
PHYSICAL REVIEW B 109, 235431 (2024)

Fabry-Pérot and Friedrich-Wintgen bound states in the continuum in a photonic triple-stub cavity

Yamina Rezzouk ,1 Soufyane Khattou ,1 Mohamed El Ghafiani ,1 Madiha Amrani ,1 El Houssaine El Boudouti ,1,*

Abdelkrim Talbi ,2 and Bahram Djafari-Rouhani 3

1LPMR, Département de Physique, Faculté des Sciences, Université Mohammed I, 60000 Oujda, Morocco
2University of Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520-IEMN, F-59000 Lille, France

3IEMN, UMR CNRS 8520, Département de Physique, Université de Lille, 59655 Villeneuve d’Ascq, France

(Received 21 March 2024; accepted 14 June 2024; published 25 June 2024)

Bound states in the continuum (BICs) are zero-width (infinite lifetime) trapped eigenmodes that remain con-
fined in the system even though they coexist with a continuum of extended states. The resulting high-frequency
resonances may have significant applications in photonic integrated circuits, filtering, sensing, and laser. In this
paper, we demonstrate that a simple design based on a photonic triple-stub cavity can display both Fabry-Pérot
(FP) and Friedrich-Wintgen (FW) BICs, and their occurrence is very dependent on the way the cavity is attached
to the outside medium by one or two ports. We first consider a symmetric cavity where a stub of length d3 is
surrounded by two stubs of length d2, and all stubs are separated by segments of length d1. When the cavity is
inserted between two ports, we demonstrate theoretically and validate experimentally the existence of symmetric
BICs (S-BIC) and antisymmetric BICs (AS-BIC) of FP type under commensurability conditions between the
lengths d1, d2, and d3. The S-BICs and AS-BICs may cross each other, giving rise to a doubly degenerate BIC.
By breaking the symmetry of the cavity, AS-BICs and S-BICs can couple together and realize a FW-type BIC
where one resonance remains with zero width while the other broadens into a bright mode. By considering
two additional configurations where the triple-stub cavity is attached with one or two ports from only one side,
additional BICs can be induced inside the structure. By slightly detuning from the BIC condition, the latter
transforms into either an electromagnetic-induced transparency/reflection or Fano resonance. Finally, such a
triple-stub cavity can be designed to realize near-perfect absorption for some frequencies. All the analytical
results, obtained from the Green’s function method, have been confirmed experimentally in the radiofrequency
domain using coaxial cables.

DOI: 10.1103/PhysRevB.109.235431

I. INTRODUCTION

The interaction of electromagnetic waves with scatterers in
a composite material generates resonances and antiresonances
in the transmission spectra [1]. In photonic circuits, these
important phenomena have been shown both theoretically
and experimentally, including Fano [2,3], electromagnetic-
induced transparency (EIT) [4,5], and electromagnetic-
induced reflection (EIR) resonances [6]. In Fano resonance
[7], the peak is followed by antiresonance in a narrow fre-
quency range, giving rise to an asymmetrical line profile
shape. When the resonance falls between two antiresonances
(resonances), Fano resonance acts like EIT (EIR) resonance
[8]. These resonances (antiresonances) are the result of a
discrete localized mode interacting with a continuum of prop-
agating modes, which can transform an opaque (transparent)
system into a transparent (opaque) one in a narrow frequency
range. In addition to Fano, EIT, and EIR resonances, bound
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states in the continuum (BICs) [9] have found a high amount
of interest in recent years [10–12]. These nonradiating modes
are localized within a continuum of extended modes, yet they
remain highly confined with an infinite lifetime and quality
factor (Q factor) in lossless systems. Hence, BICs remain
well confined in some parts of the system, even though they
coexist with a continuous spectrum of outgoing waves that can
transport energy away. BIC, Fano, and EIT phenomena were
observed in quantum systems [7–9]; however, it was shown
that these resonances can be extended to different classical
systems such as photonic systems [13–18], plasmonic nanos-
tructures [12,19–21], metasurfaces [22–24], and fiber Bragg
gratings [25].

The physical mechanisms behind the formation of BICs
may be split into three main categories [10]: BICs protected
by symmetry or separability (SP) BICs [26], Friedrich-
Wintgen (FW) BICs [27] and Fabry-Pérot (FP) BICs [28],
which have been extensively investigated [21,24,29–37]. SP-
BICs refer to the incompatibility of symmetry between two
sets of modes, i.e., a bound state with one symmetry class
may fall into a continuum state with another class of sym-
metry without any coupling between them [26,29]. FP-BICs
refer to destructive interference when two resonant cavities
are spaced apart so that they are tuned to make the roundtrip
phase shift add up to an integer multiple of 2π , causing de-
structive interference between the two resonances and then
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FIG. 1. (a) Schematic of a symmetric triple-stub cavity com-
posed of a stub of length d3 inserted between two stubs of length d2

and separated by a segment of length d1. (b) The symmetric cavity
is attached vertically to two ports from one side. (c) The symmetric
cavity is attached only to one port from one side. I, R, and T denote
the incident, reflected, and transmitted waves, respectively.

the formation of a BIC [31,32]. The resonances leading to
FW-BICs belong to the same cavity and are coupled through
the same radiation channel. Further, this BIC results from the
interaction of two resonant modes with an avoided crossing,
and at a specific parameter value, the width of one resonance
vanishes, resulting in a FW-BIC, while the other resonance
becomes more lossy [18,24]. In addition to the abovemen-
tioned BICs existing in simple cavities, there are other types
of BICs in periodic structures including BICs at the � and
off-� points of band structures [26,38,39] as well as BICs
due to either Brillouin zone folding [40] or momentum mis-
match in compound grating waveguide structures [41]. The
realization of BICs in photonics was discussed [28], followed
by an experimental demonstration of optical BICs [42]. Since
then, there has been increasing interest due to their infinitely
high-Q factor in lossless systems [38,43,44], with practical
applications such as ultrasensitive optical absorption [45,46],
strong light enhancement [12], and photonic integrated cir-
cuits [47]. Additionally, BICs give rise to discontinuities in
the transmission and reflection coefficients, which can offer
a wide range of applications, including sensors [21,48–50],
lasers [51–53], and filters [54].

In a recent paper [18], we have studied FW-BIC and EIT
resonances within a simple T-shaped cavity coupled laterally
to a waveguide. We have also used photonic stubbed structures
featuring double stubs [1,13] to investigate FP-BIC, EIT, and
Fano resonances. This cavity with two resonators (stubs) is
a FP kind cavity that presents symmetric and antisymmetric
modes. Notably, when the roundtrip phase shift adds up to 2π ,
one of the two resonances becomes a BIC. However, within
this configuration, symmetric and antisymmetric modes op-
erate independently without any interaction with each other.
Here, we propose a symmetric triple-stub cavity made up of
a stub of length d3 surrounded by two stubs of length d2 and
separated by segments of length d1 (see Fig. 1). The whole
cavity is inserted between two ports. The main advantages
of this structure are the existence of both symmetric and
antisymmetric resonant modes that can cross each other. The
antisymmetric modes are independent of stub d3, as the lat-
ter is located in the middle of the cavity where the electric
field vanishes, whereas the symmetric modes depend on the

