolation anal-
ysis [23,24]. Note that, as an approximation avoiding the
ambiguous and challenging analytical continuation procedure,
the accuracy of this extrapolation for zero frequency improves
at low temperatures where the Matsubara frequencies are
closer. In addition to the electronic scattering rate γk , we
have further investigated the quasiparticle scattering rate or in-
verse quasiparticle lifetime 1/τk = Zkγk , which incorporates
the quasiparticle weight Zk . Note that both these quantities
are only the approximations of the resistivity obtained in the
transport experiments manifesting the strange metal behavior.
In fact, the quasiparticle picture can even break down in the
strange metals [67–69]. Nonetheless, as important physical
quantities that can be evaluated efficiently in our numerical
DCA technique, they still provide valuable information on the
intrinsic physics of the Emery model.

Most of our calculations were conducted with Nc = 16
sites DCA cluster for fine enough but still computation-
ally manageable momentum-space resolution including nodal
K = (π/2, π/2) and antinodal K = (π, 0) directions. De-
spite its accuracy, the relatively large Nc = 16 does not allow
accessing low enough temperatures due to QMC sign problem
so that some simulations using Nc = 4 provide further insights
on the lowest temperature features in spite of the lack of the
self-energy at the nodal direction. Fortunately, different Nc

lead to quite similar results for high dopings (large ρ) and
large εp. At lower dopings, however, it is not the case anymore
so that adopting small Nc = 4 can lead to deviations from the
physical reality and require more careful examination.
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FIG. 1. (a)–(h) Temperature dependence of the electronic local scattering rate � and momentum-resolved γk at nodal (π/2, π/2) and
antinodal (π, 0) directions for various density at εp = 3.24 relevant to cuprates; (i)–(j) Comparison of γk with varying densities; (k)–(l)
Frequency dependence of −Im�(K, iωn) for different densities at T = 0.06.

Another aspect is the momentum differentiation of the
scattering rate, namely the deviation between nodal and antin-
odal directions, which is conventionally associated with the
pseudogap (PG) features [23]. It is also valuable to explore
the local scattering rate � as the momentum average of γk

[24]. We believe that this is worthwhile even in the anisotropic
situations to explore the difference between momentum aver-
aged scattering rate and the values for a particular K direction.
Throughout this work, we focus on the temperature evolution
of � and γk for various hole density ρ per unit cell. Note
that ρ = 1 corresponds to the half-filled system and ρ > 1
measures the hole doping. Regarding the site energy εp, we do
not restrict on the case with εp = 3.24 eV specific to cuprates
but extend it to larger value, e.g., εp ∼ 6.0 eV relevant to
different compounds, e.g., nickelates [60–62] or physical sit-
uations. We mention that the lowest accessible temperature is
T = 0.02 eV for Nc = 4 simulations, which corresponds to
∼230 K in reality. It is extremely challenging to get access to
even lower temperatures in various finite-temperature many-
body simulations normally due to the negative fermionic sign
problem.

III. RESULTS

A. εp = 3.24 eV for cuprates

Figure 1 illustrates the temperature dependence of local
scattering rate � as well as momentum-resolved γk of d or-
bital for varying density ρ at εp = 3.24 relevant to cuprates.
At small ρ = 1.05 (small hole doping) in panel (a), both
the nodal and antinodal γk show a prominent upturn at
low temperatures indicating the insulating behavior due to
its closeness to the charge-transfer insulator at half-filling

ρ = 1.0. This trend changes to the typical pseudogap (PS)
feature akin to the single-band model [23], which is man-
ifested by the observation that only the antinodal γk shows
the upturn while the nodal γk remains its monotonic evolution
until lowest simulated temperature, for instance, as shown in
panel (b).

