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Josephson current controlled by Fermi-arc surface states of Weyl semimetals
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In this paper, the supercurrent of the superconductor (SC)–Weyl semimetal–SC Josephson junction hybrid
system is studied based on the Landauer-Büttiker formula combined with the nonequilibrium Green’s method.
According to the different edge states, the Fermi arcs are divided into three regions: the symmetric, topological,
and insulated regions, which are defined by the azimuthal angle θ and the transverse momentum kz. Here, θ is
the azimuthal angle between the symmetry axis of the Fermi arcs and the normal of the Josephson junction. It
is found that the supercurrent is suppressed in the symmetric region. In the topological region, the supercurrent
increases with increasing θ . The supercurrent is almost zero in the insulated region due to the presence of the
energy gap. The total supercurrent summed over all kz channels increases and then decreases with increasing θ ,
that is, θ can control the value of the supercurrent. In addition, the magnetic field and the azimuthal angle θ can
adjust the phase transition of the Josephson junction, allowing it to be a 0, π , or ϕ0 junction. These properties
provide research ideas for controlling the value of the supercurrent and the Josephson junction phase transition
and play an important role in the development and application of superconducting electronic devices.

DOI: 10.1103/PhysRevB.109.235435

I. INTRODUCTION

There has been great progress in the study of topologi-
cal materials, such as topological insulators [1–3]. In recent
years, it has been discovered that metals can be topologically
classified in addition to insulators. Topological metals have
special energy band intersections (nodes). A special class
of topological semimetals is given when these nodes are on
the Fermi surface. According to the degeneracy of nodes,
topological semimetals can be divided into Dirac [4,5], Weyl
[6–12], and nodal-line semimetals [13,14]. The Weyl points
always appear in pairs with opposite chirality in the absence
of time-reversal or inversion symmetry [6,15], and the Fermi
arc (FA) spans between each pair of Weyl points in the surface
Brillouin zone [8]. Such disconnected FAs can not be realized
in any noninteracting two-dimensional (2D) bulk states, and
their emergence can serve as the hallmark of Weyl semimetals
(WSMs) [10,11,16–19]. Therefore, detecting and manipulat-
ing the unique FA surface states of WSMs has attracted a lot
of interest from researchers.

Josephson predicted that supercurrent could tunnel in a
Josephson junction, which is a sandwich structure of two
superconductors (SCs) separated by a thin insulating barrier
[20,21]. Anderson and Rowell [22] experimentally confirmed
this theory, and this effect was named the Josephson effect. It
is well known that Andreev reflection occurs in the ordinary
normal metal–SC junctions, and incident electrons with spin
↑ (↓) reflect holes with spin ↓ (↑) [23]. When the insulat-
ing barrier is replaced by a normal metal or semiconductor,
the electrons and holes in the normal region are coherently
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coupled to each other by the Andreev reflections at the
normal-SC interfaces [23]. The Andreev bound states with
discrete energy levels (Andreev levels) are formed in the
normal region near the Fermi level within the supercon-
ducting energy gap [24,25], which support the transport of
Cooper pairs between the left and right SCs and then gener-
ate supercurrent [26]. In general, the Josephson free energy
is minimum when the superconducting phase difference is
zero, and such a Josephson junction is called a 0 junction.
When the minimum Josephson free energy appears at a su-
perconducting phase difference of π , such as in the case of
a SC-ferromagnet-SC junction [27], this Josephson junction
is called a π junction. The transition of a Josephson junction
from the 0 (π ) state to the π (0) state is referred to as the
0-π transition, which is mostly achieved by changing the
size of the ferromagnet, the relative orientation of magne-
tizations, and the structural geometry [28–34]. In addition,
the Josephson free energy that has only one minimum at
the superconducting phase difference of ϕ0 is called a ϕ0

junction. It was discussed with the nanowire-based Josephson
junction applied by the Rashba spin-orbit coupling and the
Zeeman field [35–37], the SC-ferromagnet hybrid structures
[38], and the magnetized topological insulator interfaces [39].
Thus, finding a method to control the phase transition in a
Josephson junction is still an urgent problem in condensed
matter physics.

