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Electronic structure calculations based on many-body perturbation theory [e.g., GW or the random-phase
approximation (RPA)] require function evaluations in the complex time and frequency domain, for example,
inhomogeneous Fourier transforms or analytic continuation from the imaginary axis to the real axis. For inho-
mogeneous Fourier transforms, the time-frequency component of the GreenX library provides time-frequency
grids that can be utilized in low-scaling RPA and GW implementations. In addition, the adoption of the compact
frequency grids provided by our library also reduces the computational overhead in RPA implementations with
conventional scaling. In this paper, we present low-scaling GW and conventional RPA benchmark calculations
using the GreenX grids with different codes (FHI-aims, CP2K, and ABINIT) for molecules, two-dimensional
materials and solids. Very small integration errors are observed when using 30 time-frequency points for our test
cases, namely <10−8 eV/electron for the RPA correlation energies, and � 10 meV for the GW quasiparticle
energies.
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I. INTRODUCTION

GW calculations [1] have become part of the standard
toolbox in computational condensed-matter physics for the
calculation of photoemission and optoelectronic spectra of
molecules and solids [2–7]. Recent highlights include a wide
array of advancements, such as the application of GW to
deep core excitations [8–16], GW studies of two-dimensional
(2D) materials [17–24] and metal-halide perovskites [25–30].
Additionally, research has delved into exploring excited-state
potential energy surfaces from GW+Bethe-Salpeter [31–33]
and applying the GW methodology in magnetic fields [34–36].
Relativistic GW schemes with two-component spinors have
recently gained attention to treat spin-orbit coupling [37–40].
Furthermore, machine learning models have been developed
for quasiparticle energies [41–47] and studies have inves-
tigated electron dynamics from Green’s functions [48–56].
Additionally, there have been focused studies related to GW
itself, like benchmarking the accuracy of the GW method
[57–60] and benchmarking the numerical precision of GW
implementations [61–67].

For the calculation of total energies, the random phase ap-
proximation (RPA) [68,69] offers several appealing features.
It includes long-range dispersion interactions and dynamic
electronic screening, that are absent from density functionals
like the local density approximation [70] or the generalized
gradient approximation (GGA) [71], and even absent from
hybrid functionals admixing GGAs and exact exchange [72].
Despite its large computational cost, RPA has been applied
to a wide range of systems, from zero to three dimensions
[73–79]. Recent highlights include RPA forces [80–85], RPA-

based interatomic potentials [86–88], and applications to
complex systems such as phase transitions in solid hydrogen
[89] and cesium-lead-triiodide [90], oxychlorinated platinum
complexes [91], chromophores [92], and perhalogenated ben-
zene clusters [93].

Several algorithmic bottlenecks, however, render GW and
RPA calculations challenging, especially for complex or
disordered systems with large simulations cells. In their con-
ventional implementations, the computational cost increases
with the fourth power of the system size Nat, O(N4

at ). As a
consequence, conventional GW calculations are usually lim-
ited to systems with a few hundred of atoms [41,94]. There are
many approaches to make larger system sizes tractable, which
include massively parallel implementations over physically
motivated approximations to novel numerical methods. Ef-
ficient parallelization schemes were developed for execution
on more than 10 000 CPU cores [94–98] and first algorithms
have been already proposed for the new generation of heavily
GPU-based (pre)exascale supercomputers [99–101]. An ex-
ample for more physically motivated developments are GW
embedding schemes, where a small part of the system is
calculated at the GW level and the surrounding medium is
treated at a lower level of theory [102–106].

In order to reduce the computational cost of GW and
RPA calculations, an alternative path relies on low-scaling
algorithms that allow one to tackle larger and more realistic
systems. Low-scaling GW methods can be constructed us-
ing space-local representations and imaginary time-frequency
transforms [107] so that cubic scaling of the computational
cost in the system size Nat is achieved, O(N3

at ), instead of
quartic scaling O(N4

at ) of conventional GW algorithms [94].

2469-9950/2024/109(24)/245101(15) 245101-1 ©2024 American Physical Society

https://orcid.org/0000-0001-9324-6891
https://orcid.org/0000-0001-8678-8246
https://orcid.org/0000-0002-2196-9350
https://orcid.org/0000-0001-6912-7745
https://orcid.org/0000-0003-4239-0978
https://orcid.org/0000-0002-7007-9813
https://orcid.org/0000-0002-8377-6829
https://ror.org/02495e989
https://ror.org/01eezs655
https://ror.org/042aqky30
https://ror.org/020hwjq30
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.109.245101&domain=pdf&date_stamp=2024-06-03
https://doi.org/10.1103/PhysRevB.109.245101


MARYAM AZIZI et al. PHYSICAL REVIEW B 109, 245101 (2024)

Several cubic-scaling algorithms have been recently im-
plemented, e.g., using a plane-wave basis set and real-space
grids [108–111] or using atom-orbital-like basis functions
[24,39,112–117]. Several key steps of these algorithms, like
computing the polarizability, scale quadratically or even lin-
early [118,119] so that the observed scaling is often close
to quadratic [24,112,113]. All of these GW algorithms have
in common that three Fourier transforms between imaginary
time and imaginary frequency and vice versa need to be per-
formed numerically. The total computational cost increases
linearly with the number of time and frequency grid points,
which makes it attractive to construct numerically accurate
grids with a minimal number of grid points. Time and fre-
quency grids can be constructed from solving an optimization
problem, either using least-squares optimization [120–122]
or the minimax approximation [108,110,123]. The minimax
approximation is referred to as the best approximation, in
the sense that it minimizes the maximum error of the nu-
merical integration [108,124]. We have recently published
time-frequency grids generated from the minimax approxi-
mation in the open-source GreenX library [125,126], which
is interfaced to the electronic structure codes FHI-aims [127],
CP2K [128], and ABINIT [129,130].