geometrical parameters of the whole system. We show that,
when d1, d2, and d3 are chosen appropriately commensurate,
the antisymmetric BIC (AS-BIC) is independent of d3. How-
ever, the symmetric BIC (S-BIC) appears when the width of
the S resonance vanishes. The crossing between the S-BIC and
AS-BIC gives rise to a doubly degenerate BIC (D-BIC). The
AS-BIC and S-BIC in the symmetric cavity [Fig. 1(a)] can
be qualified as FP-BICs. When the symmetry of the cavity is
broken by slightly detuning one of the two stubs of length
d2 by a small amount δ, we obtain an avoided crossing of
the two modes leading to a FW-BIC. Therefore, compared
with the double-stub cavity, the triple-stub cavity may ex-
hibit a crossing and avoided crossing between symmetric and
antisymmetric modes, leading to the formation of either a
FP-BIC or a FW-BIC. Also, we provide an analysis of the
mechanism behind the FW-BIC and FP-BIC and the possibil-
ity of switching from one to another in the triple-stub cavity.
The number of BICs in a cavity depends on the number of
channels surrounding it. Indeed, BICs are an outcome of de-
structive interference through parameter tuning across various
channels. Tuning a significant number of system parameters
can lead to the complete elimination of radiation and, as a
result, the generation of a BIC. In general, if radiation con-
tains N degrees of freedom, at least N parameters need to
be adjusted to obtain a BIC [10,55]. Such suppression can
be interpreted as an interference effect in which two or more
radiating components cancel each other out. Here, we show
that, apart from the BICs in the symmetric cavity inserted
between two ports from two sides [Fig. 1(a)], other BICs
can occur when the cavity is attached to either two ports
[Fig. 1(b)] or just one port [Fig. 1(c)] from only one side.
Furthermore, by deviating from the BIC condition, the latter
transforms into EIT, EIR, or Fano resonance. In addition,
the triple-stub cavity can be used to achieve near-perfect
absorption at some frequencies. The analytical results are
obtained from an analysis of the transmission and reflection
coefficients as well as the density of states (DOS) using the
Green’s function method [1]. The DOS is defined as the
number of states by units of angular frequency [56]. Also,
we provide a comparison between DOS and the derivative of
the argument of the determinant of the scattering matrix (the
so-called Friedel phase [57–59]) as well as the reflection delay
time. The analytical results are confirmed by experiments
carried out using coaxial cables in the radiofrequency regime.
Let us mention also that all the results presented here for
photonic circuits can be transposed to metal-insulator-metal
(MIM) plasmonic nanowaveguides operating in the infrared
domain [18,21]. We present a numerical example in the Sup-
plemental Material [60] and focus here on the theoretical
demonstrations that can be compared with our experimental
measurements.

This paper is structured as follows: In Sec. II, we present
an analytical and experimental comparative study of the
transmission spectra and the DOS through a symmetric and
asymmetric triple-stub cavity inserted between two ports
[Fig. 1(a)]. In Sec. III, we discuss both theoretically and
experimentally the transmission and reflection spectra for the
cavity attached to two or one port from one side [Figs. 1(b)
and 1(c)], leaving the other side free. The conclusion is given
in Sec. IV.
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II. TRIPLE-STUB CAVITY WITH TWO PORTS
FROM TWO SIDES

A. Symmetric cavity-induced FP-BIC

The cavity under study consists of a symmetric triple-stub
cavity composed of a stub of length d3 inserted between two
stubs of length d2 and separated by a segment of length d1. The
whole cavity is inserted between two semi-infinite waveguides
[Fig. 1(a)]. Moreover, the boundary condition at the ends
of the stubs is a vanishing magnetic field (H = 0). For our

study, the lengths d1 and d2 are chosen to be fixed, while d3

is taken variable. The calculation approach, which is based
on the Green’s function method [1], enables us to deduce
different properties of the cavity, including the transmission
and reflection coefficients as well as the eigenmodes of the
isolated cavity. The expression of the transmission and reflec-
tion coefficients through the symmetric cavity [Fig. 1(a)] is
given as follows (for more details, see Supplemental Material
SM1 [60]):

th = 2C2
2C3

{(C1C2 − S1S2) − jS1C2}{C2(2C1C3 − S1S3) − j[2C3(C1S2 + S1C2) + S3(C1C2 − S1S2)]} , (1a)

and

rh = C1C2
2 (2S1C3 + C1S3) + (2C1C3 − S1S3)(2C1C2S2 − S1) − 2C2C3S2

{(C1C2 − S1S2) − jS1C2}{C2(2C1C3 − S1S3) − j[2C3(C1S2 + S1C2) + S3(C1C2 − S1S2)]} , (1b)

where Ci = cos(kdi ), Si = sin(kdi ), and k = ω
√

ε

c . Here, ω

is the angular frequency, ε is the dielectric permittivity of
the waveguide, and c is the speed of light in vacuum. For a
lossless system, one can deduce from Eqs. (1a) and (1b) that
the transmission and reflection rates verify the conservation
energy law |th|2 + |rh|2 = 1.

It is well known that the eigenmodes of the whole sys-
tem [Fig. 1(a)] can be obtained from the poles of the
Green’s function or equivalently from the denominator of
the transmission/reflection coefficients [Eqs. (1a) and (1b)],
namely,

{(C1C2 − S1S2) − jS1C2}{C2(2C1C3 − S1S3)

− j[2C3(C1S2 + S1C2) + S3(C1C2 − S1S2)]} = 0. (2)

As predicted, Eq. (2) gives two decoupled solutions cor-
responding to symmetric and antisymmetric modes of the
system, namely,

C1C2 − S1S2 − jS1C2 = 0 (3a)

and

C2(2C1C3 − S1S3)

− j[2C3(C1S2 + S1C2) + S3(C1C2 − S1S2)] = 0, (3b)

respectively.
One can clearly see that the antisymmetric modes given by

Eq. (3a) are independent of stub d3, whereas the symmetric
modes provided by Eq. (3b) depend on the geometrical param-
eters of the whole system. As previously mentioned, the poles
of th and rh [Eq. (2)] refer to bound states. Indeed, Eqs. (3a)
and (3b) are complex quantities; their imaginary parts are
responsible for the broadening of resonances in the transmis-
sion coefficient, while their real parts give the position of
the resonance. However, when the real and imaginary parts
of Eqs. (3a) and (3b) vanish together at the same frequency,
then we get trapped modes (BICs) in the continuum. These
BICs appear as resonances with zero width in the transmission
and reflection spectra as well as in the DOS. The solution of
Eq. (3a) leads to the following simple equation, giving rise to

antisymmetric BICs (AS-BIC):

S1 = 0 and C2 = 0. (4)

From Eq. (4), one can deduce

kd1 = n1π and kd2 = (2m2 + 1)
π

2
, (5a)

and therefore, the commensurability between d1 and d2, such
that

d2

d1
= 2m2 + 1

2n1
, (5b)

where m2 is an integer and n1 is a nonzero integer. As
mentioned above, the AS-BIC is independent of d3, as the
corresponding electric field presents a node in the middle
of the triple-stub cavity where stub d3 is inserted, while an
analysis of Eq. (3b) leads to two types of solutions associated
with S-BICs, namely,

S1 = 0, C2 = 0, and C3 = 0, (6a)

and

C1 = 0, C2 = 0, and S3 = 0. (6b)

One can see that Eq. (6a) gives a solution that leads to both
the S-BIC and AS-BIC [Eq. (4)]; hence, we get a D-BIC.
Indeed, Eq. (6a) is fulfilled when d1, d2, and d3 satisfy both
Eq. (5b) and the following equation about the commensura-
bility of d3 and d1:

d3

d1
= 2m3 + 1

2n1
. (7)

Therefore, Eqs. (5b) and (7) give the conditions that should be
satisfied by d1, d2, and d3 to get a D-BIC. As mentioned above,
the BICs are given by the poles of the transmission coeffi-
cient; however, at these frequencies, the transmission does not
diverge, as the numerator of the transmission vanishes also,
giving rise to a finite value in the transmission amplitude. For
example, let us take n1 = 1, m2 = m3 = 0 (i.e., d2 = d3 = d1

2 ).
In this case, we can easily show that the expression of the
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transmission [Eq. (1a)] becomes simply

th = 2C2

2C2 − 3 jS2
. (8)

From Eq. (8), one can deduce the transmission rate as

T = |th|2 = 4C2
2

5S2
2 + 4

. (9)

The latter equation clearly shows that the transmission rate is
finite at the BIC frequency given by C2 = 0; T vanishes here.