Recently, it has been proposed that a crossover from the
suppressed to perfect Andreev reflection appears when the
orientation of a normal metal–SC junction on the WSM sur-
face with a pair of FAs is varied [40]. In other words, the
transport properties can be changed by varying the orientation
of the heterojunction. Therefore, it is interesting and necessary
to investigate the relation between the supercurrent and the
junction orientation in a Josephson junction. In this paper, the
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FIG. 1. (a) Schematic diagram of the superconductor (SC)–Weyl
semimetal (WSM)–SC device. The center region is the WSM with
length L and width W and subjected to an external magnetic field
B = Bẑ. The left and right leads are semi-infinite s-wave SCs. (b) and
(c) Fermi-arc spectra for different azimuthal angles θ . The yellow
dots represent Weyl points, whose positions are given by Uy(θ )kW =
Uy(θ )(±k, 0, ±k).

supercurrent of the SC-WSM-SC Josephson junction hybrid
system is studied based on the Landauer-Büttiker formula
combined with the nonequilibrium Green’s method. We cal-
culate the supercurrent as functions of the magnetic field, the
superconducting phase difference, and the azimuthal angle θ

between the symmetry axis of the FAs and the normal of the
Josephson junction, respectively. According to the different
edge states, the FAs are divided into three regions, which
are defined by the azimuthal angle θ and the transverse mo-
mentum kz. The results show that the supercurrent behaves
differently in these three regions, and the azimuthal angle
θ can control the value of the supercurrent. In addition, the
magnetic field and the azimuthal angle θ can adjust the phase
transition of the Josephson junction, allowing it to be a 0, π ,
or ϕ0 junction.

The rest of the paper is organized as follows. In Sec. II,
we introduce the Hamiltonian and energy band of WSM with
a pair of FAs, along with the formulas and methods used to
calculate the current through the superconducting leads. The
numerical results are discussed in Sec. III. Finally, a brief
summary is drawn in Sec. IV.

II. MODEL AND METHODS

We consider a SC-WSM-SC Josephson junction as shown
in Fig. 1(a). The finite width along the y direction of the
junctions is W . The length of WSM in the center region is
L. The semi-infinite SC leads are placed in the left and right
regions, respectively. The Hamiltonian of this hybrid device is
written as

H = HW + HS + HT , (1)

where HW , HS , and HT are the Hamiltonians of the WSM, SC
leads, and the coupling between them, respectively.

In the tight-binding representation, the Hamiltonian of the
WSM with four Weyl points can be written as [41]

H0
W (k) = M

(
k2 − k2

x

)
σx + M

(
k2 − k2

y − k2
z

)
σz + vykyσy,

(2)

where vy is the velocity in the y direction, k and M are param-
eters, and σx,y,z are the Pauli matrices in the pseudospin space.
The positions of the four Weyl points are kW = (±k, 0,±k).
The azimuthal angle between the symmetry axis of the FAs
and the normal of the Josephson junction (x axis) is defined
as θ , as shown in Fig. 2(a). The FAs rotate θ along the y axis
corresponding to the Hamiltonian:

He
W (k) = H0

W [Uy(θ )k], (3)

where

Uy(θ ) =
⎛
⎝cos θ 0 −sin θ

0 1 0
sin θ 0 cos θ

⎞
⎠

is the rotation operator [42]. Experimentally, different ori-
entations of FAs can be obtained by cutting the sample
properly [41]. The FAs for different azimuthal angles θ are
shown in Figs. 1(b) and 1(c), which are revealed by the
spectra function A(E ) = −(1/π )ImGr (E ) [40]. Using the
Bogoliubov–de Gennes (BdG) equation to introduce holes
[43], the Hamiltonian of the WSM becomes

HW (k) =
[

He
W (k) 0
0 Hh

W (k)

]
, (4)

where Hh
W (k) = −He

W
∗(−k). For a fixed kz, we discretize the

Hamiltonian of Eq. (4) in a cubic lattice through the mapping
ki=x,y,z → a−1sin kia and k2

i → 2a−2(1 − cos kia), where a is
the lattice constant. Performing Fourier transformation in both
the x and y directions, the Hamiltonian HW in Eq. (1) is
represented in the Nambu representation as