In this paper, we use minimax grids from the GreenX
library [125,126] together with the three codes to perform
accuracy benchmark calculations for GW quasiparticle ener-
gies and RPA correlation energies. Our goal is to examine the
validity of the grids for a wide range of finite and extended
systems. We aim to demonstrate that the GreenX grids are
reliable for low-scaling algorithms, and that also conventional
RPA implementations with quartic scaling benefit from our
library.

The article is organized as follows: In Sec. II, we discuss
the low-scaling GW and RPA algorithm in imaginary time and
imaginary frequency. Section III describes the minimax for-
malism for creating imaginary-time and imaginary-frequency
grids. We finally present low-scaling GW and conventional-
scaling RPA benchmark calculations on molecules, 2D
materials and solids, where computational details are given
in Sec. IV. We present and discuss the results in Sec. V and
provide our conclusions in Sec VI.

II. RPA AND GW METHODOLOGY IN IMAGINARY TIME
AND FREQUENCY

In this section, we define the Green’s functions, suscep-
tibility and Fourier transformations from imaginary time to
imaginary frequency and vice versa, which are then used to
compute the RPA correlation energy and GW quasiparticle en-
ergies. In the entire paper, we consider a nonmagnetic system
with scalar wave function and we consequently drop the spin
index.

Within the adiabatic-connection fluctuation-dissipation
formalism [73,74,131–133], the RPA correlation energy can
be written as

ERPA
c =

∫ ∞

0

dω

2π
Tr{ln[1 − χ0(iω)V ] + χ0(iω)V }, (1)

where χ0 stands for the RPA irreducible independent-particle
susceptibility (or irreducible density response) evaluated on

the imaginary frequency axis (iω with ω being real) and
V denotes the frequency-independent Coulomb interaction.
Spatial arguments have been omitted for brevity. “Tr” is the
trace over such spatial arguments. The RPA susceptibility is
also an ingredient for the GW self-energy.

In the Adler-Wiser formula [134,135], the noninteracting
susceptibility in the imaginary-frequency domain can be ob-
tained as follows:

χ0(r, r′, iω) =
occ∑

j

unocc∑
a

ψ∗
a (r′)ψ j (r′)ψ∗

j (r)ψa(r)

× 2(ε j − εa)

ω2 + (ε j − εa)2
, (2)

where indices j and a refer to occupied and unoccupied Kohn-
Sham (KS) or Hartree-Fock states [ψ (r)] with energies ε.
The computational cost required to compute Eq. (2) in the
frequency domain scales as O(N4

at ), since the number of states
( j and a indices) and discretized real space points (r and
r′) scale linearly with system size Nat. This is a significant
bottleneck, which can be reduced by invoking the low-scaling
space-time approach [107].

By Fourier transforming Eq. (2) in imaginary time (iτ ), the
two summations decouple,

χ̂0(r, r′, iτ ) = −
occ∑

j

ψ j (r′)ψ∗
j (r)eε j |τ |

×
unocc∑

a

ψ∗
a (r′)ψa(r)e−εa|τ |. (3)

A circumflex accent is used to denote Fourier transformed
functions of the imaginary time. For completeness, we men-
tion here that Eq. (3) is equivalent to expressing χ0 as a
product of two noninteracting Green’s functions,

χ̂0(r, r′, iτ ) = Ĝ(r, r′, iτ )Ĝ(r′, r,−iτ ), (4)

with

Ĝ
(
r, r′, iτ

)
=

{ ∑occ
j ψ j (r)ψ∗

j (r′)e−|(ε j−εF )τ | for τ < 0,

−∑unocc
a ψ∗

a (r)ψa(r′)e−|(εa−εF )τ | for τ > 0,
(5)

where εF is the Fermi energy. For keeping the notation short
and in line with the convention used in Ref. [110], we have
omitted the prefactor, the imaginary unit, from the Green’s
function unlike in our recent presentation of the GreenX
library [126]. The computational cost of the Green’s func-
tion scales cubically in Nat and so does χ̂0. The space-time
approach therefore saves one order in Nat compared to the
aforementioned Adler-Wiser formalism.

With Fourier transformations χ0 and χ can be switched
between (imaginary) time and frequency,

f (r, r′, iω) =
∫ +∞

−∞
e−iωτ f̂ (r, r′, iτ )dτ,

f̂ (r, r′, iτ ) = 1

2π

∫ +∞

−∞
eiωτ f (r, r′, iω)dω. (6)
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Since both susceptibilities are even functions in frequency
and time [χ0(iω) = χ0(−iω) and χ̂0(iτ ) = χ̂0(−iτ )], these
transforms simplify to cosine transformations,

χ0(r, r′, iω) =
∫ +∞

−∞
eiωτ χ̂0(r, r′, iτ )dτ

=
∫ +∞

−∞
(cos(ωτ ) + isin(ωτ )) χ̂0(r, r′, iτ )dτ

=
∫ +∞

−∞
cos(ωτ ) χ̂0(r, r′, iτ )dτ

= 2
∫ +∞

0
cos(ωτ ) χ̂0(r, r′, iτ )dτ. (7)