The second solution which yields the S-BIC [Eq. (6b)]
gives

kd1 = (2m1 + 1)
π

2
, kd2 = (2m2 + 1)

π

2
,

kd3 = n3π. (10a)

Therefore, d1, d2, and d3 should be chosen commensurate,
such that

d2

d1
= (2m2 + 1)

(2m1 + 1)
(10b)

and

d3

d1
= 2n3

(2m1 + 1)
, (10c)

where m1 is an integer and n3 is a nonzero integer.
Another interesting physical quantity that can be obtained

from the Green’s function is the DOS. This quantity is related
to the determinant of the scattering matrix S′ defined by

S′ =
(

rh th
th rh

)
, (11)

where th and rh are given by Eqs. (1a) and (1b), respectively.
Indeed, for a lossless system, the determinant of the scat-

tering matrix S′ can be obtained from the expressions of th
and rh as det(S′) = r2

h − t2
h since the cavity is symmetric. The

scattering Friedel phase θF for the lossless system is given by
[57–59],

θF = arg[det(S′)]. (12)

Moreover, it was shown [58,59] that the variation of DOS
[�n(ω)] between the final and initial systems is related to the
Friedel phase θF by the following expression (see Supplemen-
tal Material SM2 [60]):

dθF

dω
= 2π�n(ω). (13)

In our case, the final and initial systems consist of the triple-
stub cavity coupled to or decoupled from the two semi-infinite
wires. In a lossless system, the derivative of the Friedel phase
dθF
dω

behaves similarly compared with the DOS. These findings
show that the DOS can be extracted from the measurement
of the argument of the determinant of the scattering matrix
[Eq. (13)]. However, for a lossy system, Eq. (13) is no longer
valid, and dθF

dω
can exhibit a different behavior in comparison

with the DOS [61].
Before going into the details of the BICs induced by the

stub of length d3 for given d1 and d2 [Fig. 1(a)], let us first give
a comparison of the BICs for two particular cavities, namely,
d3 = 0 [Fig. 2(a)] and d3 = d2 [Fig. 2(c)]. In the first case (i.e.,

FIG. 2. (a) Fabry-Pérot (FP) cavity made up of double stubs of
length d2 and separated by a segment of length 2d1. (c) Triple-stub
cavity made of segments of length d1 and stubs of length d2. (b) and
(d) Variation of the density of states (DOS) in color scale as a func-
tion of 	 and stub d2 for lossless cavities in (a) and (c), respectively.
The full white, pink, and cyan circles indicate the position of the
symmetric, antisymmetric, and doubly degenerate bound states in the
continuum (S-BICs), (AS-BICs), and (D-BICs), respectively.

d3 = 0), the S-BIC and AS-BIC are given by the geometrical
parameters [Eqs. (5b) and (10b)] and the corresponding fre-
quencies [Eqs. (5a) and (10a)], respectively. Here, the S-BIC
and AS-BIC cannot hold simultaneously.

An example of the dispersion curves from the DOS is given
in color scale as a function of 	 and stub d2 in Fig. 2(b). All
lengths are given in units of d1 = 1 m, and the dimensionless
frequency 	 = kd1

π
is used. Different S-BICs (white circles)

and AS-BICs (pink circles) associated with the pairs (m1,
m2) and (n1, m2) in Eqs. (10b) and (5b) are reported. In
the second case (i.e., d3 = d2), the S-BIC and AS-BIC are
given by Eqs. (4) and (6a). Here, both BICs fall at the same
frequency [Eq. (5a)], giving rise to a D-BIC. The dispersion
curves obtained from the DOS are shown in Fig. 2(d); we
can see the dispersion of the symmetric and antisymmetric
resonances giving rise to a D-BIC at the crossing points. The
BICs corresponding to different pairs (n1, m2) in Eq. (5b) are
represented by cyan circles in Fig. 2(d). Consequently, one of
the advantages of introducing stub d3 results in the crossing
between the S-BIC and AS-BIC, giving rise to a D-BIC. This
property enables us to study the interaction between the two
FP-BICs by varying the length of stub d3.

In the following, we will give a numerical and experimental
validation of the analytical results about the existence of FP-
BICs in the triple-stub cavity [Fig. 1(a)] with d1 and d2 fixed,
while d3 is variable. We will discuss in detail two cases: (i)
the case where both AS-BIC and S-BIC hold simultaneously
[Eqs. (4) and (6a)] and (ii) the case where only the S-BIC oc-
curs [Eq. (6b)]. For the first case, we chose d2

d1
= 1

2 [i.e., m2 =
0 and n1 = 1 in Eq. (5b)] and d3 variable. This choice of geo-
metrical parameters enables us to get both AS-BIC and S-BIC
at 	 = kd1

π
= 1 [Eq. (5a)]. Figure 3(a) shows the transmission

intensity (in color scale) vs 	 and d3 through the lossless FP
cavity [Fig. 1(a)]. The horizontal white dotted line at 	 = 1
indicates the position of the AS-BIC, which is independent
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FIG. 3. Theoretical variation of the transmission magnitude (in color scale) vs 	 and d3 in the (a) lossless and (b) lossy systems.
(c) Experimental validation of the transmission magnitude through the lossy cavity [Fig. 1(a)]. The white and pink dotted points represent
the transmission zeros induced by stubs d2 and d3, while the white arrow indicates the position of the doubly degenerate bound state in the
continuum (D-BIC).

of d3 and coincides with the transmission zero induced by
stub d2. Around 	 = 1, there exists a resonance labeled S
with nonzero width, which depends on d3. This resonance
corresponds to the symmetric mode given by Eq. (3b). One
can observe a shrinking of the S resonance as d3 increases,
which appears as a transparency window between two zeros
(denoted by pink and white dotted points). As predicted, this
resonance disappears for d3 = 1

2 [i.e., m3 = 0 and n1 = 1 in
Eq. (7)], giving rise to the S-BIC. The crossing of the AS-BIC
and S-BIC for d3 = 1

2 and 	 = 1 gives rise to a D-BIC. For
d3 > 0.5, the S resonance reappears when we shift slightly
from the BIC position. Figure 3(b) shows the same results as
in Fig. 3(a), when loss in the cables is considered. However,
due to the loss, the intensity of the S resonance around 	 = 1
becomes weak when the width of the latter tends to zero.
For comparison, the findings of the experimental analysis are
presented in Fig. 3(c), where we can see good agreement be-
tween theory and experiment. It is worth mentioning that the
measurements were carried out in the radiofrequency domain
using standard coaxial cables (RG-58/U) of various lengths
with the same characteristic permittivities and impedances
(Z = 50). Polyethylene was used to fill the cables (ε′ = 2.3),
which corresponds to a typical propagation speed of 0.66c.
The attenuation inside the coaxial cables was simulated by in-
troducing a complex dielectric permittivity ε = ε′ − jε′′. The
attenuation coefficient can be expressed as α′′ = ε′′ω

c
√

ε′ . The
experimental setup and more details about the experimental
procedure are given in Supplemental Material SM3 [60].

To gain a better understanding of the behavior of the res-
onant modes as well as the BICs close to d3 = 1

2 and 	 = 1,
we plotted in Figs. 4(a)–4(e) some transmission spectra as a
function of 	 for given values of d3. The blue curves rep-
resent the transmission for a lossless system, while the green
dashed curves are plotted by considering losses. Experimental

measurements, shown by red open circles, validate the the-
oretical results. The vertical arrows at 	 = 1 indicate the
position of the AS-BIC in the transmission spectra; it appears
as a resonance with zero width, whatever the value of d3.
Moreover, the two transmission zeros induced by stubs d2 and
d3 (white and pink branches in Fig. 3) are indicated by black
circles on the frequency axis. The S resonance lying between
these two transmission zeros behaves as EIT resonance. To
confirm that the resonance is of EIT type, we have fitted the
results of the transmission coefficients by the EIT formula [4]
(see Supplemental Material SM4 [60]). For d3 < 1

2 [Figs. 4(a)
and 4(b)], the S resonance falls above 	 = 1; its width de-
creases as d3 increases, giving rise to the S-BIC for d3 = 1

2
[Fig. 4(c)]. The mergence of the S-BIC and AS-BIC at d3 = 1

2
leads to a D-BIC. For d3 > 1

2 , the S-BIC transforms again to
an S resonance below 	 = 1; its width increases as far as d3

is far from 1
2 [Figs. 4(d) and 4(e)].