HW =
∑

i

ψ
†
i

(
T0 0
0 −T0

)
ψi +

∑
i

ψ
†
i

(
Ty 0
0 −Ty

)
ψi+ŷ

+
∑

i

ψ
†
i

[
Tx exp

(
iφ y

a

)
0

0 −Tx exp
(−iφ y

a

)]ψi+x̂

+ H.c., (5)

where ψi = (ψ1,i↑, ψ2,i↑, ψ
†
1,i↓, ψ

†
2,i↓)T are the Fermi oper-

ators with two pseudospin components at the discrete site
i, x̂ and ŷ represent unit vectors in the x and y directions,
respectively. Considering external magnetic field, φ = �/�0

is the magnetic field phase, � = Ba2 is the flux per plaquette,
�0 = h̄c/e is the normal flux quantum, and A = (By, 0, 0)
is the vector potential. The on-site and nearest-neighbor
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FIG. 2. (a) Schematic diagram for Fermi arcs of Weyl semimetal (WSM). Electrons and holes are solid and hollow circles, respectively.
Regions I–III are defined by the azimuthal angle θ and the transverse momentum kz. (b) Electron energy band structures for a fixed kz in
different regions. The red and blue solid lines are the electron edge states. (c) Distribution of electron states along the sample cross section in
regions I and II, where A–D correspond to the points in (b). (d) Schematic diagram for Josephson junction in regions I and II. The blue and
red arrows represent the electron and hole edge states of the WSM in the center region, respectively.

hopping matrices are

T0 = M

[
k2 − 2

a2
+ 2

a2
sin2θ cos(kza)

]
σx

+ M

[
k2 − 4

a2
+ 2

a2
cos2θ cos(kza)

]
σz,

Tx = M

[
1

a2
cos2θ − i

a2
sin θ cos θ sin(kza)

]
σx

+ M

[
1

a2
sin2θ + i

a2
sin θ cos θ sin(kza)

]
σz,

Ty = vy

2ai
σy + M

a2
σz. (6)

The schematic diagram for FAs of WSM, the electron
band structure under zero magnetic field, and the electron
state distribution along the sample cross-section are given in
Fig. 2. From Figs. 2(a) and 2(b), we can see that the FAs
are divided into three regions depending on the edge state,
which are defined by the azimuthal angle θ and the trans-
verse momentum kz. In region I, both electrons and holes
have bidirectional edge states [see Figs. 2(c) and 2(d)], that
is, both normal reflection and Andreev reflection channels
exist. Due to its symmetric Fermi-arc edge states, we refer
to it as the symmetric region. In region II, which we des-
ignate as the topological region, electrons and holes have
only one chiral edge state each, and their edge states are
opposite [see Figs. 2(c) and 2(d)]. Consequently, the channel
for normal electron reflection disappears, and the hole chan-
nel persists for Andreev reflection, which corresponds to the

electron-paired state with opposite kz. In region III, the right
panel of Fig. 2(a), WSM opens an energy gap at the Fermi
level, leading to the absence of states near E = 0, so we refer
to it as the insulated region. It is worth noting that kz is fixed,
which is treated as a parameter in the scattering process. If we
only consider a single 2D slice with a given kz, which is a sub-
system of the entire three-dimensional (3D) WSM, the band
structure breaks the particle-hole symmetry. By summing all
kz channels, the particle-hole symmetry is preserved [40].

Then according to the BCS theory [44], the Hamiltonian of
the SC lead described by a continuum model can be written as

HS =
∑
α,k,σ

εαkb†
αkσ bαkσ +

∑
α,k

(�b†
αk↑b†

α−k↓ + H.c.), (7)

where α refers to the left or right lead and σ represents
the spin index. Here, � = �s exp(iϕα ), where �s is the su-
perconducting gap magnitude of the s-wave SC and ϕα is
the superconducting phase. Also, b†

αkσ (bαkσ ) is the creation
(annihilation) operator in the SC leads for electrons with the
momentum k = (kx, ky ). The coupling between the SC lead
and the WSM is described by the Hamiltonian:

HT =
∑
α,iy

(b†
αiy↑, bαiy↓)Tαcψiy + H.c., (8)

where the operator:

bαiyσ =
∑

k

exp(ikiya)bαkσ ,
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and

Tαc =
(

t1
αc t2

αc 0 0
0 0 −t1

αc −t2
αc

)
.