As the doping becomes progressively heavier (when ρ

reaches 1.2 or higher), the linear-T dependence of γk at both
directions extend to T → 0. Our simulation indicate that the
slope of γk (T ) at two directions are almost the same in a
wide range of densities as evidenced in Fig. 1, panels (c)–(f).
Interestingly, further hole doping at ρ > 1.25 leads to the
nearly isotropic γk (T ), namely independent on the K direc-
tion. This is evidenced by the overlap of the local scattering
rate �(T ) with the momentum-resolved γk (T ) for intermedi-
ate density range as shown in panels (d)–(f). The finding of
this rather isotropic scattering rate might have connection with
previous theoretical proposal relating the non-Fermi liquid
and bad-metal physics to local spin fluctuations [22,70]. The
panels (d)–(f) also show that the linear-in-T scattering rate
persists for quite a wide density regime around ρ ∼ 1.2 − 1.5,
which extends to heavily doped side. Only at even higher
density ρ > 1.5, γk (T ) deviates from the linear evolution
at low temperatures. Note that in fact we cannot determine
the physical behavior of γk (T ) at even lower temperatures,
where the evolution can change in a qualitative manner. One
additional interesting feature lies in the behavior of the local
scattering rate � at high density, where it deviates from the
overlapped γk of nodal and antinodal directions, which arises
from the slightly different behavior at other directions, e.g.,
K = (0, 0), (π, π ). Therefore, the truly isotropic scattering
rate only applies for the intermediate density regime.
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FIG. 2. Temperature dependence of the electronic local scattering rate � and momentum-resolved γk at nodal (π/2, π/2) and antinodal
(π, 0) akin to Fig. 1 while at εp = 6.0, presumably relevant to nickelates.

The caveat here is that physically the scattering rate should
remain non-negative. Nonetheless, the interception of the lin-
ear fit (extrapolating γk to zero via γk ∼ aT + b) leads to
a nonphysical γk (T = 0) < 0. In fact, our simulated curves
all show quite small positive or even negative γk (T = 0).
Hence, higher-order corrections such as quadratic evolution
might develop in γk at lower T as the indication of the onset
of Fermi-liquid physics or more complicated NFL features.
Unfortunately, our simulations are limited by the severe sign
problem for large enough Nc so that the physics at T → 0
is not accessible at least for DCA simulations. As discussed
previously in the literature [23,24], it is not appropriate to
directly designate the observed behavior as the strange metal
in these cases.

More detailed comparison between various situations are
displayed in the bottom row of Fig. 1. The left two panels pro-
vide evidence that the slope of linear-T scattering rate γk (T )
decreases monotonically with increasing density. In fact, the
scale of γk (T ) is already quite small at ρ = 1.5, indicating
the strong metallic nature owing to the heavily doped charge
carriers, in spite of its linear-T behavior. For completeness,
the bottom right two panels give the frequency depen-
dence of the self-energy, where the scattering rate γk (T ) is
extracted. The transition from the low-density momentum
differentiation to high-density isotropy is obvious.

B. εp = 6.0 eV for nickelates

As mentioned before, our study does not restrict on the
parameter sets relevant to cuprates. Figure 2 demonstrates
the same scattering rates and frequency-dependent self-energy
with only different εp = 6.0 eV closely related to the recently
discovered nickelate SC [60,62].

Firstly, the distinction from the εp = 3.24 situation is that,
at the same density, γk is globally larger than the values for
εp = 3.24, indicating stronger interaction effects. Note that
our model does not include the explicit Upp (to avoid the
severe sign problem but its role needs further exploration)
so that the sole player governing the electronic interaction
seems originating from Udd while it normally leads to mo-
mentum differentiation, whose absence in our simulations
prompts additional reasons for the observed larger scattering
rates. Physically, the large εp discourages the charge carriers
locating onto the p orbitals so that the effectively more carrier
density on d orbital induces stronger interaction effects from
Udd . The charge redistribution with different εp can be clearly
seen in Fig. 3, where the larger εp = 6.0 promotes more hole

FIG. 3. Evolution of charge distribution with total density ρ.
Larger εp = 6.0 promotes more hole occupancy on d orbital com-
pared to εp = 3.24 while suppresses ρp.
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occupancy on d orbital compared to εp = 3.24 while sup-
presses ρp. Note also the comparison of the increasing rate
of ρd (ρ) versus ρp(ρ) for two different εp.