COMSOL Multiphysics software based on the finite element
method can also be used to conduct numerical simulations
to obtain similar results as in the analytical approach, in-
cluding the transmission and reflection coefficients. This
numerical method enables us to solve the transmission line
equations, telegrapher’s equations, and electromagnetic wave
equations efficiently (for further details, see chap. 16 in
Ref. [1]). Let us point out that we used a mesh grid comprising
2500 elements distribution for the simulations. We conducted
convergence tests to ensure the accuracy and reliability of our
results. Moreover, the running time for the simulations was
very rapid, taking less than a minute to complete. An example
comparing COMSOL results with analytical and experimental
results is provided in Supplemental Material SM5 [60]. One of
the benefits of using COMSOL lies in its facilities to obtain elec-
tric field distribution inside the different waveguides, which is
easier than using the Green’s function method. An example of
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FIG. 4. (a)–(e) Transmission spectra for various lengths of stub
d3 through the cavity [Fig. 1(a)]. The full black circles indicate the
position of the transmission zeros, while the black arrows indicate the
bound state in the continuum (BIC) positions. (f)–(h) Electric field
map at 	 = 1 of the antisymmetric BIC (AS-BIC) for (f) d3 = 0.3
and (g) d3 = 0.5 and (h) the symmetric BIC (S-BIC) for d3 = 0.5.
The red arrows in (f)–(h) indicate the excitation position. (i) and
(j) Quality factor of the S resonance as a function of stub d3. Blue
and green curves represent theoretical results in the absence and
presence of loss, respectively, while the red open circles represent
experimental validation.

the electric field distribution associated with the AS-BIC and
S-BIC within the triple-stub cavity is illustrated in Figs. 4(f)–
4(h). By applying a local electric excitation source at the
border of stub d3, we plot the electric field map of the AS-BIC
for d3 = 0.3 [Fig. 4(f)] and the D-BIC for d3 = d2 = 0.5
[Figs. 4(g) and 4(h)] at 	 = 1, respectively. The BICs are
tightly confined inside the cavity without emitting any exter-
nal radiation. These modes are stationary waves; the electric
field vanishes at the junction points, with either antisymmetric
[Figs. 4(f) and 4(g)] or symmetric [Fig. 4(h)] behavior. Also,
the electric field reaches its maximum at the end of the stubs as
the boundary conditions at these points are H = 0. However,
as predicted, for the AS-BIC [Figs. 4(f) and 4(g)], the electric
field in stub d3 vanishes, as this mode is independent of d3. As
mentioned before, the BIC is characterized by a high-Q factor
(infinite lifetime). In Fig. 4(i), we presented the Q factor of
the S resonance in the absence of loss (blue curve), whereas
Fig. 4(j) shows the same results in the presence of loss the-
oretically (green curve) and experimentally (red circles). As
shown in Figs. 4(a)–4(e), we can control the Q factor of the

S resonances by varying d3. As d3 increases, we observe a
continuous increase in the Q factor of the resonance due to
the shrinking of its width. At the critical value of d3 = 1

2 , the
two transmission zeros overlap, and as a result, the Q factor
of the resonance squeezed between them becomes infinite. It
is noted that, even in the presence of losses [Fig. 4(j)], the Q
factor is still defined but with lower values than in the lossless
system and reaches a higher value when d3 tends toward 0.5.

The variation of the DOS [�n(ω)], as earlier indicated
[Eq. (13)], can be extracted from the argument of the determi-
nant of the scattering matrix. Figure 5(a) shows the variation
of the DOS (in color scale) as a function of 	 and d3. At
	 = 1, there exists an AS-BIC indicated by the horizontal
dashed lines. The frequency of the symmetric resonant mode
S decreases as a function of d3; its width tends to zero for
d3 = 1

2 , giving rise to a S-BIC, as illustrated in Fig. 5(b).
The crossing of the S-BIC and AS-BIC at 	 = 1 and d3 = 1

2
gives rise to the D-BIC. Some examples of the DOS spectra
(blue curves) and the derivative of the Friedel phase dθF

dω
(green

dashed curves) are given in Figs. 5(c)–5(g) for various lengths
of d3. As d3 increases [Figs. 5(c) and 5(d)], one can see, in
addition to the AS-BIC indicated by the vertical arrow, the
transformation of the S resonance into a hidden resonance
at d3 = 1

2 as a signature of the S-BIC [Fig. 5(e)]. The BIC
appears as a delta peak in the DOS with an infinite life-
time (zero-width resonance), whereas when we shift from the
S-BIC position, this latter transforms into a classical Breit-
Wigner resonance, characterized by a finite width related to
its lifetime. Moreover, when d3 increases [Figs. 5(f) and 5(g)],
the frequencies of the corresponding modes decrease below
	 = 1. As previously stated, for a lossy system, the analytical
finding [Eq. (13)] is no longer applicable when det(S′) tends
to zero, and as a result, dθF

dω
behaves differently from the DOS.

Indeed, the derivative of the Friedel phase exhibits a negative
peak at the resonance, as illustrated in Figs. 5(c), 5(d), 5(f),
and 5(g). This can be explained by the fact that det(S′) van-
ishes at this position (i.e., t = ±r) and changes sign, leading
to an abrupt phase change of π in the phase of det(S′) and
hence a negative peak in dθF

dω
. The experimental results of dθF

dω

(red open circles) and the theoretical ones in the presence of
loss (green dashed lines) show good agreement.

In what follows, we will discuss the second solution, which
leads to the S-BIC [Eq. (6b)]. For this reason, we have chosen
d2 = 1

3 [i.e., m2 = 0 and m1 = 1 in Eq. (10b)] and d3 variable.
In this case, the S-BIC is expected for d3 = 2

3 [i.e., n3 = 1,
m1 = 1 in Eq. (10c)] and 	 = 3

2 [Eq. (10a)]. Here, the S-BIC
does not cross any AS-BIC, as Eq. (5b) is not satisfied. Hence,
to give better insight into the evolution of the symmetric reso-
nant modes as well as their conversion to the S-BIC, we have
plotted in Fig. 6(a) the transmission magnitude through the
symmetric cavity [Fig. 1(a)] for d2 = 1

3 . The horizontal white
dotted line at 	 = 3

2 gives the position of the transmission
zeros induced by stub d2 (i.e., C2 = 0). As predicted, we can
see the appearance of the S resonance around 	 = 3

2 and
its transformation to a BIC at d3 = 2

3 . Around d3 = 2
3 , the

S resonance falls near transmission zero, so the latter can
behave as Fano resonance (see below). The behavior of the
electric field associated with the S-BIC is given in Fig. 6(b)
for d3 = 2

3 at 	 = 3
2 . As predicted, the S-BIC is localized in
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FIG. 5. (a) Variation of the density of states (DOS) in color scale as a function of 	 and stub d3 in the lossless system. (b) Zoom of the DOS
around d3 = 0.5 and 	 = 1. (c)–(g) DOS spectra (blue lines) and the derivative of the Friedel phase dθF

dω
for some values of d3. The theoretical

results of dθF
dω

(green dashed lines) are validated by the experimental measurements (red open circles) for the lossy system. The vertical arrows
indicate the position of the antisymmetric bound state in the continuum (AS-BIC).

the cavity with a symmetric shape and does not extend beyond
it. Moreover, each stub exhibits the maximum electric field
at its termination. In Figs. 6(c)–6(g), we have theoretically
sketched some transmission spectra without (blue curves) and
with (green dashed curves) losses. The experimental results
(red circles) are in good agreement with the theoretical results
in the presence of loss. The black circle at 	 = 3

2 corresponds
to the transmission zero induced by stub d2. It is worth men-
tioning that the S resonance appears as Fano resonance. To
ensure that the transmission resonance exhibits a Fano-like
shape, we have performed the Fano formula [2], as shown
in Supplemental Material SM4 [60]. Moreover, one can see
the transformation of the S resonance into the S-BIC, which
appears as a hidden resonance for d3 = 2

3 and 	 = 3
2 [marked

by a vertical arrow in Fig. 6(e)], whereas by slightly varying
the length d3 from the BIC position, the S-BIC opens up and
becomes a Fano resonance characterized by a finite width.

B. Asymmetric cavity-induced FW-BIC

To introduce a coupling between the AS-BIC and S reso-
nance in Figs. 3(a) and 5(a), we break the symmetry of the
triple-stub cavity in Fig. 1(a) by changing slightly the stub of
length d2 on the right side by a stub of length d ′

2 = d2 − δ.