The parameters t1
αc and t2

αc are the coupling strengths between
the SCs and the WSM.

Next, based on the Landauer-Büttiker formula combined
with the nonequilibrium Green’s function method, the super-
current from the left lead through the center region to the right
lead can be obtained as [45,46]

IS = e

h

∫
dETr

[
�zGr (E )
<

α (E ) + �zG<(E )
a
α (E )

− �z

<
α (E )Ga(E ) − �z


r
α (E )G<(E )

]
, (9)

where E is the incident energy and �z = σz ⊗ I2×2. Here,
Gr,a,< are the retarded, advanced, and lesser Green’s functions
of the center region which can be calculated from [45–47]

Gr/a(E ) = (
EI − Hcen − 


r/a
L − 


r/a
R ± iγ

)−1
,

G< = Gr
<Ga = Gr (
<
L + 
<

R )Ga, (10)

where Hcen is the Hamiltonian of the central WSM region
and γ is the linewidth function of states. Here, 
r,a,<

α are the
retarded, advanced, and lesser self-energy due to the coupling
between the α lead and the center region which can be calcu-
lated from [47]


r
α,i j (E ) = −iπρ|tc|2J0[kF (yi − y j )]β(E )

(
1 �/E

�∗/E 1

)

= − i

2
�α,i j (E ),


a
α,i j (E ) = i

2
�∗

α,i j (E ),


<
α,i j (E ) = − f (E )

(

r

α,i j − 
a
α,i j

)
, (11)

where f (E ) is the Fermi distribution function and tc represents
t1
αc or t2

αc. To simplify the model, we set t1
αc = t2

αc = tc, and the
final self-energy takes the form 
α ⊗ I2×2.

In this paper, we set the parameters k = 0.4 nm−1 and
M = 1.25 eV nm2, the velocity in the y direction vy =
−0.66 eV nm, and the lattice constant a = 1 nm. The length
and width of the central WSM region are L = 20a and W =
40a, respectively. The superconducting gap magnitude �s =
0.01 eV, the superconducting phase difference �ϕ = ϕL −
ϕR, and the coupling coefficient tc = 1 eV. The linewidth γ is
usually chosen as an infinitely small quantity in a clean sam-
ple. Since the finite width of the central sample adopted in our
simulation results in discrete energy levels, a relatively large
γ is required to smear the discrete energy levels and makes
them look like a continuous energy spectrum. In addition,
the disorder present in the real sample may lead to broad-
ening of states [45]. Therefore, we chose a relatively large
linewidth γ = 0.05 eV in this paper. In addition, it is worth
noting that, once we determine the transport direction x and
the good quantum number kz, the FA surface states can only
exist in the x-z plane to control the supercurrent. However,
the FA surface states in other planes have little effect on the
supercurrent.

FIG. 3. (a) Distribution diagram for different regions of Fermi
arcs that vary with azimuthal angle θ and momentum kz at the zero
magnetic field. The pink, red, and cyan dashed lines represent the
channels at kz = 0.05π , 0.4, and 0.15π , respectively. (b) Supercur-
rent Is in a two-dimensional (2D) slice as a function of azimuthal
angle θ and momentum kz without the magnetic field. The super-
conducting phase difference �ϕ = π

2 . (c) Supercurrent Is for the
different kz channels in (b) which corresponds to the dashed lines
in (a). (d) The total supercurrent Itotal for the sum of all kz channels
in (b) as a function of azimuthal angle θ , where I0 is the total
supercurrent of all channels at θ = 0, φ = 0, and �ϕ = π

2 .