After a Fourier transforming χ to imaginary frequency,
the dielectric function can be calculated in the imaginary-
frequency domain as

ε(r, r′, iω) = δ(r, r′) −
∫

dr′′ V (r, r′′)χ0(r′′, r′, iω). (8)

The screened Coulomb interaction W is then given by

W (r, r′, iω) =
∫

dr′′ε−1(r, r′′, iω)V (r′′, r′) (9)

and cosine transformed into the time domain,

Ŵ (r, r′, iτ ) = 1

2π

∫ +∞

−∞
eiωτ W (r, r′, iω) dω,

= 1

π

∫ +∞

0
cos(ωτ )W (r, r′, iω) dω. (10)

The self-energy follows as a product with the Green’s function

	̂(r, r′, iτ ) = −Ĝ(r, r′, iτ )Ŵ (r, r′, iτ ). (11)

The quasiparticle energies are then obtained from the matrix
elements of the self-energy with respect to the single-particle
wave functions of the corresponding states after Fourier trans-
forming the self-energy from imaginary time to imaginary
frequency. Since the self-energy is neither an odd nor an even
function, both cosine and sine transformations are needed
[110],

	(iω) = −
∫ ∞

∞
dτ Ĝ(iτ )Ŵ (iτ )eiωt (12)

= 2
∫ ∞

0
dτ 	̂c(iτ ) cos(ωτ ) (13)

+ 2i
∫ ∞

0
dτ 	̂s(iτ ) sin(ωτ ), (14)

where

	̂c(iτ ) = − 1
2 [Ĝ(iτ ) + Ĝ(−iτ )]Ŵ (iτ ), (15)

	̂s(iτ ) = − 1
2 [Ĝ(iτ ) − Ĝ(−iτ )]Ŵ (iτ ). (16)

This is the last step in the low-scaling algorithm, which will
then be followed by the calculation of the quasiparticle energy
using analytic continuation [2,110,113].

III. MINIMAX TIME AND FREQUENCY
INTEGRATION GRIDS

In this section, we describe the generation of time and
frequency integration grids using the minimax approximation,
following the procedure from Ref. [108] (Secs. III A – III C)
and partially Ref. [110] (Sec. III D).

A. Analytical form of functions in time and frequency

In Sec. II we have discussed that the computation of the
susceptibility in the imaginary time domain scales favorably.
However, the subsequent time-frequency Fourier transform
of such a function is challenging if performed numerically.
Equation (2) in the frequency domain is the exact (cosine)
Fourier transform of Eq. (3), in the time domain. In a numer-
ical approach, Eq. (3) has to be evaluated for a finite set of
time points, where the set should be as small as possible for an
efficient algorithm. However, the functions introduced in the
previous section in the imaginary time and frequency domains
usually have long tails and very localized features. As such,
a usual fast Fourier transform, with homogeneously spaced
integration grids, would need numerous sampling points. In-
stead, a nonuniform Fourier transform (actually cosine and
sine transforms) would yield a reduction by more than one
order of magnitude in the computational requirements (both
CPU time and memory).

The problem is thus to find the “best set” of time points,
and associated weights, to discretize the integral in Eq. (7).
Similarly, the inverse transform Eq. (10) from frequency to
time has to be performed on an equivalently “best set” of
frequency points. One option for defining a “best set” of points
and weights is to exploit the functional form of the frequency
dependence of Eq. (2), and the time dependence of Eq. (3).
For simplicity [108], we single out the frequency and time
dependence of Eqs. (2) and (3),

χ (iω) =
∑

μ

χμφω(xμ), (17)

χ̂ (iτ ) =
∑

μ

χμφ̂τ (xμ), (18)

thanks to the auxiliary functions

φω(x) := 2x

x2 + ω2
, (19)

φ̂τ (x) := e−x|τ |, (20)

where μ in Eqs. (17) and (18) runs over the occupied-state
index j and the unoccupied-state index a, xμ is the energy
difference between occupied and unoccupied states (xμ =
εa − ε j > 0), and χμ = ψ∗

a (r′)ψ j (r′)ψ∗
j (r)ψa(r) denotes the

elements of the susceptibility matrix in the transition space.
Note that εmin � xμ � εmax, with εmin being the energy or
band gap and εmax the maximum energy difference.

B. Time and frequency integration for the direct MP2
correlation energy

We make use of the functional forms expressed in Eqs. (17)
and (18) in the following way [108]: In Eq. (1), for the RPA
correlation energy, the function ln(1 − x) + x = −x2/2 −
x3/3 − . . . is appearing. Thus, the lowest order in the RPA
correlation energy expansion in χ (iω)V is given by the second
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order,

E (2)
c = − 1

4π

∫ ∞

0
dω Tr{(χ (iω)V )2} (21)

= −1

4

∑
μμ′

Tr{χμV χμ′V } 1

π

∫ ∞

0
dω φω(xμ) φω(xμ′ ),

(22)

which is precisely the direct second-order Møller-Plesset cor-
relation energy (MP2) [120]. Inserting the Fourier transform
(7) of χ (iω) into Eq. (21), we obtain

E (2)
c = −1

2

∫ ∞

0
dτ Tr{(χ̂ (iτ )V )2} (23)

= −1

4

∑
μμ′

Tr{χμV χμ′V } 2
∫ ∞

0
dτ φ̂τ (xμ) φ̂τ (xμ′ ).

