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We study an anisotropic cubic Dirac semimetal subjected to a constant magnetic field. In the case of an
isotropic dispersion in the x-y plane, with parameters vx = vy, it is possible to find exact Landau levels, indexed
by the quantum number n, using the typical ladder operator approach. Interestingly, we find that the lowest
energy level (the zero-energy state in the case of kz = 0) has a degeneracy that is 3 times that of other states.
This degeneracy manifests in the Hall conductivity as a step at a zero chemical potential 3/2 the size of
other steps. Moreover, as n → ∞, we find energies En ∝ n3/2, which means the nth step as a function of the
chemical potential roughly occurs at a value μ ∝ n3/2. We propose that these exciting features could be used
to experimentally identify cubic Dirac semimetals. Subsequently, we analyze the anisotropic case vy = λvx ,
with λ �= 1. First, we consider a perturbative treatment around λ ≈ 1 and find that energies En ∝ n3/2 still
hold as n → ∞. To gain further insight into the Landau level structure for a maximum anisotropy, we turn
to a semiclassical treatment that reveals interesting star-shaped orbits in phase space that close at infinity. This
property is a manifestation of weakly localized states. Despite being infinite in length, these orbits enclose a
finite phase space volume and permit finding a simple semiclassical formula for the energy, which has the same
form as above. Our findings suggest that both isotropic and anisotropic cubic Dirac semimetals should leave
similar experimental imprints.

DOI: 10.1103/PhysRevB.109.235434

I. INTRODUCTION

Semiclassical approximations are typically achieved by
taking the h̄ → 0 limit of quantum mechanics [1,2]. More
precisely, this is the limit at which the characteristic action
S is large compared to the reduced Planck constant h̄, that is,
S � h̄ [3,4]. Within this limit, capturing much of quantum
systems’ rich and exotic behavior and preserving the intuitive
explanations that classical mechanics provides are possible.
More than that, semiclassical physics has allowed us to gain
deep insights into the interplay between classical chaos and
quantum mechanics [5]. A prototypical example of this is the
effect of quantum scarring that occurs with wave functions in
quantum billiards that can be traced back to the stable orbits
in a corresponding classical chaotic system, where such orbits
leave their imprints on the quantum wave function [6]. An
even more important reason for the interest in semiclassical
methods is that they provide a nonperturbative approximation
scheme, which is analytically accessible—something that is
exceptional.

*Contact author: ssss133@googlemail.com

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

This strength of the approach can be seen most clearly
in the fact that the semiclassical method can solve problems
approximately that ordinary methods such as perturbation
theory cannot. For instance, if one treats the harmonic oscil-
lator potential as a perturbation around the free particle, then
perturbation theory cannot produce the well-known discrete
energy levels. However, in this case, the semiclassical method
is impressive because it produces exact results for the discrete
energy levels [7,8].

This work does not aim to apply semiclassical methods to
the ordinary Schrödinger equation with a quadratic dispersion,
whose implications are well known. Instead, we want to see its
consequences in the context of more exotic phases of matter—
so-called semimetals.

After the discovery of graphene [9] (a single layer of
carbon atoms arranged in a honeycomb pattern), researchers
discovered many exciting transport properties. A famous ex-
ample is Klein tunneling [10], showing that an electron under
normal incidence will tunnel through a barrier with 100%
probability. These features can be traced back to graphene’s
peculiar band structure, in which the conduction and valence
bands touch at isolated points. This property made graphene
an early example of a semimetal, i.e., a material in which
the overlap between conduction and valence bands is not
precisely zero like in an insulator or semiconductor and not of
finite measure like in a conductor. Instead, while the overlap
is nonzero, it has zero measure. Motivated by this discovery,
much interest in similar classes of materials has emerged.
One example is Dirac semimetals [11,12], which were the
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first experimentally confirmed material in this class. Dirac
semimetals can be considered a three-dimensional analog of
graphene [11,13] because, much like graphene, they have a
linear dispersion near isolated band touching points. Dirac
semimetals are interesting because the exciting linear band
touching is robust. Indeed, Dirac cones do not appear due
to accidental band touchings; instead, they are protected by
crystalline symmetry and spin-orbit coupling [14,15] and are
therefore very stable. Of course, a plethora of other kinds of
semimetals with robust band features exist, such as nodal line
semimetals, in which bands touch along a one-dimensional
line or a more general lower-dimensional surface than the em-
bedding space [16–18]. There are also semimetals with band
touchings of higher than linear order, such as quadratic or cu-
bic dispersion [12,19–22]. Different points in a dispersion, not
just extrema, and band touching points can have interesting
physical consequences for magnetic properties. For instance,
it has been found that different types of saddle points can have
a profound impact on magnetic breakdown [23].