III. RESULTS AND DISCUSSION

First, we study the supercurrent in the absence of a
magnetic field. To elucidate more clearly, we plotted the
distribution diagram for different regions of Fermi arcs that
vary with azimuthal angle θ and momentum kz, as shown in
Fig. 3(a). It is observable that the symmetric region presents
a triangular shape, the topological region is the largest and
presents two opposing fan shapes, the insulated region is the
smallest and located at the edge of the topological region,
and the rest of the dark blue area is referred to as the blank
region. At θ = 0, only the symmetric region exists with the
range kz ∈ [−0.4, 0.4], which is related to the positions of
the Weyl points. As θ increases, the topological region begins
to emerge at |kz| = 0.4 and gradually widens; the symmetric
region correspondingly decreases. When θ increases to π/4,
only the topological region exists. As θ continues to increase
beyond π/4, the topological region begins to decrease, and the
insulated region begins to appear. When θ increases to π/2,
only the insulated region remains.

Then we calculate the supercurrent as a function of the
azimuthal angle θ and momentum kz; the results are shown in
Fig. 3(b). Compared with Fig. 3(a), the supercurrent exists in
both the symmetric and topological regions, but almost none
exists in the insulated region. Moreover, the supercurrent is
obviously larger in the topological region than in the sym-
metric region and increases as θ increases. These phenomena
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FIG. 4. (a)–(e) Supercurrent Is in a two-dimensional (2D) slice as a function of momentum kz and magnetic field phase φ for the different
azimuthal angles θ . The superconducting phase difference �ϕ = π

2 and θ = 0, π

8 , π

4 , 3π

8 , π

2 , respectively. (f) The absolute value of the total
supercurrent Itotal for the sum of all kz channels in (a)–(e) as a function of magnetic field phase φ, where I0 is the total supercurrent of all
channels at θ = 0, φ = 0, and �ϕ = π

2 .

can be explained by the band structure as shown in Fig. 2.
In the symmetric region, since both electrons and holes have
bidirectional edge states, that is, both normal reflection and
Andreev reflection channels exist, this reduces the occur-
rence of Andreev reflection at the SC-WSM interface, thereby
reducing the supercurrent. In contrast, in the topological re-
gion, electrons and holes have only one chiral edge state,
meaning that only the hole channel for Andreev reflection
exists. In this case, the perfect Andreev reflection occurs [40],
allowing the electrons in the center region to effectively par-
ticipate in the supercurrent transport, thereby increasing the
supercurrent.

Figure 3(c) selects three specific channels for further il-
lustration. Firstly, let us consider the channel of kz = 0.4,
which remains within the topological region regardless of the
value of θ . It can be seen from the Supplemental Material
[48] that the slope of the edge states gradually decreases to
zero with increasing θ , resulting in an increase of states in
the interval from E to E + dE ; thus, the supercurrent in-
creases, and the growth trend is approximately proportional
to the reciprocal of the edge state slope. In other channels
within the topological region, the supercurrent increases with
θ for the same reason. For the channel of kz = 0.05π , as θ

increases, it first resides in the symmetric region, where the
supercurrent growth is relatively gentle. Then it enters the
topological region, where the supercurrent rapidly increases
and reaches a peak. Finally, as θ continues to increase outside
the topological region, the supercurrent rapidly decreases. For
the channel of kz = 0.15π , it is initially in the blank region,
so the supercurrent approaches zero. The current begins to
increase rapidly as it enters the topological region and begins
to decrease as it enters the insulated region. At θ = π/2, it is
in the insulated region, but the supercurrent does not approach
zero. The Supplemental Material [48] shows that, at θ = π/2

and kz = 0.4, the energy gap is very small. Therefore, the
bands near this set of parameters have smaller gaps, and the
larger linewidth smears the energy levels, resulting in the
presence of the supercurrent.