(24)

Equations (22) and (24) evaluate to [108,120]

E (2)
c = −1

4

∑
μμ′

Tr{χμV χμ′V } 1

xμ + xμ′
. (25)

C. Constructing minimax time and frequency grids

Equations (21)–(25) are an ideal starting point to construct
time and frequency grids. The frequency integral in Eq. (22)
is discretized by a frequency grid

−→ω = {ωk}N
k=1 (26)

and integration weights

−→γ = {γk}N
k=1, (27)

where N is the number of integration points. Following Kaltak
et al. [108], the grid generation is simplified by restricting
Eqs. (22) and (25) to identical transition energies xμ = xμ′ .
We require that the discretized frequency integral of Eq. (22)
is as close as possible to the exact result 1/(2xμ) from
Eq. (25), i.e., the error function

η−→γ ,−→ω (x) = 1

2x
− 1

π

N∑
k=1

γk φ2
ωk

(x), (28)

is minimized with respect to −→ω and −→γ .
Similarly, the time integral in the lower line of Eq. (24) is

discretized by a time grid

−→τ = {τi}N
i=1 (29)

and integration weights

−→σ = {σi}N
i=1. (30)

The corresponding error function reads

η̂−→σ ,−→τ (x) = 1

2x
− 2

N∑
i=1

σiφ̂
2
τi

(x). (31)

For both error functions, Eqs. (28) and (31), the transition
energies are restricted to the interval

x ∈ I∗ = [εmin, εmax], (32)

εmin := min(εa − ε j ) , εmax := max(εa − ε j ), (33)

where a, as before, refers to an unoccupied state, and j to
an occupied state. The minimax grid parameters {γ ∗

k , ω∗
k }N

k=1,
{σ ∗

i , τ ∗
i }N

i=1 are defined as parameters that minimize the maxi-
mum norm of the error functions η−→γ ,−→ω (x) and η̂−→σ ,−→τ (x),

{γ ∗
k , ω∗

k }N
k=1 := arg min

{γk ,ωk}N
k=1

max
x∈I∗ |η−→γ ,−→ω (x)|, (34)

{σ ∗
i , τ ∗

i }N
i=1 := arg min

{σi,τi}N
i=1

max
x∈I∗ |η̂−→σ ,−→τ (x)|. (35)

It is convenient to consider minimax time and frequency
grids for the special interval [108,136]

x ∈ Ĩ := [1, R], R := εmax

εmin
. (36)

The corresponding minimax grids {γ̃k, ω̃k}N
k=1 and {σ̃i, τ̃i}N

i=1
then only depend on N and R,

{γ̃k, ω̃k}N
k=1 = arg min

{γk ,ωk}N
k=1

max
x∈[1,R]

|η−→γ ,−→ω (x)|, (37)

{σ̃i, τ̃i}N
i=1 = arg min

{σi,τi}N
i=1

max
x∈[1,R]

|η̂−→σ ,−→τ (x)|. (38)

The minimax grids {γ ∗
k , ω∗

k }N
k=1, {σ ∗

i , τ ∗
i }N

i=1 for a specific
molecule or material with interval x ∈ I∗ = [εmin, εmax] easily
follow by rescaling [108,136],

γ ∗
k = γ̃k

εmin
, ω∗

k = ω̃k

εmin
, (39)

σ ∗
i = 2εminσ̃i, τ ∗

i = 2εminτ̃i. (40)

According to the alternation theorem of Chebychev, there
exists a reference set of 2N + 1 extrema points such that the
maximum error of the quadrature is minimized. This property
is used in the sloppy Remez algorithm [137] to perform the
minimizations in Eqs. (37) and (38) in practice [108].

D. Cosine and sine transformations

To convert between imaginary time and frequency grids
[Eqs. (7), (10), and (12)], the functions F (iω) and F̂ (iτ ) are
split into even and odd parts [110],

F (iω) = F even(iω) + F odd(iω), (41)

F̂ (iτ ) = F̂ even(iτ ) + F̂ odd(iτ ), (42)

with F even(x) = F even(−x) and F odd(x) = −F odd(−x). The
corresponding nonuniform discrete Fourier transforms turn
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into sine transforms and cosine transforms [110],

F even(iωk ) =
N∑

j=1

δk j cos (ωkτ j )F̂
even(iτ j ), (43)

F odd(iωk ) = i
N∑

j=1

λk j sin (ωkτ j )F̂
odd(iτ j ), (44)

F̂ even(iτ j ) =
N∑

k=1

η jk cos (τ jωk )F even(iωk ), (45)

F̂ odd(iτ j ) = −i
N∑

k=1

ζ jk sin (τ jωk )F odd(iωk ), (46)

where the time points τ j and frequency points ωk are pre-
calculated from Eqs. (39) and (40). The Fourier weights
δk j, λk j, η jk, ζ jk are computed by least-squares minimization
in the following way, exemplarily shown for δk j from Eq. (43):
one inserts the auxiliary functions Eqs. (19) and (20) for
F even(iωk ) and F̂ even(iτ j ) so that the error function of Eq. (43)
reads

ηc−→
δ(k)

(x) = 2x

x2 + ω2
k

−
N∑

j=1

δk j cos(ωkτ j ) e−xτ j , (47)

where we abbreviate
−→
δ(k) := {δk j}N

j=1.
−→
δ(k) is then computed by

linear-least-squares minimization of ηc−→
δ(k)

(x),

−→
δ(k) = ((X(k) )TX(k))−1(X(k) )T

−→
y(k),

X (k)
α j = cos(ωkτ j )e

−xατ j , y(k)
α = 2xα

x2
α + ω2

k

. (48)

We distribute the grid points {xα} in the interval [1, R] with
a spacing that is equidistant on a logarithmic scale. We use
m = 200 grid points in every interval [1,10], [10,100], etc.,
so that the total number of grid points xα used is the closest
integer to m log10(R) + 1.