In this work, we will focus our investigation on the effect
of band touching points on magnetic properties in semimetals.
Such effects have been studied in a variety of situations for in-
creasingly exotic semimetals such as type II Weyl semimetals
[24] and semimetals with a charge-4 touching point [25]. Our
work adds to this growing literature on exotic semimetals and
their magnetic properties. In particular, we will study the ex-
otic case of an anisotropic cubic Dirac metal [12,20] subjected
to a constant magnetic field. We will do so by using both fully
quantum and semiclassical methods. Semiclassical results are
compared to fully quantum results. Both approaches offer ex-
citing insights and permit us to speculate about how one might
experimentally identify a cubic Dirac semimetal, whether it is
isotropic or anisotropic.

We organized our work as follows. In Sec. II, we intro-
duce the Hamiltonian of the system. In Sec. III, we study the
Hamiltonian for two cases that allow for an exact quantum
mechanical analytical solution; these cases are isotropic in
the x-y plane. First, we consider the purely two-dimensional
limit. Here, the material is thin, and we may restrict ourselves
to momentum kz = 0 in the z direction for low energies.
Next, we consider the case of kz �= 0, where the material
is thick enough that not all momenta in the z direction are
frozen out. In Sec. IV, we perturbatively consider the effect
of the anisotropy by introducing a small anisotropy parameter
λ � 1. In Sec. V, we recast the problem in a semiclassical
language, which allows us to investigate classical orbits and
study the differences between exact quantum and semiclassi-
cal results. We study the maximally anisotropic limit, which is
inaccessible to a fully quantum analytical treatment. We find
classical orbits and solutions for energy levels that are exact in
the semiclassical limit and compare them to numerical results.
Last, in Sec. VI we draw our conclusions

II. ANISOTROPIC CUBIC DIRAC SEMIMETALS

We take the Hamiltonian describing an anisotropic cubic
Dirac semimetal [12]

H (k) = h̄

(
h(k) 0

0 −h(k)

)
(1)

as the starting point of our discussion. Such a Hamiltonian, for
instance, is expected to be realizable in quasi-one-dimensional

molybdenum monochalcogenide compounds [12]. For such
a material the basis set that was used to write the above
Hamiltonian is |�〉 = (|A,↑〉, |B,↑〉, |A,↓〉, |B,↓〉), with A
and B and ↑ and ↓ designating the orbital and spin degrees
of freedom, respectively. Of course, there is a possibility
that similar Hamiltonians may be realizable in other types of
materials and also with different degrees of freedom (such
as sublattice degrees of freedom), giving rise to an identical
matrix structure. For this reason, our results remain general
in what follows, so we will not explicitly use the basis set
introduced above.

The Hamiltonian (1) for our case of a cubic Dirac
semimetal consists of two blocks with the form

h(k) = vx(k̂3
+ + k̂3

−)σx + ivy(k̂3
+ − k̂3

−)σy + vzkzσz, (2)

where k̂± = k̂x ± ik̂y are momentum operators with k̂i =
−ih̄∂i. Finally, σi are Pauli matrices, and vx,y,z are real-valued
and independent coefficients (they are not velocities) with
dimension T −1, where T stands for time.

A constant magnetic field B can be introduced into our
description with a convenient choice of the Landau gauge.
That is, it is introduced via a vector potential A = (0, Bx, 0)
using the minimal substitution procedure k → k − e

h̄c A. In
the unit system (e = c = h̄ = 1), we therefore replace canon-
ical momentum p̂i operators by kinetic momentum operators
π̂i as

k̂± → π̂± = k̂x ± i(k̂y − Bx̂). (3)

In the following section, we will first study this
Hamiltonian’s energy levels, so-called Landau levels, fully
quantum mechanically, which is only possible in specific
high-symmetry situations.

III. EXACT ENERGY LEVELS FOR THE ISOTROPIC
CASE vx = vy

A. Isotropic case with kz = 0

The Hamiltonian describing an isotropic cubic Dirac
semimetal with vx = vy = v and the z direction frozen out as
kz = 0 (see the Appendix of [20] for a more detailed discus-
sion of how this happens for a thin material) is given by

H (k̂, x) = 2v

⎛
⎜⎜⎝

0 π̂3
+ 0 0

π̂3
− 0 0 0

0 0 0 −π̂3
+

0 0 −π̂3
− 0

⎞
⎟⎟⎠. (4)

To solve the eigenvalue problem, we can separate variables
and write the eigenspinors as plane waves in the y direction.
This is due to the fact that [H (k), k̂y] = 0 implies conservation
of momentum along the y direction �(x, y) = eikyy�(x), with
�(x) = [�1(x), �2(x), �3(x), �4(x)]T . We may now define
the operators