Then we sum the supercurrent of all kz channels in
Fig. 3(d). As θ increases, the total supercurrent Itotal first
increases and then decreases. This is because, when θ begins
to increase, the topological region with enhanced supercur-
rent starts to appear and keeps increasing, the symmetric
region with suppressed supercurrent keeps decreasing, and
the supercurrent in the topological region increases as θ in-
creases. This causes Itotal to increase continuously and begin
to increase rapidly near θ = π/4. When θ increases beyond
π/4, although the supercurrent in the topological region is
still increasing, the number of channels in this region be-
gins to decrease, eventually causing Itotal to decrease around
θ = 0.35π . Lastly, due to the smaller energy gaps and larger
linewidth, the total supercurrent reaches a finite value when
θ = π/2.

Next, we study the effect of the magnetic field on the
supercurrent. Figures 4(a)–4(e) show the supercurrent in a
2D slice as a function of momentum kz and magnetic field
phase φ for the different azimuthal angles θ . Significantly,
the supercurrent exhibits a characteristic like the single-slit
Fraunhofer interference pattern as the magnetic field changes.
When θ = 0, all kz channels with supercurrent are in the sym-
metric region [see Fig. 4(a)]. As |kz| increases, the oscillation
period increases. Moreover, the height difference between the
main peak and the subpeaks is not significant, and the peaks
decrease sequentially with the magnetic field increasing. As
θ increases, the topological region starts to appear at chan-
nels with |kz| = 0.4 and gradually widens; the range of the
symmetric region correspondingly decreases [see Figs. 4(b)
and 4(c)]. Overall, the number of channels with supercurrent
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FIG. 5. (a)–(e) Supercurrent Is in a two-dimensional (2D) slice as a function of momentum kz and superconducting phase difference �ϕ

for the different azimuthal angles θ without the magnetic field. The magnetic field phase φ = 0 and θ = 0, π

8 , π

4 , 3π

8 , π

2 , respectively. (f) The
total supercurrent Itotal for the sum of all kz channels in (a)–(e) as a function of superconducting phase difference �ϕ, where I0 is the total
supercurrent of all channels at θ = 0, φ = 0, and �ϕ = π

2 .

gradually increases. When θ increases to π/4, only the topo-
logical region exists. Due to the perfect Andreev reflection in
the topological region, the supercurrent is significantly larger
than that in the symmetric region. Unlike in the symmetric
region, its main peak is much higher than the subpeaks, and
the period first decreases and then increases as |kz| increases.
As θ increases beyond π/4, the topological region begins to
narrow and break at kz = 0, at which point the period changes
more significantly with kz [see Fig. 4(d)]. Next, as θ increases
to π/2, the supercurrent does not decrease to zero and exists

in two narrow regions around |kz| = 0.4, which is consistent
with previous analysis. Finally, we sum the supercurrent of
all the kz channels, as shown in Fig. 4(f). The results show
that, as θ increases, the total supercurrent first increases and
then decreases, the oscillation period and the height difference
between the main and subpeaks increase.

Then we study the relationship between supercurrent and
superconducting phase difference. Figures 5(a)–5(e) show the
supercurrent in a 2D slice as a function of momentum kz and
superconducting phase difference �ϕ without the magnetic

FIG. 6. (a)–(e) Supercurrent Is in a two-dimensional (2D) slice as a function of momentum kz and superconducting phase difference
�ϕ for the different azimuthal angles θ with the magnetic field. The magnetic field phase φ = 0.0138 and θ = 0, π

8 , π

4 , 3π

8 , π

2 , respectively.
(f) The total supercurrent Itotal for the sum of all kz channels in (a)–(e) as a function of superconducting phase difference �ϕ, where I0 is the
total supercurrent of all channels at θ = 0, φ = 0, and �ϕ = π

2 .
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FIG. 7. The total supercurrent Itotal for the sum of all kz channels as a function of superconducting phase difference �ϕ for the different
magnetic field phases φ, where Iθ is the total supercurrent of all channels at φ = 0, �ϕ = π

2 , and θ = 0, π

8 , π

4 , 3π

8 , π

2 in (a)–(e), respectively.

field. In all kz channels, regardless of the value of θ , the
supercurrent varies with �ϕ as a sine function of period 2π ,
that is, Is(kz, θ ) = Ic sin(�ϕ + �ϕ0), where Ic is the critical
current and �ϕ0 is the additional phase. Since �ϕ0 = 0 for
all kz channels, the total supercurrent shown in Fig. 5(f) as a
function of �ϕ satisfies the sine function with period 2π and
the zero additional phase. That is, under zero magnetic field,
the Josephson junction is a 0 junction regardless of the value
of θ . In addition, the variation patterns of the supercurrent
with θ in three regions are consistent with previous analyses,
so the critical current of the total supercurrent also increases
first and then decreases with θ increasing.