Therefore, the cavity becomes asymmetric, and it is no longer
of FP type. Figures 7(a) and 7(b) show the variation of the
intensity of the DOS and transmission (in color scale) as a
function of 	 and d3 for δ = 0.2. Figure 7(a), displaying
the DOS, clearly shows the transformation of the AS-BIC at
	 = 1 in Fig. 5(a) to a resonance of finite width above 	 = 1.
Furthermore, we observe an anticrossing between the two res-
onances at d3 = 0.5. There is a lifting of the degeneracy of the
D-BIC in Fig. 7(a) where only one BIC remains at 	 = 1 and
d3 = 0.5, while the second BIC transforms to a resonance with
finite width. Indeed, one can see the shrinking of the lower
resonance width giving rise to a BIC at d3 = 0.5 (denoted by
the white arrow), whereas the width of the upper resonance
remains almost constant and less affected by stub d3. This
behavior is a characteristic of the FW-BIC [27]. Moreover,
the lower resonance reappears by slightly shifting from the
FW-BIC position. To provide deeper insight into the behavior
of FW-BIC, we present in Figs. 7(c)–7(g) the theoretical DOS
(blue solid lines) and the derivative of the Friedel phase dθF

dω

(green dashed lines) spectra for some values of d3. The ex-
perimental results of dθF

dω
are plotted in red open circles. Good

agreement is obtained between all these quantities, meaning
the possibility of measuring the DOS using the determinant
of the scattering matrix [Eq. (13)] even in the presence of
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FIG. 6. (a) Theoretical variation of the transmission magnitude vs 	 and d3 in the lossless symmetric cavity [Fig. 1(a)] with d2 = 1
3 .

(b) Snapshot of the electric field amplitude of the symmetric bound state in the continuum (S-BIC) for 	 = 3
2 and d3 = 2

3 . (c)–(g) Transmission
spectra for some values of d3. Blue and green curves represent theoretical results in the absence and presence of loss, respectively, while the
red open circles correspond to the experimental data. The full circles indicate the position of the transmission zero, while the vertical arrow in
(e) indicates the S-BIC position.

loss. When d3 increases, the two interacting resonances in
Figs. 7(c)–7(g) approach each other when d3 tends to 0.5,
and the width of the lower resonance (solid arrow) shrinks
and reduces to zero at d3 = 0.5 [Fig. 7(e)], giving rise to a
FW-BIC, whereas the upper resonance (dashed arrow) still
exists as a broad Breit-Wigner resonance in the vicinity of the
FW-BIC. By increasing d3 [Figs. 7(f) and 7(g)], the FW-BIC
transforms to a resonance with a finite width below 	 = 1.
Furthermore, the upper resonance remains broad, and its po-
sition gets closer to 	 = 1. To better explain the evolution
of the linewidth of the two resonances in Figs. 7(c)–7(g), we
present in the inset of Fig. 7(g) the full width at half maximum
(FWHM) for the lower (red curve) and upper (blue curve)
resonances as a function of d3. The linewidth of the lower
resonance (γ−) decreases as far as d3 tends to 0.5 and vanishes
at d3 = 0.5, giving rise to a FW-BIC, whereas the FWHM of
the upper resonance (γ+) increases with d3 and becomes wider
at d3 = 0.5 and then decreases for d3 > 0.5. The behavior
of the widths γ− and γ+ of the two interacting modes is a
characteristic of the FW-BIC [27].

This behavior is also observed in the transmission intensity
graph [Fig. 7(b)]. The white and pink dotted curves show the
positions of the transmission zeros induced by stubs d2 and d3

(i.e., C2 = 0 and C3 = 0), respectively. However, the behavior
of the two interacting resonances is slightly different from
that of the DOS. One can see here also a shrinking of the
lower resonance when d3 tends to 0.5 and its transformation
to a BIC at 	 = 1 and d3 = 0.5, whereas the upper branch
becomes more lossy and is significantly impacted by stub

d3. The transmission zero induced by stub d3 (pink branch)
crosses the upper resonance and leads to the cutoff of this
resonance around 	 = 1.15 and d3 = 0.45. For d3 < 0.5, the
two resonances fall between two transmission zeros, giving
rise to two Fano resonances. However, for d3 > 0.5, only the
lower resonance falls between two transmission zeros, giving
rise to EIT resonance. At the crossing point around d3 = 0.5,
the intensity of the upper resonance becomes very weak due to
its coincidence with transmission zero. All these behaviors are
illustrated in the transmission spectra displayed in Figs. 7(h)–
7(l). The experiment (red curves) reproduces very well the
theoretical (green curves) results. The full circles on the fre-
quency axis indicate the position of the transmission zeros
induced by stub d2 [white branch in Fig. 7(b)] and d3 [pink
branch in Fig. 7(b)]. For d3 = 0.3 [Fig. 7(h)], one can observe
the existence of two Fano-shaped resonances (indicated by
solid and dashed arrows) squeezed between two transmission
zeros and corresponding to the upper and lower resonances,
respectively, in Fig. 7(b). For d3 = 0.4 [Fig. 7(i)], the two
resonances shrink more between the two transmission zeros;
the lower resonance keeps the Fano shape, while the upper
resonance undergoes an alteration of its shape. For d3 = 0.5
[Fig. 7(j)], the two transmission zeros fall at the same fre-
quency 	 = 1, the lower resonance becomes hidden, leading
to the FW-BIC, while the upper one remains very weak due
to its proximity to the transmission zeros. When we shift from
the BIC position [Figs. 7(k) and 7(l)], the lower resonance
reappears as a symmetric EIT resonance inserted between
two transmission zeros, while the upper resonance behaves
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FIG. 7. (a) Theoretical variation of the density of states (DOS)
and (b) transmission magnitude vs 	 and d3 in the lossless asymmet-
ric cavity. The white arrows indicate the Friedrich-Wintgen bound
state in the continuum (FW-BIC) position. (c)–(g) (left panel) DOS
(blue lines) and the derivative of the Friedel phase dθF

dω
spectra for

different values of d3. The theoretical results of dθF
dω

(green dashed
lines) are validated by the experimental measurements (red open
circles). The solid and dashed arrows correspond to the positions of
the lower and higher resonances, respectively. The linewidths of the
upper (blue curve) and lower (red curve) DOS resonances are shown
in the inset of (g). (h)–(l) (right panel) Transmission spectra for some
values of d3. The inset of (j) gives the electric field map of the
FW-BIC. The solid and dashed curves represent theoretical results
without and with loss, respectively, while open circles represent
experimental data.

like Fano resonance. We have also calculated the electric
field distribution associated with the FW-BIC in the inset of
Fig. 7(j) to show its expansion in the triple-stub cavity. The
BIC is confined in the left U-shaped cavity made of (d2-d1-d2)
without propagation throughout the rest of the system. Indeed,
we can demonstrate analytically that the FW-BIC is induced
by the left U cavity, and it is independent of the surrounding
environment including the stub of length d ′

2 on the right side.
However, the length of stub d ′

2 plays an important role in the

coupling of the BIC induced by the left U cavity (d2-d1-d2)
with the resonance induced by the right U cavity (d2-d1-d ′

2).
A detailed analysis of the mechanism behind FW-BICs and
FP-BICs and their applications to the triple-stub cavity is
shown in Supplemental Material SM6 [60].

III. TRIPLE-STUB CAVITY WITH ONE OR TWO PORTS
FROM ONE SIDE

The number of BICs in the triple-stub cavity depends on
how it is connected to semi-infinite waveguides. In this sec-
tion, we will show that, if the triple-stub cavity is attached
vertically to two semi-infinite wires from one side [Fig. 1(b)]
or to only one semi-infinite wire [Fig. 1(c)], other BICs can
occur in addition to the previous BICs discussed in Sec. II.

A. Triple-stub cavity with two ports from one side

Consider first the cavity in contact with two semi-infinite
waveguides [Fig. 1(b)] from one side. Indeed, the advantage
of such a vertical structure lies in the possibility of deducing
the eigenmodes of the isolated cavity, i.e., the system before
being attached to the waveguide, with either the Neumann
boundary condition (NBC; vanishing of the magnetic field
H = 0) or the Dirichlet boundary condition (DBC; vanishing
of the electric field E = 0) at its bottom termination. Indeed,
it was shown that such eigenmodes can be obtained from
the maxima and minima of transmission through the vertical
cavity, respectively [62,63].

The expression of the transmission tv and reflection rv

coefficients across the cavity in Fig. 1(c) are given as follows
(see Supplemental Material SM1 [60]):

tv = 2τ

2τ − jρ
, (14a)

and

rv = − jρ

2τ − jρ
, (14b)

where τ and ρ are given by

τ = C2[C0(2C1C3 − S1S3) − C2C3], (15a)

and

ρ = C0(C0S3 + 2S0C3), (15b)

with C0 = cos[k(d1 + d2)] and S0 = sin[k(d1 + d2)].
The eigenmodes of the whole system [Fig. 1(b)] can be

obtained from the denominator of the the expressions of tv
and rv or, equivalently, from the poles of its Green’s function,
namely,

2τ − jρ = 0. (16)

Equation (16) holds if

τ = 0 and ρ = 0, (17)

which gives the eigenmodes of DBC and NBC cavities,
respectively.