â = 1√
2B

[k̂x + i(ky − Bx̂)], (5)

â† = 1√
2B

[k̂x − i(ky − Bx̂)], (6)

which satisfy the commutation relation [â, â†] = I and can
therefore be interpreted as ladder operators. Using this
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notation, the Hamiltonian becomes

H = ωc

⎛
⎜⎜⎝

0 â3 0 0
â†3 0 0 0
0 0 0 −â3

0 0 −â†3 0

⎞
⎟⎟⎠, (7)

where ωc = 2v(2eB)3/2 is called the cyclotron frequency (re-
call v is not velocity). The eigenvalue problem H (k)�(x, y) =
E�(x, y) for the second spinor �2(x) component can be re-
duced to

ω2
c â†3â3�2(x) = E2�2(x), (8)

which can be solved by harmonic oscillator states �2(x) =
|n〉. Associated energies are given as

En,s = sωc

√
n(n − 1)(n − 2), (9)

where s = ±1. Using as the ansatz �2(x) = |n〉 in this equa-
tion, we can obtain full normalized spinors as

� (h)
n (x, y) = 1√

2

⎛
⎜⎜⎝

s|n − 3〉
|n〉
0
0

⎞
⎟⎟⎠eikyy, n � 3, (10)

and using a similar relation for the fourth component, we find

� (−h)
n (x, y) = 1√

2

⎛
⎜⎜⎝

0
0

−s|n − 3〉
|n〉

⎞
⎟⎟⎠eikyy, n � 3, (11)

Here, the label (h) stands for spinors with contributions that
come solely from the upper block, and (−h) stands for the
lower block in the Hamiltonian.

A special case must be considered to describe the n < 3
states since they require different normalization and do not
come as pairs with opposing signs. For the case m = 0, 1, 2,
we find the spinors

�
(h)
l (x, y) =

⎛
⎜⎜⎝

0∣∣l 〉
0
0

⎞
⎟⎟⎠eikyy, l < 3, (12)

�
(−h)
l (x, y) =

⎛
⎜⎜⎝

0
0
0∣∣l 〉

⎞
⎟⎟⎠eikyy, l < 3, (13)

where we find that the zero-energy ground state is sixfold
degenerate. This observation is interesting because it contrasts
that of single-layer graphene, which has a zero-energy state
with no degeneracy. This ground-state degeneracy has inter-
esting consequences and impacts the Hall conductivity. We
begin our discussion of this with the typical formula for the
Hall conductivity at finite temperature

σxy = i
∑
n,n′

[ f (En) − f (En′
)]

〈ψn| jx|ψn′ 〉〈ψn′ | jy|ψn〉
(En − En′ )2

, (14)

where |ψn〉 is any eigenstate of the Hamiltonian, f (E ) =
{exp[β(E − μ)] + 1}−1 is the Fermi-Dirac distribution, μ is
the chemical potential, and β is the inverse temperature.

Current operators are found in the usual way by taking the
derivative of the Hamiltonian with respect to a vector poten-
tial. For our eigenstates and eigenvalues, we find a unitless
reduced Hall conductivity σ (r)

xy , which is given as

σ (r)
xy = hσxy

4e2
= 9

2
ω2

c

∑
n,σ,σ ′

n(n − 1)
f (En+1,σ ) − f (En,σ ′ )

(En,σ ′ − En+1,σ )2
.

(15)
Here, the sum is over n ∈ N and σ, σ ′ ∈ {−1, 1}. The result of
the computation can be seen in Fig. 1. It shows that the step
in Hall conductivity at zero chemical potential is 3/2 times
the step size of other steps in the quantized Hall conductivity.
This result differs from the case of graphene, which we show
for comparison, in which the first step is half the usual step
size; for a typical Dirac semimetal, the result has the same
properties as graphene. The reason for this behavior can be
found in the sixfold-degenerate lowest Landau level of the
cubic Dirac semimetal, which has 3/2 the degeneracy of other
states. This property contrasts that of graphene, in which the
lowest Landau level has half the degeneracy of other levels.
This result also differs from a typical metal in which all steps
are equally spaced. The second observation one may make
is that in graphene, steps occur at a dimensionless chemical
potential μ(r) = √

n. In contrast, in the cubic Dirac semimetal
case, they occur at values that asymptotically go to μ(r) =
n3/2. Both observations combined with the step height (it is
twice that of a cubic Weyl semimetal [26]), which is due to
the level degeneracy of the cubic Dirac semimetal’s Landau
levels, can be used to identify such materials via the quantized
Hall conductivity experimentally.