E. A priori assessment of the precision of minimax grids

The challenge in generating minimax grids is that the
sloppy Remez algorithm to minimize error functions (37) and
(38) is ill conditioned and may sensitively depend on initial
conditions [108]. In a nutshell, this is because the value of
the error functions (28) and (31) can be as small as machine
precision while terms appearing in Eqs. (28) and (31) are in
the order of one. To address this challenge, we have used
quadruple precision in our implementation of the sloppy Re-
mez algorithm. Still, the sloppy Remez algorithm to generate
minimax grids is numerically unstable and it frequently finds
only local minima and not the global optimization minimum.
In such cases, the minimax grid is not optimal for certain N
and certain R. However, not fully optimal minimax grids can
be sufficiently accurate for GW or RPA.

In Sec. V, we will describe detailed benchmarks for GW
and RPA calculations. However, before this, the quality of the
grids can already been assessed by testing exact properties of
Fourier transforms. As a measure for the frequency integration
error of the direct MP2 frequency integral in Eq. (21) and
the RPA frequency integral in Eq. (1), we define the minimax

FIG. 1. Minimax error, Eq. (49), as a function of the energy range
R = εmax/εmin for minimax grids with varying number of integrations
points N .

error

d(R, N ) = max
x∈[1,R]

∣∣η{γ̃k ,ω̃k}N
k=1

(x)
∣∣. (49)

η{γ̃k ,ω̃k}N
k=1

(x) is the error of the frequency integration and is de-
fined in Eq. (28). {γ̃k, ω̃k}N

k=1 is the minimax grid as computed
from Eq. (37).

The minimax error d(R, N ) is plotted in Fig. 1 as a function
of the number of grid points N and the energy range R. We
observe that for a given system (molecule or solid) with fixed
range R, the error decreases exponentially with increasing N .
Conversely, increasing R by varying the system from small to
large energy gaps leads to an increase in d. An upper range
Rc(N ) exists, such that the minimax grid is identical for all
R >Rc(N ) with saturating error, d(R, N ) = d(Rc(N ), N ) for
R >Rc(N ) [109,138]. We thus only report minimax grids up
to the upper range Rc(N ).

IV. COMPUTATIONAL DETAILS

A. Test systems

For molecules, benchmarks were performed for the Thiel
[139] and GW100 [61] sets. The Thiel set consists of 28 small
organic molecules composed of C, N, O, and H. The geome-
tries were taken from Ref. [139]. The GW100 set contains
small molecules with covalent and ionic bonds covering a
wide range of the periodic table. The geometries were taken
from Ref. [61]. For 2D semiconductors, four monolayer ma-
terials MoS2, MoSe2, WS2, and WSe2 were considered. The
geometries were taken from the C2DB database [19]. For
three-dimensional (3D) bulk crystals, the diamond structure of
Si and C, zinc-blende structure of BN, GaAs, and SiC, and the
rocksalt structure of MgO and LiF were selected. The lattice
parameters were taken from Ref. [110]. The k-mesh settings
given in Table I were used for all calculations. In the interest
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TABLE I. Parameters for periodic conventional GW and low-
scaling GW calculations when using ABINIT. Ec denotes the energy
cutoff for expanding Bloch wavefunctions, E ε

c the energy cutoff for
the dielectric matrix and Nbands the number of bands for computing
the Green’s functions. All the k meshes are � centered.

k mesh Ec (Ha) E ε
c (Ha) Nbands

Si 4 × 4 × 4 24 10 500
LiF 8 × 8 × 8 48 12 1000
SiC 8 × 8 × 8 48 12 1000
C 6 × 6 × 6 45 8 1000
BN 4 × 4 × 4 48 12 1000
MgO 4 × 4 × 4 50 12 1000
GaAs 8 × 8 × 8 48 12 1000

of open materials science data [140,141], we made the input
and output files of all calculations available on the NOMAD
repository [142].

B. FHI-aims

FHI-aims is an all-electron electronic structure code based
on numerical atom-centered orbitals (NAOs) [127]. All canon-
ical RPA calculations were performed with FHI-aims. The
RPA implementations in FHI-aims scale O(N4

at ) with respect
to system size Nat and are based on the resolution-of-the-
identity (RI) approach, [143–146] refactoring the four-center
electron repulsion integrals in a product of three- and two-
center integrals. For finite systems, the RPA implementation
[147] relies on a global RI scheme with a Coulomb metric
(RI-V), while for extended systems a localized variant (RI-
LVL) is employed [148,149].