In addition to the S-BIC and AS-BIC found in the previous
section [Eqs. (4), (6a), and (6b)], Eqs. (15a), (15b), and (16)
lead to other BICs when both the real and imaginary parts
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vanish simultaneously, that is,

C0 = 0 and C3 = 0. (18)

From Eq. (18) [i.e., k(d1 + d2) = (2m0 + 1)π
2 and kd3 =

(2m3 + 1)π
2 ], one can deduce the commensurability between

d1 + d2 and d3 as well as the corresponding BIC frequency,
namely,

d3

d1 + d2
= 2m3 + 1

2m0 + 1
, (19a)

and

	 = kd1

π
= 2m0 + 1

2
(

1 + d2
d1

) . (19b)

Notice that we can easily demonstrate that, when Eq. (4)
giving D-BIC holds, the transmission [Eq. (14a)] vanishes,
while if Eq. (18) giving the additional BICs is satisfied, then
the transmission [Eq. (14a)] becomes unity.

In what follows, we will give some numerical calculations
and experimental validation of the above analytical results.
Also, we chose d2

d1
= 1

2 and d3 variable, as in Sec. II. Fig-
ure 8(a) gives the dispersion curves as a function of d3 for
the triple-stub cavity with the NBC (cyan curves) and DBC
(pink curves). These curves are given by ρ = 0 and τ = 0
[Eq. (17)], respectively. The cyan and pink circles give the
experimental data obtained, respectively, from the maxima
and minima of the transmission coefficient (see below). As
mentioned previously, the crossing of τ = 0 and ρ = 0 gives
rise to BICs. Around 	 = 1, we obtain similar results as
presented above, namely, the AS-BIC at 	 = 1 (whatever the
value of d3) as well as the D-BIC at d3 = 0.5. However, above
	 = 1.5, there exist two additional BICs when the cavity is in
contact with two wires [Fig. 1(b)] from only one side. These
two BICs, labeled BICI and BICII , are given by the pairs
(m3 = 0 and m0 = 2) and (m3 = 1 and m0 = 2) in Eqs. (19a)
and (19b) with d3

d1
= 3

10 , d3
d1

= 9
10 , and 	 = 5

3 , respectively.
The D-BIC for d3 = 0.5 and 	 = 1 arises as the intersection
of two curves associated with τ = 0 and one curve associated
with ρ = 0; hence, the D-BIC coincides with transmission
zero (see below). However, BICI and BICII correspond to
the intersection of two curves associated with ρ = 0 and
one curve associated with τ = 0. Consequently, these two
BICs coincide with a zero of reflection (i.e., the maximum
of transmission). Figures 8(b) and 8(c) give the transmission
intensity (in color scale) of the vertical cavity [Fig. 1(b)] as a
function of 	 and d3. We have provided both the theoretical
[Fig. 8(b)] and experimental [Fig. 8(c)] results, and good
agreement can be noticed. Here, too, we can see that the BICs
appear as zero-width resonances and antiresonances in the
transmission spectra (marked by white circles). As mentioned
before, the D-BIC coincides with transmission zero, while
BICI and BICII coincide with the maximum of transmission.
Figures 8(d)–8(i) give some examples of transmission spectra
as a function of 	 for certain values of d3. Solid blue lines rep-
resent the theoretical transmission in a lossless system, while
the green dashed lines (red open circles) are associated with
the theoretical (experimental) results when loss is considered.
The experimental measurements are perfectly reproduced by
the theoretical calculation (dashed lines). Further, the resonant

mode just above 	 = 1 for d3 = 0.2 [Fig. 8(d)] appears as
an asymmetric EIT resonance; then it decreases in frequency
when d3 increases and disappear at d3 = 1

2 , leading to the
S-BIC and thereby to the D-BIC [Fig. 8(g)] when it coincides
with the AS-BIC, whereas BICI and BICII are associated with
the maximum transmission for d3 = 0.3 and 0.9, which are in-
dicated by full black circles at 	 = 5

3 , as depicted in Figs. 8(e)
and 8(i). By slightly deviating from the BIC position, these
latter transform into antiresonances squeezed between two
maxima of transmission (reflection zero), giving rise to the
so-called EIR resonance, as shown in Figs. 8(d), 8(f), and
8(h). An analysis of the electric field map associated with
BICI [Fig. 8(j)] clearly shows that this mode is confined in the
upper U-shaped cavity (d2-d1-d3) without any radiation in the
rest of the system, even though it corresponds to the maximum
of transmission. It is worth mentioning that the electric field
of the AS-BIC and D-BIC gives the same behavior as shown
previously in Fig. 4.

B. Triple-stub cavity with one port from one side

Another interesting configuration consists of putting the
cavity in contact with only one wire from the left side
[Fig. 1(c)]. The different modes in the cavity can be inves-
tigated by means of the reflection coefficient given by (see
Supplemental Material SM1 [60])

r = τ + jρ

τ − jρ
, (20)

where τ and ρ are given by Eqs. (15a) and (15b).
It is worth noting that, in a perfect lossless system, the

reflection amplitude reaches unity (R = |r|2 = 1), while in a
real system, owing to the absorption, R = 1 − A, where A is
the absorption intensity.

The reflection intensity provides different resonant modes
of the cavity, including BICs. Indeed, due to the loss, the
reflection rate does not reach unity, and the resonant modes
of the system appear as dips in the reflection spectra. For a
lossy system, Fig. 9 reveals the behavior of different BICs
and resonances of the cavity, both theoretically [Fig. 9(a)]
and experimentally [Fig. 9(b)], in the reflection spectra as a
function of 	 and d3. Here also, the theory matches well with
the experiment. Indeed, the D-BIC, BICI , and BICII already
discussed in Fig. 8, appear here also. As earlier demonstrated
(Sec. II A), the disappearance of the resonance at d3 = 1

2 and
	 = 1 [Eq. (7)] indicates the presence of a D-BIC. Likewise,
when the length d3 is appropriately chosen [Eq. (19a)], we
observe a hidden resonance around 	 = 5

3 for d3 = 0.3 and
0.9; this behavior indicates the presence of BICI and BICII .
Figures 9(c)–9(h) depict the behavior of reflection (black
curves) and absorption (red curves) through the lossy system
as a function of 	 for various values of d3. The theoreti-
cal (continuous curves) and experimental (open red circles)
results are in good agreement. For d3 = 0.2 [Fig. 9(c)], the
reflection resonance tends to zero around 	 = 1.23, whereas
the absorption reaches a maximum value of A = 0.99. Fur-
thermore, as d3 increases, the resonance width decreases in
the reflection spectra, and its intensity increases [Fig. 9(d)],
leading to the formation of a D-BIC at d3 = 0.5 [Fig. 9(f)].
This mode appears as a hidden resonance with a zero width,
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FIG. 8. (a) Dispersion curves of the vertical cavity in Fig. 1(c) with Neumann boundary condition (NBC; ρ = 0, cyan curves) and Dirichlet
boundary condition (DBC; τ = 0, pink curves) as a function of d3 and 	. The cyan and pink circles give the experimental data obtained,
respectively, from the maxima and minima of the transmission coefficient. (b) Theoretical and (c) experimental variation of the transmission
magnitude through the lossy cavity. The horizontal dashed lines show the position of the antisymmetric bound state in the continuum (AS-BIC).
(d)–(i) Transmission spectra as a function of 	 for various values of d3. The dashed green lines (open red circles) represent the theoretical
(experimental) results in the presence of losses, while solid blue lines represent the theoretical results for a lossless system. The full circles
determine the BIC position, while the vertical arrow in (g) shows the doubly degenerate BIC (D-BIC). (j) Snapshot of the electric field
amplitude of BICI at 	 = 5

3 and d3 = 0.3 in (e).
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FIG. 9. (a) Theoretical and (b) experimental variation of the reflection magnitude for the cavity in Fig. 1(b) as a function of 	 and d3.
(c)–(h) Variation of reflection (black curves) and absorption (red curves) spectra vs 	 for different values of length d3. Black dashed lines
indicate the BIC positions.

giving rise to a plateau in the reflection (R � 0.9), while the
absorption approaches zero (A � 0.1). Similarly, around BICI

and BICII [Figs. 9(d) and 9(h)], one can see the transfor-
mation of the resonances into hidden resonances at 	 = 5

3
for d3 = 0.3 and 0.9 (indicated by dashed lines), then their
reappearance by slightly detuning stub d3 from the BIC po-
sition. Moreover, let us point out the possibility to reach a
near-perfect absorption [14] for some frequencies, as shown
in Figs. 9(c), 9(g), and 9(h), where the wave penetrates the
cavity without back reflection. In addition to the reflection
intensity, the reflection delay time τR and DOS can also be
useful for analyzing the existence and behavior of the BICs in
the triple-stub cavity (see Supplemental Material SM7 [60]).