B. Quasi-two-dimensional isotropic case kz �= 0

After considering the case of a semimetal with kz = 0 (in
addition to being isotropic in the x-y plane), we now consider
the case where the dimension of the material in the z direc-
tion is sufficiently large that considering nonzero momentum
kz �= 0 is relevant for more than just high energies. As before,
we will restrict our discussion to the isotropic case. To keep
our description consistent in units of the cyclotron frequency
ωc, we define m = vzkz

2v(
√

2B)3 , which can be interpreted as a
masslike term in the original Hamiltonian model (it causes
a gap in the excitation spectrum). The Hamiltonian then takes
the form

H = ωc

⎛
⎜⎜⎝

m â3 0 0
â†3 −m 0 0
0 0 −m −â3

0 0 −â†3 m

⎞
⎟⎟⎠. (16)

From here, finding the Landau levels is almost immediate and
follows almost the same steps as in the previous section. We
find

En,s(m) = sωc

√
n(n − 1)(n − 2) + m2, n � 3, (17)

with s = ±1, where normalized eigenspinors are given as

� (h)
n,s (x, y) = N

⎛
⎜⎜⎝

scn|n − 3〉
|n〉
0
0

⎞
⎟⎟⎠eikyy, (18)
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FIG. 1. Plot of the dimensionless Hall conductivity σ (r)
xy as a function of dimensionless chemical potential μ(r) = μ/ωc. The left panel

shows the Hall conductivity for our problem of a cubic Dirac semimetal (β = 50/ωc), and the right panel shows the case of graphene (β =
100/ωc) as a comparison.

� (−h)
n (x, y) = N

⎛
⎜⎜⎝

0
0

−scn|n − 3〉
|n〉

⎞
⎟⎟⎠eikyy, (19)

with the constants

cn = En,s(0)

En,s(m) − m
, N = 1√

c2
n + 1

. (20)

It is important to note that the case of n < 3 again requires
special care and has the same eigenspinors as given in Eq. (13)
with corresponding eigenvalues

E (±h)
n = ∓ωcm, (21)

which are each threefold degenerate. It is important to stress
that the − sign corresponds to the upper block of the
Hamiltonian and the + sign corresponds to the lower block,
which is unlike the n > 3 result that has both signs in both
cases. Much like the truly one-dimensional case, we can plot
a Hall conductivity and get the result shown in Fig. 2.

We observe that the effect of the mass term m is that some
plateaus have been broadened in width while others have been
shrunk. This behavior should allow experimentalists to recog-
nize whether electrons carry momentum in the z direction.

IV. PERTURBATIVE ENERGY LEVELS FOR
THE CASE vy �= vx

While it was easy to find exact energy levels in the isotropic
case of vy = vx, this task is not simple using analytical means

for the anisotropic case of vy �= vx. Introducing an anisotropy
parameter λ = 1−vy/vx

2 is useful. This approach allows us to
write the Hamiltonian in the convenient form

H = ωc(h0 + λh1) ⊗ σz, (22)

with λ being a perturbative parameter and the definitions

h0 =
(

0 â3

â†3 0

)
, h1 =

(
0 â†3 − â3

â3 − â†3 0

)
. (23)

FIG. 2. Plot of the dimensionless Hall conductivity σ (r)
xy as a

function of the dimensionless chemical potential μ(r) = μ/ωc at
inverse temperature β = 50/ωc, with “mass” term m = −3.
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Here, h0 corresponds to an exactly solvable isotropic
Hamiltonian, and λh1 is considered a perturbation. Eigenval-
ues E0

n are nondegenerate in the case n � 3, and corrections
to the energy to first order can be computed straightforwardly
using the standard expressions for Rayleigh-Schrödinger per-
turbation theory [27] as

En = E0
n (1 − λ). (24)

Like in previous sections, the degenerate zero eigenvalue case
requires special care and must be treated using degenerate
perturbation theory. Interestingly, first-order degenerate per-
turbation theory yields no correction such that expression
(24), which includes the first-order corrections to energies
above, remains valid in all cases. Therefore, it is clear that
a small anisotropy is not expected to have much of an impact
on the qualitative picture of the Hall conductivity [to leading
order ω → (1 − λ)ωc is the only modification].

V. SEMICLASSICAL TREATMENT

Since a completely quantum mechanical treatment for the
anisotropic case is challenging, we will resort to a semiclassi-
cal treatment in this section. This approach allows us to gain
additional insights, such as the shapes of particle trajectories
under the influence of a magnetic field, and further insight into
the anisotropic regime, which we stress is difficult to access in
a complete quantum treatment.