Secondly, γk is almost isotropic with respect to K regard-
less of the density except for very low hole doping ρ = 1.05
in panel (a). This is further evidenced by the overlap between
the local scattering rate � and the momentum-resolved γk in
most cases. As discussed before, the reduced hopping through
the oxygens due to higher εp leads to stronger effective Udd .
Indeed, previous studies on the single-band Hubbard model
revealed that the momentum-selective behavior (pseudogap
physics) does not persist for large enough Hubbard U [71],
which is consistent with the isotropy discovered here. Owing
to this observation, it is plausible to examine the fate of γk at
lower temperature by adopting smaller Nc = 4 DCA cluster,
which will be discussed later.

The most prominent feature for εp = 6.0 is that the linear-
T dependence of γk occurs only for a limited temperature
interval at small density like ρ = 1.05 in panel (a) or large
density ρ = 1.7 in panel (h) in spite of the extrapolated
negative interception at T = 0. In contrast, for intermedi-
ate densities, γk exhibits a downturn as the temperature
decreases as shown in panels (c)–(g). This phenomena is
reminiscent of the recent findings of T -linear scattering
for single-band Hubbard model on triangular lattice that is
claimed to originate from two distinct mechanisms, namely
the metal-to-pseudogap transition at low doping and solely
interaction-driven at high dopings [24]. Its connection with
our findings here is unclear and may deserve further explo-
ration. Note that our observed downturn starts from a slightly
higher temperature scale T ∼ 0.1.

Akin to Fig 1, the two left bottom panels provide sum-
marized comparison between γk at the antinodal and nodal
directions. The trend of decreasing scattering rate with hole
doping is apparently similar to the situations for εp = 3.24.
The two right bottom panels vividly show the isotropy of the
self-energy in systems of large εp = 6.0.

C. Downturn of γk at large εp

The intriguing downturn features motivate us to further
explore the associated physics at lower temperatures. Whereas
the effectively stronger interaction effects for larger εp = 6.0
do not allow us to get access to lower temperatures, the
isotropy of the scattering rate revealed in Fig. 2 fortunately
permits adopting smaller DCA cluster like Nc = 4 to partly
alleviate the QMC sign problem for simulating lower T
systems.

Figure 4 compares the results of γk at antinodal direc-
tion between Nc = 4 and Nc = 16, which generically display
quantitative deviation except for high density, e.g., ρ = 1.7.
It can be seen that the dominant feature is the two consecu-
tive nearly linear-T regimes of antinodal γk connected via a
smooth crossover around T ∼ 0.08 for intermediate densities
as shown in panels (c)–(g). Nonetheless, this feature is only
obvious for Nc = 4 simulations while larger Nc = 16 seem-
ingly smooths these out so that might question the physical
reality of this phenomenology in the Emery model.

Physically, this is reminiscent of the recent experi-
mental demonstration of the crossovers between different

FIG. 4. Comparison of antinodal scattering rate γk between Nc =
4, 16 simulations for εp = 6.0. The curves at lower temperature
reveal additional features unavailable in large Nc = 16 simulations.

temperature regimes signaling the Fermi liquid (FL), strange
metal (SM), and empirical high-temperature bad-metal state
(similar to the strange metal but does not host well-defined
quasiparticle) [72]. In fact, the earlier theoretical calculations
based on large-U Hubbard and t-J models have uncovered
similar behavior [26,73–75]. At the lowest temperature, the
resistivity is typically proportional to T 2 as a FL. Increasing
temperature induces the linear resistivity indicating the SM
regime. At even higher temperatures, the system enters into
a bad-metal regime with a different slope of the linear-T
resistivity.