Molecular RPA calculations were performed for the Thiel
benchmark set using the cc-pVTZ Dunning basis set [150],
which is an all-electron basis set of contracted spherical Gaus-
sian orbitals. In FHI-aims, Gaussian basis sets are presented
numerically to adhere to the NAO scheme. For the crys-
talline systems, we employed the hierarchical tier 2 NAO
basis functions [127]. For both, molecules and crystal, the RI
auxiliary basis functions (ABFs) were autogenerated during
runtime following the approach described in Ref. [147]. For
the crystalline systems, we have added additional 4f and 5g
functions to the autogenerated ABFs to increase the accuracy
of the RI-LVL approach implemented for solids [149].

The RPA correlation energies were numerically computed
on imaginary frequency grids [147]. We benchmarked three
different grid types: the Gauss-Legendre (GL), modified
Gauss-Legendre (mod-GL), and minimax quadrature grids.
The standard and modified Gauss-Legendre quadratures are
described in more detail in Appendix C of Ref. [147].

C. CP2K

CP2K is an electronic-structure code that employs Gaus-
sian basis sets for expanding the KS orbitals [128]. CP2K
can be used with Goedecker-Teter-Hutter pseudopotentials
[151] (GTH) or as an all-electron code using the Gaus-
sian and augmented plane-waves scheme (GAPW) [152].
CP2K features a low-scaling G0W0 implementation based on a

local-orbital-basis adaptation of the space-time method [107],
where sparsity is introduced by combining a global RI scheme
with a truncated Coulomb metric [24,113]. Low-scaling GW
implementations for finite systems [113] and recently also for
extended systems [24] are available.

We used the low-scaling G0W0 implementations in CP2K
for performing the all-electron GW100 benchmark [61] and
for computing the G0W0 bandgap of 2D materials with
pseudopotentials. For the GW100 benchmark, we expanded
molecular orbitals in the all-electron def2-QZVP [153] ba-
sis set and used def2-TZVPPD-RIFIT [154] as ABFs. For
G0W0 benchmark calculations on 2D materials, we used
10 × 10 supercells, GTH pseudopotentials [151] with a
TZV2P-MOLOPT basis set [155] and corresponding ABFs
[24]. For molecules and 2D materials, we set a truncation
radius of 3 Å [146,156] for the truncated Coulomb metric.
Two- and three-center Coulomb integrals over Gaussian basis
functions were computed with analytical schemes [157,158].
The self-energy was analytically continued from the imag-
inary to the real-frequency domain using a Padé model
[61,159] with at most 16 parameters. Restricting the number
of Padé parameters is motivated by the settings used in our
GW100 reference data as detailed in Sec. V B. For grid sizes
larger than 16 time/frequency points, we still perform all
operations for the full grid, ensuring accurate iω/iτ trans-
formations. When performing the analytic continuation, 16
equidistant imaginary frequency points and the corresponding
	(iω) are selected out of the larger set.

D. ABINIT

ABINIT is an electronic-structure code that relies on plane-
waves for the representation of wavefunctions, density, and
other space-dependent quantities, with pseudopotentials or
projector-augmented waves [129,130]. We used ABINIT for
the calculations of G0W0 band gaps of the crystalline systems
with the specifications given in Table I and norm-conserving
pseudopotentials [160] from the PseudoDojo project [161]
(standard accuracy table and the recommended cutoff energy
for the plane-wave expansion of the KS states). The con-
ventional GW implementation in ABINIT scales with O(N4

at )
and computes the RPA susceptibility along the imaginary
frequency axis using the exact Adler-Wiser expression. For
the conventional GW calculations, the self-energy was eval-
uated directly along the imaginary frequency axis using a
linear mesh extending up to 50 eV and 60 points. The new
cubic-scaling GW implementation is based on the space-time
approach [107] and will be made available in ABINIT version
10. In the low-scaling GW calculations, we use minimax grids
with 10, 20, and 30 points provided by the GreenX library
[125]. The noninteracting susceptibility and the correlation
part of the self-energy were computed using fast Fourier
transforms in a supercell followed by a Padé-based analytic
continuation of the matrix elements of the self-energy as dis-
cussed in Ref. [110]. In all conventional and low-scaling GW
calculations, the number of imaginary frequencies used for the
Padé was set to be equal to the number of frequency points
used to sample the self-energy.

The integrable Coulomb singularity is treated by means
of the auxiliary function proposed in Ref. [162] to accelerate
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FIG. 2. Errors of the RPA correlation energy for the water
molecule (top) and the MgO bulk (bottom) using the GL, mod-GL,
and minimax imaginary frequency grids. The RPA error reported on
the vertical axis employs as reference point the RPA energy calcu-
lated with the minimax grid containing 34 points. The error is given
in eV/electron, dividing the absolute RPA correlation energy by the
number of electrons per molecule or by the number of electrons in
the unit cell.

the convergence with respect to Brillouin zone sampling. The
calculation of the head and wings of the polarizability takes
into account the nonlocal part of the KS Hamiltonian that
arises from the pseudopotentials into account [163].

V. GW AND RPA BENCHMARK CALCULATIONS WITH
MINIMAX GRIDS FROM GREENX

A. Conventional RPA for molecules and solids

While the primary purpose of the minimax grids is to
facilitate low-scaling RPA and GW calculations, they can be
also utilized to reduce the computational prefactor in con-
ventional RPA implementations with O(N4

at ) complexity. We
demonstrate this in Fig. 2 for a single water molecule (top)
and bulk MgO (bottom). Figure 2 reports the error of the RPA
correlation energies calculated with GL and mod-GL grids
with 650 points and minimax grids with 632 points. The RPA
energy obtained with the 34-point minimax grid is used as
reference.