A. Review of Bohr-Sommerfeld-type semiclassics
for matrix Hamiltonians

A general and powerful method to determine energy
levels by studying classical trajectories is the so-called
Gutzwiller approach to the semiclassical density of states
[1]. This approach was generalized to arbitrary matrix-valued
Hamiltonians in [3]. While the method developed in [3] is
quite general and allows for treatments of various special
cases, our current problem of determining Landau levels for
a cubic Dirac semimetal is much simpler. Notably, we have
three significant simplifications:

(1) It is enough to restrict ourselves to one-dimensional
Hamiltonians. We may do so because, in our case with Landau
levels, ky and kz can be treated as parameters entering a one-
dimensional (1D) Hamiltonian, that is, as complex numbers
rather than bona fide operators.

2. The eigenvalues of the classical limit Hamiltonian
H (p, x), where the momentum operator p̂ was mapped to a
complex number p, are nondegenerate. This simplification is
possible because the h(k) blocks in Eq. (1) are not coupled;
it is, therefore, enough to consider them separately, and their
eigenvalues can be found to be nondegenerate.

(3) We may ignore degeneracy factors that arise from dif-
ferent Landau orbits over the plane. This simplification is
possible because they enter only the density of states and not
expressions for the energy levels that interest us.

These three simplifications mean that in what follows, we
may directly employ the modified Bohr-Sommerfeld quanti-
zation condition that was derived in [3]:

2Sα − h̄

[
π (να + 4n) − 2

∫ Tα

0
dtMα

]
= 0. (25)

FIG. 3. Plot of the potential landscape V (x) (thick blue line)
and energy (dashed line). Two distinct potential pots are visible.
Each will have its own associated classical periodic orbits with an
action Sα .

In what follows, we will choose units with h̄ = 1. We now
move on to explain the different terms that enter this expres-
sion. Here, n is an integer that will label energy levels, Sα

is the classical action, and Tα is the time it takes to traverse
a primitive periodic orbit, an orbit in phase space that has
been traversed only once. The index α accounts for different
periodic orbits being possible at a fixed energy. There are two
ways this can happen.

(1) Potentials can allow for different periodic orbits at a
given energy E like in Fig. 3.

(2) We deal with matrix Hamiltonians. That is, to the low-
est order, the Schrödinger equation is replaced by a simple
matrix equation

H (x, px = ∂xS)V = EV. (26)

For an N × N Hamiltonian this can be diagonalized to de-
termine N eigenvectors Vi and N eigenvalue equations that
determine actions Sα ,

Hi(x, px = ∂xSα ) = E , (27)

which are ordinary Hamilton-Jacobi equations, where Hi

are eigenvalues of H (x, ∂xS). These Hamilton-Jacobi equa-
tions can have one or more periodic orbits associated with a
given energy E .

Next, in our expression, Eq. (25) enters να , which is the
so-called Maslov index which for 1D motion counts the num-
ber of reflections by a potential barrier (or, more generally,
directional changes) that a particle experiences while it tra-
verses a periodic orbit. The last term that enters is the so-called
semiclassical phase factor

Mα = Im{V †
α [∂px H (x, px )]∂xVα}, (28)

which bears some resemblance to a Berry phase, as discussed
in [3,28–31]. Here, Vα is the eigenvector of the classical
Hamiltonian matrix H (x, ∂xSα ) corresponding to the orbit α.

B. The Hamiltonian system

For our computations of semiclassical energies, we will
consider only the upper block of (1), that is, Eq. (2) with the
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magnetic field introduced as before via minimal substitution.
This simplification is possible because the second block in
Eq. (1) will yield (up to a sign) the same energies as the other
block. The semiclassical limit of the Hamiltonian (2) is then
obtained by replacing momentum operators with canonical
momenta p̂i → ∂xi S = pi. We obtain the classical expression

h(πi ) = 2vx

(
0 π3

+ + λ(π3
− − π3

+)
π3

− + λ(π3
+ − π3

−) 0

)
,

(29)
and we introduce the shorthand notations

π± = px ± i(py + eBx), (30)

where pi are canonical momenta and πi are kinetic momenta.
The parameter λ = 1−vy/vx

2 measures the degree of anisotropy,
as discussed previously.

C. Isotropic two-dimensional case kz, λ = 0

In the isotropic case, we may set λ = 0 and vx = vy = v;
for a thin sheet, low energies correspond to kz = 0, and we
find

h(π ) = 2v

(
0 π3

+
π3

− 0

)
. (31)

The eigenvalues are obtained from the determinant as
det[h(πi ) − E ] = 0,

Es =2sv
√

(π+π−)3, (32)

where s = ±1. The corresponding normalized eigenvectors
are given by

V = 1√
2

( 2v
Es

π3
+

1

)
. (33)

At this level, we see that there are two classical Hamiltonians
of the form

H (pi, x) = 2sv
[
p2

x + (py + eBx)2]3/2
. (34)