IV. CONCLUSIONS

In this paper, we have investigated, both theoretically and
experimentally, the existence and behavior of resonant modes

and BICs in a triple-stub cavity made of a stub of length d3

inserted between two stubs of length d2; all stubs are sep-
arated by a segment of length d1. The cavity can be either
placed between two semi-infinite waveguides from both sides
or just one or two waveguides from one side. In the case of a
symmetric cavity inserted between two waveguides, we have
demonstrated the condition of commensurability that should
be satisfied by d1, d2, and d3 as well as the corresponding
frequencies to get a S-BIC and an AS-BIC of FP type. We
have shown that these two BICs can cross each other, giving
rise to a D-BIC. This property cannot be fulfilled in the case
of a cavity with just two stubs. By slightly detuning the length
of one of the two stubs of length d2 by a small amount δ,
the symmetry of this cavity is broken, and one assists in
lifting of the degeneracy of the two BICs; one of the two
BICs remains constant, whereas the second BIC becomes a
resonance with a given width that can be tuned by varying δ.
This behavior is analogous to the so-called FW-BIC obtained
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from the interaction of two modes in the same cavity. Also,
we have investigated the effect of the presence of one or two
waveguides, placed on one side of the cavity, on the number of
BICs. We have shown that, in addition to the BICs obtained in
the symmetric cavity, which are independent of the number of
ports surrounding the cavity, there exist other BICs induced
by the stubs when one port is removed. These additional
BICs are evidenced by analyzing the reflection spectra for
the cavity in contact with one port from one side or through
an analysis of the transmission spectra of the cavity placed
vertically along two ports from one side. The latter config-
uration enables the extraction of all the eigenmodes of the
cavity, including the different BICs. When deviating from the
BIC condition, the latter transforms into either EIT, EIR, or
Fano resonance. Furthermore, near-perfect absorption can be
accomplished with the triple-stub cavity at some frequencies.

All the analytical results are obtained from an analysis of
the DOS, scattering matrix, and transmission and reflection
coefficients using the Green’s function method, whereas the
experimental measurements are performed on coaxial cables
operating in the radiofrequency domain. All these results can
be transposed easily to plasmonic nanocircuits based on MIM
waveguides operating in the infrared domain [63,64]. Such
structures can support BICs and induced resonances and can
be used as high-performing device sensors. We have given
an example illustrating a BIC and EIT resonance in silver-
air-silver nanoplasmonic waveguides operating in the infrared
domain (see Supplemental Material SM8 [60]). Also, these
results can be applied to acoustic waveguides [37] as well
as solid-liquid phononic multilayered systems where the solid
layer acts as a resonator inside the liquid [65]. All these works
are in progress.

[1] L. Dobrzynski, A. Akjouj, E. H. El Boudouti, G. Lévêque, H.
Al-Wahsh, Y. Pennec, C. Ghouila-Houri, A. Talbi, B. Djafari-
Rouhani, and Y. Jin, Photonics (Elsevier, Amsterdam, 2021).

[2] A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, Fano res-
onances in nanoscale structures, Rev. Mod. Phys. 82, 2257
(2010).

[3] M. V. Rybin, D. S. Filonov, P. A. Belov, Y. S. Kivshar, and
M. F. Limonov, Switching from visibility to invisibility via
Fano resonances: Theory and experiment, Sci. Rep. 5, 8774
(2015).

[4] M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Electro-
magnetically induced transparency: Optics in coherent media,
Rev. Mod. Phys. 77, 633 (2005).

[5] N. Scharnhorst, J. Cerrillo, J. Kramer, I. D. Leroux, J. B.
Wubbena, A. Retzker, and P. O. Schmidt, Experimental and
theoretical investigation of a multimode cooling scheme using
multiple electromagnetically-induced-transparency resonances,
Phys. Rev. A 98, 023424 (2018).

[6] S. F. Mingaleev, A. E. Miroshnichenko, and Y. S.
Kivshar, Coupled-resonator-induced reflection in photonic-
crystal waveguide structures, Opt. Express 16, 11647
(2008).

[7] U. Fano, Effects of configuration interaction on intensities and
phase shifts, Phys. Rev. 124, 1866 (1961).

[8] S. E. Harris, Electromagnetically induced transparency, Phys.
Today 50(7), 36 (1997).

[9] J. von Neumann and E. P. Wigner, Über merkwürdige diskrete
Eigenwerte, Phys. Z. 30, 465 (1929).

[10] C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M.
Soljacic, Bound states in the continuum, Nat. Rev. Mater. 1,
16048 (2016).

[11] S. I. Azzam and A. V. Kildishev, Photonic bound states in the
continuum: From basics to applications, Adv. Opt. Mater. 9,
2001469 (2021).

[12] S. Sun, Y. Ding, H. Li, P. Hu, C.-W. Cheng, Y. Sang, F. Cao,
Y. Hu, A. Alu, D. Liu et al., Tunable plasmonic bound states in
the continuum in the visible range, Phys. Rev. B 103, 045416
(2021).

[13] A. Mouadili, E. H. El Boudouti, A. Soltani, A. Talbi, A. Akjouj,
and B. Djafari-Rouhani, Theoretical and experimental evidence

of Fano-like resonances in simple monomode photonic circuits,
J. Appl. Phys. 113, 164101 (2013).

[14] A. Mouadili, E. H. El Boudouti, A. Soltani, A. Talbi, B.
Djafari-Rouhani, A. Akjouj, and K. Haddadi, Electromagneti-
cally induced absorption in detuned stub waveguides: A simple
analytical and experimental model, J. Phys.: Condens. Matter
26, 505901 (2014).

[15] P. S. Pankin, B. R. Wu, J. H. Yang, K. P. Chen, I. V. Timofeev,
and A. F. Sadreev, One-dimensional photonic bound states in
the continuum, Commun. Phys. 3, 91 (2020).

[16] H. Takahashi, E. Kassa, C. Christoforou, and M. Keller, Strong
coupling of a single ion to an optical cavity, Phys. Rev. Lett.
124, 013602 (2020).

[17] A. A. Bogdanov, K. L. Koshelev, P. V. Kapitanova, M. V. Rybin,
S. A. Gladyshev, Z. F. Sadriev, K. B. Samusev, Y. S. Kivshar,
and M. F. Limonov, Bound states in the continuum and Fano
resonances in the strong mode coupling regime, Adv. Photon.
1, 016001 (2019).

[18] S. Khattou, Y. Rezzouk, M. Amrani, M. El Ghafiani, A. Talbi,
and B. Djafari-Rouhani, Friedrich-Wintgen bound states in the
continuum in a photonic and plasmonic T-shaped cavity: Ap-
plication to filtering and sensing, Phys. Rev. Appl. 20, 044015
(2023).

[19] K. Koshelev, G. Favraud, A. Bogdanov, Y. Kivshar, and A.
Fratalocchi, Nonradiating photonics with resonant dielectric
nanostructures, Nanophotonics 8, 725 (2019).

[20] Z. Qi, G. Hu, B. Liu, Y. Li, C. Deng, P. Zheng, F. Wang, L.
Zhao, and Y. Cui, Plasmonic nanocavity for obtaining bound
state in the continuum in silicon waveguides, Opt. Express 29,
9312 (2021).

[21] Y. Rezzouk, S. Khattou, M. Amrani, A. Noual, E. H. El
Boudouti, A. Talbi, and B. Djafari-Rouhani, Bound states in
the continuum and induced resonances in a simple plasmonic
waveguide with sensing application, Photonics 10, 1284 (2023).