Figure 2 shows that the GL quadrature converges slowly,
while the mod-GL grids exhibit a faster convergence as
already discussed in Ref. [147]. The minimax grids dis-
play the fastest convergence. We set a target accuracy of
10−6 eV/electron, which is motivated by the size of the error
introduced by the RI-V approach. RI-V is implemented in
FHI-aims for finite RPA calculations and considered the most
accurate RI scheme [146]. Recently, we showed for MP2

FIG. 3. Errors of the RPA correlation energy of (a) the Thiel set
and (b) solids when using minimax frequency grids with 10, 20,
and 30 grid points. The reference for computing the RPA error is
the mod-GL grid with 200 frequency grid points. The error is given
in eV/electron, dividing the absolute RPA correlation energy by the
number of electrons per molecule or by the number of electrons in
the unit cell.

correlation energies that RI-V introduces an average error
of 5 × 10−6 eV/electron compared to RI-free results [164].
Similar RI errors are expected for RPA. The GL grids fail
to achieve the desired accuracy for the grid sizes presented
in Fig. 2. In contrast, the mod-GL grids surpass the accu-
racy threshold with over 36 and 46 frequency points for the
water molecule and bulk MgO, respectively. With minimax
grids, errors below 10−6 eV/electron are already achieved
with 10 frequency points for water and 14 for MgO. Minimax
frequency grids are therefore approximately 3.5-fold more
efficient than mod-GL grids.

For even larger minimax grids of 20 points, the RPA inte-
gration errors drop below 10−10 eV/electron in both cases, as
is evident in Fig. 2. The minimax error further decreases by
two orders of magnitude to 10−12 eV/electron before leveling
out at around 32 points. We found that it is not possible
to converge the RPA correlation energies as tightly with the
mod-GL grids, which eventually yield fluctuating errors
around 10−9–10−10 eV/electron. This is also the reason why
we use the 34-point minimax grid as reference in Fig. 2
instead of a mod-GL grid with hundreds of points. The con-
vergence behavior of the minimax grids for more than 20 grid
points would not be adequately displayed.

Further benchmarks were performed with 10, 20, and 30
minimax grid points for molecules and crystalline systems
as shown in Figs. 3(a) and 3(b). Taking the mod-GL result
with 200 frequency points as our reference, we find that
minimax grids with 10 points fail to converge all molecu-
lar and extended systems below the threshold of the RI-V
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accuracy. However, we observe an excellent convergence for
larger grids. All molecules from the Thiel set are converged
within 10−9 eV/electron for minimax grids with 20 or more
frequency points; see Fig. 3(a).

For solids shown in Fig. 3(b), we observe that the RPA cor-
relation energy is converged to better than 10−8 eV/electron
for 30 minimax frequency points. For 20 minimax points,
the RPA correlation energy of GaAs still deviates by 2.2 ×
10−8 eV/electron from the reference. This error is reduced by
two orders of magnitudes for 30 minimax points instead. We
note that even an error of 2.2 × 10−8 eV/electron is excellent
when taking the RI-V error as target accuracy. Minimax grids
with 20 grid points can therefore be considered a reliable
choice for conventional RPA calculations. For completeness,
the RPA data for the four systems (or set of systems), for the
GL, modified GL and minimax cases, are gathered within the
Supplemental Material [165] (Tables S1– S4).

B. Low-scaling GW for molecules

In this section, we present GW100 benchmark results for
our minimax time and frequency grids employing the low-
scaling G0W0 implementation in CP2K [113]. We computed
quasiparticle energies of the highest occupied molecular or-
bitals (HOMOs) and lowest unoccupied molecular orbitals
(LUMOs), for minimax grids with 10–32 points. We se-
lected as our reference the G0W0@PBE results reported in
Ref. [61], more precisely, the analytic continuation results
from FHI-aims based on the Padé model 16 parameters and
the def2-QZVP basis set. For the HOMOs, the five multi-
solution cases were excluded, namely, BN, BeO, MgO, O3,
and CuCN.

Figure 4 summarizes the convergence of the G0W0@PBE
HOMO and LUMO energies with respect to the number of
minimax time and frequency points. We find that the mean ab-
solute deviation (MAD) steadily decreases with the number of
minimax points. Already for 24 minimax points, we observe
an MAD smaller than 20 meV for both HOMOs and LUMOs.
For grids with 28 points, the MAD drops below 10 meV.
Figure 4 additionally reports the number of molecules with an
absolute deviation (AD) below 10 meV and 20 meV. For 32
minimax points, 85 (out of 95) HOMO energies and 97 (out
of 100) LUMO energies deviate by less than 10 meV from
the reference value. Moreover, 92 HOMO and 100 LUMO
energies are within the threshold of 20 meV.

For molecular benchmarks, our GW100 results are well
within the target accuracy of a few meV we aim for when
comparing different GW implementations using the same
basis set. For example, the original GW100 benchmark study
[61] reported a MAD of 3 meV and 6 meV for the HOMO
and LUMO, respectively, comparing FHI-aims and RI-free
Turbomole results at the def2-QZVP level. Furthermore, we
conducted a similar convergence study as shown in Fig. 4
in our previous paper [113], where we also reported MADs
below 10 meV for minimax grid sizes � 28 points.