1. Time for an orbit

Another ingredient that enters our expression for the gen-
eralized Bohr-Sommerfeld quantization condition is the time
for an orbit. Here, we start by investigating the equations of
motion, which are given by Hamilton’s equations

q̇ = ∂H

∂ p
, ṗ = −∂H

∂q
, (35)

where q is the position and p is momentum coordinates. In our
case, we find

ẋ = 3s(4|E |v2)
1
3 px,

ẏ = 3s(4|E |v2)
1
3 (py + eBx),

ṗx = 3seB(4|E |v2)
1
3 (py + eBx),

ṗy = 0. (36)

From (36) we find (taking a time derivative of ẋ and us-
ing the equation for ṗx) that the equation of motion for the
x coordinate is given as

ẍ = −ω2(x + xs), (37)

FIG. 4. Phase space curve of an electron in a cubic semimetal
subjected to a constant magnetic field.

which constitutes a shifted harmonic oscillator with position
shift xs = py/(eB) (note that py is constant, as shown above).
It is important to note that this equation is valid for both clas-
sical Hamiltonians in Eq. (34). It also means that it is enough
to consider only one of the eigenvalues to find semiclassical
energy levels. Indeed, in the remainder of this section, we
will focus on only one of the Hamiltonians and therefore
drop all indices related to orbits. The oscillator frequency is
found to be

ω = 3(4|E |v2)
1
3 eB. (38)

The time for an orbit as per the definition ω = 2π/T then is
then found to be

T = 2π

3(4|E |v2)
1
3 eB

. (39)

2. Classical orbit, action, and the Maslov index

Now, from Eq. (37), we find the solutions

x = xs + x0 sin(ωt ), px = seBx0 cos(ωt ), (40)

with amplitude

x0 = 1

eB

( |E |
2v

) 1
3

, (41)

which can be found for a given energy by placing the solutions
(40) in Eq. (32). Plotting them, we get the typical phase space
curve of a harmonic oscillator that can be seen in Fig. 4,
which is just an elliptic orbit. This curve directly tells us
that the particle along each orbit changes direction twice, and
therefore, the Maslov index is

να = 2. (42)

We may next use px = ∂xS in Eq. (32) to find the action for an
orbit as

S =
∫ √( |E |

2v

) 2
3

− (py + eBx)2dx. (43)

This integral for a single period of a primitive orbit gives

S = π

eB

( |E |
2v

) 2
3

. (44)
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3. Semiclassical Berry-like phase and energy levels

For the semiclassical phase term using (28) we find

M± = 9eB

( |E |v2

2

) 1
3

, (45)

which is a constant, and therefore, the integral
∫ T

0 dtM =
MT = 3π is trivial.

We may use our results (44), (42), and (45) and put them
into (25) to find that our semiclassical energies are then
given by

E = ±ωc(n − 1)3/2, (46)

with ωc = 2v(2eB)3/2.

4. Performance of semiclassical results

Understanding under what conditions the semiclassical re-
sults perform well compared to the exact results obtained
earlier is helpful. Of course, we see directly that the results are
different. This observation poses the question of under which
conditions the results agree.

Typically, semiclassical results are reliable for large quan-
tum numbers. Therefore, we do an expansion for large n of
both the exact (Eexact) and semiclassical (Esemcl) results to find

Eexact = ±ωc

(
n3/2 − 3

2
n

1
2 + 3

8
n− 1

2

)
+ O(n− 3

3 ),

Esemcl = ±ωc

(
n3/2 − 3

2
n

1
2 − 1

8
n− 1

2

)
+ O(n− 3

3 ), (47)

where we can see that results agree well in the limit of large
quantum numbers—they only disagree at order O(n−1/2),
which is typical in the semiclassical approach—because, typi-
cally, larger quantum numbers correspond to a larger classical
action.

D. Quasi-two-dimensional isotropic limit

Next, we consider the case pz �= 0, which can describe a
sheet of finite thickness. To obtain a simpler notation that
we can compare to the exact quantum case, we set pz =
mωc/(2vz ). The notation is suggestive and clarifies that pz

takes the role of a mass term m. The Hamiltonian then takes
the form

h(π ) = 2v

(mωc
2v

π3
+

π3
− −mωc

2v

)
. (48)

The eigenvalues are readily found as

E = 2vs

√
(π+π−)3 +

(mωc

2v

)2
, (49)

with s being the sign of the energy. The corresponding eigen-
vectors can be written as

V =
√

2

√
1 − mωc

E

(
π3

+v

E−2mωc

1

)
. (50)

The classical system will reduce to a harmonic oscillator if
we use the same methods as in the previous section. However,

FIG. 5. The left plot shows Landau levels as a function of the
mass parameter m (a dimensionless version of momentum kz). The
right plot shows the relative error between the exact and approximate
energies for m = 0.