Apart from the feature of two linear-T regimes, the low-
density limit shows saturated scattering rate, which cannot
be seen at large Nc = 16 simulations. This again implies
the intrinsically strong interaction effects arising from large
εp = 6.0. In contrast, at high density ρ = 1.7, the perfect
agreement between Nc = 4, 16 at high temperatures provides
evidence on the crossover to the apparent T 2 behavior seen for
Nc = 4 curve at lower temperatures. This Nc = 4 simulation
complements our understanding of ultimate fate of the linear-
T scattering rate with an unphysical negative interception
extrapolated to T = 0.

In addition to the two characteristic values of εp = 3.24
and 6.0, Fig. 5 provides more information on the εp de-
pendence of the scattering rate. Here, the deviation between
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FIG. 5. εp dependence of the electronic scattering rate γk at
antinodal (solid) and nodal (dashed) directions, whose downturn
occurs for relatively large εp = 4.5, 6.0 at intermediate densities of
panels (b)–(c). The increase of εp generically leads to larger scatter-
ing rate reflecting stronger interaction effects.

antinodal (solid) and nodal (dashed) γk is mostly dominant
at smaller density like ρ = 1.2 while can be neglected at
larger densities. Apparently, the downturn of γk occurs only
for relatively large εp = 4.5, 6.0 at intermediate density, e.g.,
ρ = 1.3, 1.4 in panels (b)–(c). It is naturally expected that the
downturn folding might be even more obvious at larger εp >

6.0 while the temperature scale is always around T ∼ 0.1.
Undoubtedly, Fig. 5 also illustrates that the increase of εp

generically leads to higher scale of the scattering rate, which
matches with the physical expectation that larger εp promotes
higher carrier density on d orbital so that effectively induces
stronger interaction effects. Interestingly, if naively assuming
the T α dependence of γk , panel (d) at large density ρ = 1.7
vividly displays the gradual crossover from the α > 1 at small
εp = 2.0 to α < 1 (downturn) at large εp = 6.0.

D. Quasiparticle weight and scattering rate

In the presence of electronic interaction, it is worthwhile
further investigating the quasiparticle scattering rate or in-
verse quasiparticle lifetime 1/τk = Zkγk , which differs from
the electronic scattering rate γk by the so-called quasiparticle
weight Zk . The consideration of the quasipariticle scattering
rate is essential to account for the many-body interaction
effects within strongly correlated systems and is also more
closely related to the experimental transport properties than
the single-particle electronic scattering rate γk discussed ear-
lier [76]. As mentioned earlier, note that the quasiparticle
picture can even break down in the strange metal, which is
still an unresolved open problem [67–69]. Here our adopted
conventional quasiparticle picture can still provide some in-
sight on the properties of the Emery model.

Numerically, Zk can be approximately evaluated [24] by

Zk ≈
[

1 − ��(iω0)

ω0

]−1

. (2)

One prediction of the Planckian dissipation theory
[3,11,12] is that the inverse quasiparticle lifetime 1/τk is
proportional to absolute temperature T with a coefficient close
to unity [3,11,12], which is found to be quantitatively incom-
patible with the previous numerical studies on single-band
model on square [23] and triangular lattice [24].

Figure 6 demonstrates that this prediction of unity slope
only crudely holds true for ρ ∼ 1.4 at εp = 3.24 and for
ρ ∼ 1.5 at εp = 6.0 (note that the black dashed line has unity
slope for reference). In this sense, we have not found any de-
cisive signature for the unity slope feature associated with the
universal Planckian limit. Apart from the slope, the general
trend of the quasiparticle scattering rate in terms of the density
is similar to the electronic scattering rate γk for both nodal
and antinodal directions. Besides, the bottom panels show that
there also exists the downturn of 1/τk at temperatures below
T ∼ 0.1 for intermediate densities, which matches with the
behavior of γk generically.

Figure 6 also displays the quasiparticle weight Zk that is
capable to characterize its closeness to conventional Fermi liq-
uid (with Zk = 1). Undoubtedly, Zk increases with the density
reflecting the role of doped holes. Additionally, it is always
weakly temperature dependent or even independent except for
the low doping ρ = 1.05, 1.1 at εp = 3.24, which is normally
associated with their PG features.