Next, we arbitrarily choose a magnetic field phase (φ =
0.0138) to discuss the presence of a magnetic field. We can
see from Fig. 6 that, under the influence of a magnetic field,
the relationship between the supercurrent and the supercon-
ducting phase difference �ϕ still follows a sine function with
a period of 2π , but the additional phase �ϕ0 is no longer zero.
When θ = 0, all kz channels are in the symmetric region, �ϕ0

decreases with increasing |kz| [see Fig. 6(a)]. As θ increases,
the topological region begins to appear. Unlike the symmetric
region, �ϕ0 first increases and then decreases as |kz| increases
in the topological region [see Figs. 6(b)–6(d)]. Obviously, the
magnitude of the supercurrent is similar in the symmetric and
topological regions, which is related to the decrease of the
values of the subpeaks due to the increase of the magnetic
field. In Fig. 4(f), we can see that, when φ = 0.0138, the
values of supercurrent corresponding to different θ ’s are close.
As θ increases to π/2, only the insulated region remains, and
�ϕ0 no longer changes significantly with |kz| [see Fig. 6(e)].
Since the kz channels corresponding to different θ ’s have
different �ϕ0’s, the total supercurrents corresponding to dif-
ferent θ ’s also have different additional phases. That is, under
the influence of the magnetic field, the Josephson junction
transforms into a ϕ0 junction, and the additional phase can
be adjusted by changing θ [see Fig. 6(f)].

Lastly, in the experiment, only the total supercurrent from
all kz channels can be observed, and the magnetic field and

superconducting phase difference are easier to adjust than the
azimuthal angle θ . Therefore, we plot the total supercurrent
Itotal as a function of superconducting phase difference �ϕ

for the different magnetic field phases φ, as shown in Fig. 7.
When the magnetic field is zero, the Josephson junction is a
0 junction regardless of the value of θ . As the magnetic field
phase increases, the 0-π transition appears in the supercurrent,
and the 0 and π junctions alternately appear [see Fig. 7(a)]. In
addition, as θ increases, the additional phase of both the 0
and π junctions increases, resulting in the Josephson junction
transforming into a ϕ0 junction. The additional phase can be
increased to more than π/2 [see Fig. 7(e)]. This means that
the magnetic field and the azimuthal angle θ can adjust the
phase transition of the Josephson junction, allowing it to be a
0, π , or ϕ0 junction.

IV. CONCLUSIONS

In summary, we have studied the supercurrent in the SC-
WSM-SC junction. According to the different edge states,
the FAs are divided into three regions. Different edge states
possess distinct channels for normal reflection and Andreev
reflection. This determines whether perfect Andreev reflection
can occur at the SC-WSM interface, thus affecting whether
electrons in the center region can effectively participate in
supercurrent transport. It is found that the supercurrent is
suppressed in the symmetric region. In the topological region,
the supercurrent increases with increasing θ . The supercurrent
is almost zero in the insulated region due to the presence
of the energy gap. The total supercurrent increases and then
decreases with increasing θ , that is, θ can control the value
of the supercurrent. The Josephson junction is a 0 junction
regardless of the value of θ without the magnetic field. In
the presence of a magnetic field, the supercurrent exhibits
a characteristic like the single-slit Fraunhofer interference
pattern as the magnetic field varies. In this case, the mag-
netic field and the azimuthal angle θ can adjust the phase
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transition of the Josephson junction, allowing it to be a 0,
π , or ϕ0 junction. These properties provide research ideas
for controlling the value of supercurrent and the Josephson
junction phase transition and play an important role in the
development and application of superconducting electronic
devices.
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