this time it has a slightly modified driving frequency

ω = 3

(
2v

(|E |2 − m2ω2
c

)
|E |3/2

) 2
3

eB. (51)

Considering the limit of small mass and the relation to the
frequency in the massless case, Eq. (38) is interesting. We will
use the term ω0 to refer to the frequency of the massless case
below. In the limit of small masses, the oscillation frequency
becomes

ω ≈ ω0 − 2

3

m2ω2
c

|E |2 ω0, (52)

which tells us that a mass term reduces the oscillation fre-
quency just as intuition would dictate. Because we have
harmonic motion, we find a Maslov index

ν = 2. (53)

The action of a primitive can be computed in analogy to the
previous case and is given as

S = π
(|E |2 − m2ω2

c

) 1
3

22/3eBv2/3
. (54)

Last, we find that the semiclassical phase factor has the form

M = 9Be[v(|E |2 − 4m2ω2/v2)]2/3

2
1
3 E

, (55)

which is a constant. Therefore, the integral
∫ T

0 dtM =
2πM/ω = 3π is trivial.

Applying the Bohr-Sommerfeld quantization condition
(25) as before, we find that energy levels are given as

Esemcl = ωc

√
m2 + (n − 1)3. (56)

We may now compare the semiclassical result Esemcl to the
exact result (17), which we denote Eexact, to find

Esemcl − Eexact = (n − 1)
ωc

2m
+ O(m−3), (57)

which tells us that, similar to expectations, a mass term turns
the energy levels more classical (the approximation error
shrinks for large mass).

To better visualize how accurate the approximation is in
various situations, we plot the Landau levels as a function
of the mass parameter m. The approximation’s effectiveness
for the worst case of m = 0 is also visualized in Fig. 5. We
find that the semiclassical energy levels agree very well with

235434-7



JELLAL, BAHLOULI, AND VOGL PHYSICAL REVIEW B 109, 235434 (2024)

exact results except for the lowest energy. The agreement
improves as the “mass” is increased, which mirrors the typi-
cal quantum intuition that semiclassical approximations work
especially well for massive objects. Furthermore, as expected,
the approximation error decreases rapidly as a function of the
quantum number n, even in the least well approximated case
of m = 0.

E. Maximally anisotropic case vx = 0

In the last part of this section, we consider a case that is
difficult to solve by analytical means in an exact quantum
treatment: the case of a maximally anisotropic cubic Dirac
semimetal. Maximum anisotropy is achieved for vx = 0 and
vy = v, where the classical Hamiltonian takes the form

H = v

(
0 π3

− − π3
+

π3
+ − π3

− 0

)
. (58)

For this case, it is advantageous to combine Hamilton-Jacobi
equations for different eigenvalues into a single Hamilton-
Jacobi equation det(E − H ) = 0, and we find

E2 + v2(π3
− − π3

+)2 = 0. (59)

Eigenvectors that correspond to different solutions for E are
given as

V± = 1√
2

(±1
1

)
(60)

and are independent of momenta and positions, which directly
lets one realize that the semiclassical phase M will have no
contributions. It is, therefore, important to recognize that the
main contribution to orbits will be from the classical phase
space orbit. The combined Hamilton-Jacobi equation (59) can
be interpreted as an implicit relation for the orbit in phase
space

E2 − 4v2(Bex + py)2
[
(Bex + py)2 − 3p2

x

]2 = 0, (61)

which leads to the interesting phase space orbit shown in
Fig. 6.

We observe that semiclassical particles in this problem
traverse star-shaped orbits in phase space. These orbits do not
close except at infinity (for a nonzero value of vx, the closure
happens at a finite value, however). It is clear from Fig. 6
that despite orbits that close only at infinity, the phase space
volume enclosed by the trajectory is finite. This observation is
interesting and peculiar because the finite phase space volume
implies discretized energy levels corresponding to localized
states. At the same time, the classical particles are not local-
ized: they move to infinity along the sides of the star. This
observation demonstrates how a particle can be localized for a
quantum mechanical problem. The classical dynamics do not
reflect this in the real space trajectory, only in phase space
through a finite volume. The Maslov index can also easily be
found from Fig. 6 if we note that barrier reflections happen
when the momentum derivative becomes infinite; this happens
at four spots along the orbit (the two spikes at x̃ = 0 and the
indents at p̃x = 0). Therefore, the Maslov index in Eq. (25) is
ν = 4.

The last ingredient in Eq. (25) to find semiclassical ener-
gies is the action, which is the volume enclosed by the orbit.