IV. SUMMARY AND OUTLOOK

In summary, motivated by the numerical exploration of
the non-Fermi-liquid signatures in the single-band Hubbard
model [23,24], we have employed the dynamic cluster quan-
tum Monte Carlo calculations to systematically investigate the
temperature dependence of the electronic and quasiparticle
scattering rates in the framework of two-dimensional three-
orbital Emery model, which is generically believed to capture
the physics of cuprate SC more accurately [23,51,52].

Our numerical simulations reveal that the systems with
moderate site energy of p-orbital εp = 3.24 relevant to
cuprates support the linear-in-T scattering rates for a range
of intermediate densities ρ = 1.2 − 1.5, while the small den-
sities feature PG behavior and large densities show the
conventional Fermi liquid characterized by T 2 scattering
rates. Nonetheless, in many cases, the interception at T = 0
is negative, indicating that other factors have to be included to
account for the physical reality.

Our study also extends to the relatively large εp = 6.0,
presumably relevant to newly discovered nickelate SC. For
these systems, the common feature lies in the downturn of
the scattering rate below the temperature scale T ∼ 0.1. Our
simulations at smaller DCA cluster Nc = 4, which is reason-
able owing to the isotropy of the scattering rate, confirms this
observation by revealing two consecutive linear-T regimes
of γk . More simulations on other εp values provide further
evidence that only relatively large εp would induce such a
downturn of γk . To have a complete understanding of the
many-body effects, we also illustrated the behavior of quasi-
particle scattering rate, which generically departs from the
unity slope as the prediction of Planckian dissipation theory.
The quasiparticle weight is monotonically increasing with the
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FIG. 6. Temperature dependence of the momentum-resolved quasiparticle scattering rate 1/τk and quasiparticle weight Zk at nodal
(π/2, π/2) and antinodal (π, 0) directions for various density at (Upper) εp = 3.24 and (Lower) εp = 6.0.

hole density as expected owing to the enhanced metallicity
from the doped charge carriers.

Overall, our numerical findings of the three-orbital
Emery model generally match with those observed in two-
dimensional Hubbard model [23]. The hole doping/density
range of NFL state is very narrow. Hindered by the
negative sign problem, however, we are unable to defini-
tively identify the doping range exhibiting perfect linear-
in-temperature behavior in large enough DCA cluster. Our
presented work provides quantitative examination of linear-
T features of the scattering rates in the celebrated Emery
model.

Because our current investigation only focused on the scat-
tering rate but neglected other closely related physics such
as SC and magnetic/charge ordering, some further direc-
tions deserve future exploration. For instance, the most recent
transport experiments have revealed some relations between
the superconducting Tc and the strange metal’s slope A as
Tc ∼ √

A in the cuprate SC [77]. The detailed studies on the
connection between SC and the behavior of scattering rate
would be interesting. Besides, despite that relatively large εp

might be detrimental to SC [52], it can be fruitful to find other
physical quantities having decisive relation with the behavior
associated with the scattering rate uncovered in the present
work. Another direction might be more investigation on the
high hole or electron doping systems since our current study

at large hole density ρ = 1.7 has demonstrated interesting
linear-T behavior of the scattering rate.

In addition, in light of the most recent experimental demon-
stration of the cupratelike electronic structure of infinite-layer
nickelates [53,54] revealing the dominant role of dx2−y2 orbital
and the previous evidence of the large charge-transfer energy
in these nickelates, our current investigation of the Emery
model at relatively large εp would provide particularly im-
portant information on the nickelates. This exploration sheds
light on some fundamental factors governing the physics
of nickelates and cuprates. However, it is still questionable
that whether the uncovered three-dimensional (3D) electron
pocket centered at Brillouin zone corner originating from
the rare-earth atoms of the nickelates plays the vital or only
marginal roles.
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