C. Low-scaling GW for 2D materials

The unit cells of 2D materials can become large quickly,
possibly requiring a hundred to thousands of atoms. An
example are moiré structures formed from twisted transition

FIG. 4. GW 100 benchmark of the G0W0@PBE energies com-
puted with the low-scaling algorithm for (a) HOMOs and (b) LU-
MOs. The bars represent the number of molecules with a given
absolute deviation from the FHI-aims values reported in Ref. [61].
The mean absolute deviation (MAD) as a function of number of
time/frequency points is given by the red dots. Table S5 within the
Supplemental Material [165] reports the raw data.

metal dichalcogenide (TMDC) bilayers [166–168]. The de-
velopment of low-scaling algorithms is a promising strategy
to make GW calculations for these systems computationally
feasible [24]. Localized-basis-set frameworks are here partic-
ularly advantageous due to the large vacuum regions, which
need to be added below and above the 2D slabs [18]. Such
vacuum regions drastically increase the computational cost
for plane-wave implementations, but not for localized-basis-
functions schemes.

In this section, we present G0W0@LDA bandgap calcula-
tions for monolayer MoS2, MoSe2, WS2, and WSe2, which
have previously been used as building blocks for TMDC-
based Moiré structures [167,168]. Figure 5 reports the band
gaps computed with 10, 20, and 30 time and frequency points
using the recently developed periodic, low-scaling GW imple-
mentation in CP2K [24]. We find that the G0W0@LDA band
gap changes on average by 20 meV and when increasing the
minimax mesh size from 10 to 20 points and by 4 meV from
20 to 30 points. These findings indicate that a grid size of 20
is a reliable choice for the 2D case.

We report absolute gaps in Fig. 5 since reliable reference
data for 2D materials are generally difficult to find [2]. Qiu
et al. [18] showed that a very fine k-grid sampling is required
for TMDC monolayers (24 × 24 × 1 grids). Equivalently, our
recent study [24] demonstrated a slow convergence with the
supercell size, necessitating supercell sizes of at least 10 ×
10 × 1. Due to these challenges, a benchmark set for highly
accurate GW band structures of 2D monolayers has not been
established yet to the best of our knowledge. In previous
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FIG. 5. G0W0@LDA bandgap of monolayer semiconductors
computed with CP2K [24,128] as function of the number of points of
the minimax time-frequency grid. Table S6 within the Supplemental
Material [165] reports the raw data.

paper [24], well-converged G0W0@LDA gaps were collected
from several codes [20,24,169] for the MoS2, MoSe2, WS2,
and WSe2 monolayers, observing an average deviation of
55 meV between the codes. The accuracy of a minimax
time-frequency grid with 10 points is already better than the
difference between different GW codes.

D. Low-scaling GW for solids

As a preliminary accuracy check of the minimax grids, we
have compared selected matrix elements of the susceptibility
in Fourier space computed along the imaginary axis for con-
ventional and low-scaling GW implementations (see Fig. S1
within the Supplemental Material [165]). The agreement be-
tween the two implementations is excellent. Small differences
only arise for Fourier components of the imaginary part (see
middle-right panel of Fig. S1 within the Supplemental Mate-
rial [165]) but this is essentially numerical noise that does not
affect our final results.

We then computed the direct band gaps of the seven solids
introduced in Sec. IV A with the low-scaling GW implemen-
tation in ABINIT and then compared with the analogous
results obtained with the conventional quartic-scaling GW
implementation. The results obtained with the settings given
in Table I are summarized in Fig. 6. As becomes clear from
Fig. 6, the band gaps of the low-scaling implementation ap-
proach those of the conventional one with increasing number
of frequency points. For 20 minimax points the difference is
already below 10 meV. Our results are in line with a previous
comparison for these materials. Liu et al. [110] also found
a difference of 10 meV between their low-scaling and the
conventional quartic-scaling GW implementation [170] in the

FIG. 6. The low-scaling GW error with respect to the conven-
tional GW using ABINIT (See Table S7 within the Supplemental
Material [165] for the raw data).

VASP code, using 20 minimax grid points in their space-time-
based low-scaling implementation.

VI. CONCLUSIONS

The time-frequency component of the GreenX library
[126], which provides minimax time-frequency grids along
with corresponding quadrature weights to compute corre-
lation energies and quasiparticle energies and weights for
Fourier transforms, has recently been released. In the present
paper, we linked the GreenX library to three codes (FHI-
aims, CP2K, and ABINIT), and performed conventional RPA
and low-scaling GW calculations for a variety of systems.
Our test systems include the molecules of the Thiel and
GW100 benchmark sets, four two-dimensional semiconduc-
tors (TMDC monolayer materials) and seven 3D bulk crystals.
We found that the conventional RPA calculations are well
converged within <10−7 eV/electron for minimax grids with
20 points, reducing the computational prefactor by a factor
of ≈3 compared to calculations with conventional modified
Gauss-Legendre grids. The RPA integration errors decrease to
<10−8 eV/electron for even larger grids with 30 points. Low-
scaling GW quasiparticle energies are converged to � 10 meV
for all systems using only 30 minimax points. In most cases
this excellent accuracy is already reached with 20 minimax
grid points.

Our findings show that the time-frequency component of
GreenX provides a reliable foundation for the development of
low-scaling RPA and GW algorithms based on the space-time
method. We also showed that minimax frequency grids can ac-
celerate conventional RPA calculations. We plan on releasing
other GreenX components, e.g., for the analytic continuation
in the near future.
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