FIG. 6. Plot of phase space trajectories in terms of unitless
momentum p̃i = pi(eB)−1/2, unitless energy ε = Ev−1(eB)−3/2, and
position x̃ = x(eB)1/2 (recall that v is not a velocity and we set
h̄ = 1). In both cases, we set py = 0 because this term leads to only
a shift of the trajectory center along the x axis. The red curve is for
ε = 1, and the blue one is for ε = 0.02.

The simplest way to do this is to realize that it is enough
to compute the area of one of the four star sectors, which is
marked in blue Fig. 7. We find that the area can be separated
into different pieces, giving a unitless action s with

s/4 =
∫ ∞

0
dx

√
2x3 + ε

6x
−

∫ ∞

ε1/32−1/3
dx

√
2x3 − ε

6x
. (62)

The integral simplifies considerably to

s = 24/3√πε2/3
(

7
6

)


(
5
3

) , (63)

where  is the gamma function. After units are reintroduced,
the result is inserted into the Bohr-Sommerfeld quantization
condition, and the resulting relation is solved for the energy.

FIG. 7. Plot of one sector of the star orbit. Marked in blue
is the area one needs to compute. The blue curve is given by
p̃x = √

x2/3 + ε/(6x), and the orange curve is given by p̃x =√
x2/3 − ε/(6x).
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FIG. 8. The relative error between exact and approximate ener-
gies. The blue line serves to guide the eye.

We find the semiclassical energy levels are given by

En = h̄ωc
π3/4

(
5
3

)3/2

8
(

7
6

)3/2 n3/2, (64)

which, much like in the isotropic case, behave as En ∝ n3/2,
but with a different proportionality constant. Of course, it
is interesting that we obtained relatively simple closed-form
results semiclassically in a case for which a full quantum
treatment is difficult. Even a proper numerical treatment is
numerically expensive because particles are only weakly lo-
calized (for details, see the Appendix). We compare our
closed-form semiclassical approximation to the numerical re-
sults in Fig. 8 to determine whether our approximation is
reliable. One can observe that the results are in excellent
agreement with a complete numerical treatment and that the
quality of agreement improves for an increasing quantum
number n. The existence of discrete energy levels demon-
strates that the classically nonlocalized particles are weakly
quantum localized. Moreover, the functional form of the en-
ergies tells us that even in an anisotropic case, one can expect
behavior for the Hall conductivity similar to what we have
predicted for the isotropic case.

VI. CONCLUSION

In summary, we showed that the Landau levels of a cubic
Dirac semimetal exhibit intriguing features both quantum me-
chanically and from a classical perspective. We showed in a
fully quantum mechanical treatment that one can expect ex-
perimentally detectable signatures of a cubic Dirac semimetal
in the Hall conductivity, and we found explicit analytical ex-
pressions. While the anisotropic case could not be understood
by employing a full quantum treatment, we made much more
progress on the semiclassical side.

Interestingly, we found that in the anisotropic case, the
electrons do not localize classically. Instead, they move
infinitely far from the origin. However, they were found to

be quantum mechanically weakly localized, giving rise to
discrete energy levels. Our work also provides an exciting
example of quantum corrections playing a significant role
in localization, enriching the phenomenological literature in
this respect. Nevertheless, weak localization from the classical
side has left its imprint in that the numerics for finding exact
quantum energy levels are relatively expensive when using a
local set of basis functions.

The PYTHON code employing sparse matrix diagonalization
is available from the authors upon reasonable request.
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APPENDIX: NUMERICAL SOLUTION OF THE
MAXIMALLY ANISOTROPIC CASE

For a numerical treatment, we express the Hamiltonian
(58) in terms of the usual Landau basis as

h = ωc

2

(
0 a†3 − a3

a3 − a†3 0

)
, (A1)

and we use the fact that we may write

(a3)i j =
√

2i + 3i2 + i3δi+3, j . (A2)

A naive expansion letting i and j run from zero to a cutoff
does not yield valid results. Indeed, as one can already check
in the isotropic case, such an approach leads to issues with un-
physical states at zero energy. One finds a sixfold degeneracy
instead of the actual physical threefold degeneracy. Luckily,
there is a simple way to fix this if one replaces

a3 → (a3)chop,x,y, (A3)

where (a3)c,x has the last three columns chopped from the
matrix and (a3)c,y has the last three rows chopped. In the
isotropic case, this replacement leads to the correct number of
zero modes and the correct eigenvectors for the zero modes,
which justifies this replacement.

For the anisotropic case, we may then write the numerical
Hamiltonian as

hchop = ωc

2

(
0 (a†3)c,x − (a3)c,x

(a3)c,x − (a†3)c,y 0

)
, (A4)

which leads to the results employed in the main text. We
should also note that this approach is slowly converging, so
a basis of ∼222 states was needed (close to state-of-the-art
system sizes in exact diagonalization) to generate the results
in the main text.
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