[22] K. Koshelev, S. Lepeshov, M. Liu, A. Bogdanov, and Y.
Kivshar, Asymmetric metasurfaces with high-Q resonances
governed by bound states in the continuum, Phys. Rev. Lett.
121, 193903 (2018).

[23] S. Han, P. Pitchappa, W. Wang, Y. K. Srivastava, M. V. Rybin,
and R. Singh, Extended bound states in the continuum with

235431-13

https://doi.org/10.1103/RevModPhys.82.2257
https://doi.org/10.1038/srep08774
https://doi.org/10.1103/RevModPhys.77.633
https://doi.org/10.1103/PhysRevA.98.023424
https://doi.org/10.1364/OE.16.011647
https://doi.org/10.1103/PhysRev.124.1866
https://doi.org/10.1063/1.881806
https://doi.org/10.1038/natrevmats.2016.48
https://doi.org/10.1002/adom.202001469
https://doi.org/10.1103/PhysRevB.103.045416
https://doi.org/10.1063/1.4802695
https://doi.org/10.1088/0953-8984/26/50/505901
https://doi.org/10.1038/s42005-020-0353-z
https://doi.org/10.1103/PhysRevLett.124.013602
https://doi.org/10.1117/1.AP.1.1.016001
https://doi.org/10.1103/PhysRevApplied.20.044015
https://doi.org/10.1515/nanoph-2019-0024
https://doi.org/10.1364/OE.419815
https://doi.org/10.3390/photonics10111284
https://doi.org/10.1103/PhysRevLett.121.193903


YAMINA REZZOUK et al. PHYSICAL REVIEW B 109, 235431 (2024)

symmetry-broken terahertz dielectric metasurfaces, Adv. Opt.
Mater. 9, 2002001 (2021).

[24] Y. X. Zhang, Q. Lin, X. Q. Yan, L. L. Wang, and G. D. Liu, Flat-
band Friedrich-Wintgen bound states in the continuum based on
borophene metamaterials, Opt. Express 32, 10669 (2024).

[25] X. Gao, B. Zhen, M. Soljacic, H. Chen, and C. W. Hsu, Bound
states in the continuum in fiber Bragg gratings, ACS Photonics
6, 2996 (2019).

[26] Z. F. Sadrieva, M. A. Belyakov, M. A. Balezin, P. V.
Kapitanova, E. A. Nenasheva, A. F. Sadreev, and A. A.
Bogdanov, Experimental observation of a symmetry-protected
bound state in the continuum in a chain of dielectric disks, Phys.
Rev. A 99, 053804 (2019).

[27] H. Friedrich and D. Wintgen, Physical realization of bound
states in the continuum, Phys. Rev. A 31, 3964 (1985).

[28] D. C. Marinica, A. G. Borisov, and S. V. Shabanov, Bound
states in the continuum in photonics, Phys. Rev. Lett. 100,
183902 (2008).

[29] S. Li, C. Zhou, T. Liu, and S. Xiao, Symmetry-protected bound
states in the continuum supported by all-dielectric metasur-
faces, Phys. Rev. A 100, 063803 (2019).

[30] M. V. Rybin, K. L. Koshelev, Z. F. Sadrieva, K. B. Samusev,
A. A. Bogdanov, M. F. Limonov, and Y. S. Kivshar, High-Q su-
percavity modes in subwavelength dielectric resonators, Phys.
Rev. Lett. 119, 243901 (2017).

[31] M. Luo and F. Wu, Wavy optical grating: Wideband reflector
and Fabry-Perot bound states in the continuum, Phys. Rev. A
106, 063514 (2022).

[32] X. Li, E. Maqbool, and Z. Han, Narrowband mid-infrared ther-
mal emitters based on the Fabry-Perot type of bound states in
the continuum, Opt. Express 31, 20338 (2023).

[33] A. F. Sadreev, Interference traps waves in open system: Bound
states in the continuum, Rep. Prog. Phys. 84, 055901 (2021).

[34] Z. Liu, X. Li, C. Chen, X. Wang, W. Gao, W. Ye, L. Li,
and J. Liu, Bound states in the continuum in asymmetric one-
dimensional photonic crystal systems guided by anisotropy,
Opt. Express 31, 8384 (2023).

[35] H. M. Doeleman, F. Monticone, W. den Hollander, A. Alù, and
A. F. Koenderink, Experimental observation of a polarization
vortex at an optical bound state in the continuum, Nat. Photon.
12, 397 (2018).

[36] S. Mesli, H. Yala, M. Hamidi, A. BelKhir, and F. I. Baida,
High performance for refractive index sensors via symmetry-
protected guided mode resonance, Opt. Express 29, 21199
(2021).

[37] L. Huang, B. Jia, A. S. Pilipchuk, Y. Chiang, S. Huang, J. Li,
C. Shen, E. N. Bulgakov, F. Deng, D. A. Powell et al., General
framework of bound states in the continuum in an open acoustic
resonator, Phys. Rev. Appl. 18, 054021 (2022).

[38] M. S. Sidorenko, O. N. Sergaeva, Z. F. Sadrieva, C. Roques-
Carmes, P. S. Muraev, D. N. Maksimov, and A. A. Bogdanov,
Observation of an accidental bound state in the continuum
in a chain of dielectric disks, Phys. Rev. Appl. 15, 034041
(2021).

[39] Y. Jin, E. H. El Boudouti, Y. Pennec, and B. Djafari-Rouhani,
Tunable Fano resonances of Lamb modes in a pillared metasur-
face, J. Phys. D: Appl. Phys. 50, 425304 (2017).

[40] W. Wang, Y. K. Srivastava, T. C. Tan, Z. Wang, and R. Singh,
Brillouin zone folding driven bound states in the continuum,
Nat. Commun. 14, 2811 (2023).

[41] F. Wu, X. Qi, M. Qin, M. Luo, Y. Long, J. Wu, Y. Sun, H. Jiang,
T. Liu, S. Xiao et al., Momentum mismatch driven bound states
in the continuum and ellipsometric phase singularities, Phys.
Rev. B 109, 085436 (2024).

[42] Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A.
Szameit, and M. Segev, Experimental observation of optical
bound states in the continuum, Phys. Rev. Lett. 107, 183901
(2011).

[43] J. Jin, X. Yin, L. Ni, M. Soljacic, B. Zhen, and C. Peng,
Topologically enabled ultrahigh-Q guided resonances robust to
out-of-plane scattering, Nature (London) 574, 501 (2019).

[44] Y. Rezzouk, M. El Ghafiani, S. Khattou, M. Amrani, E. H. El
Boudouti, A. Talbi, and B. Djafari-Rouhani, High-Q resonant
modes in periodic stubbed structure, Lect. Notes Electr. Eng.
954, 223 (2023).

[45] C. Shi, J. Hu, X. Liu, J. Liang, J. Zhao, H. Han, and Q.
Zhu, Double-layer symmetric gratings with bound states in the
continuum for dual-band high-Q optical sensing, Beilstein J.
Nanotechnol. 13, 1408 (2022).

[46] Z. Li, Y. Xiang, S. Xu, and X. Dai, Ultrasensitive terahertz
sensing in all-dielectric asymmetric metasurfaces based on
quasi-BIC, J. Opt. Soc. Am. B 39, 286 (2022).

[47] Z. Yu, X. Xi, J. Ma, H. K. Tsang, C.-L. Zou, and X. Sun,
Photonic integrated circuits with bound states in the continuum,
Optica 6, 1342 (2019).

[48] F. Yesilkoy, E. R. Arvelo, Y. Jahani, M. Liu, A. Tittl, V. Cevher,
Y. Kivshar, and H. Altug, Ultrasensitive hyperspectral imag-
ing and biodetection enabled by dielectric metasurfaces, Nat.
Photon. 13, 390 (2019).

[49] R. E. Jacobsen, A. Krasnok, S. Arslanagic, A. V. Lavrinenko,
and A. Alú, Boundary-induced embedded eigenstate in a single
resonator for advanced sensing, ACS Photon. 9, 1936 (2022).

[50] D. N. Maksimov, V. S. Gerasimov, A. A. Bogdanov, and S. P.
Polyutov, Enhanced sensitivity of an all-dielectric refractive
index sensor with an optical bound state in the continuum, Phys.
Rev. A 105, 033518 (2022).

[51] A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, and B.
Kanté, Lasing action from photonic bound states in continuum,
Nature (London) 541, 196 (2017).

[52] S. T. Ha, Y. H. Fu, N. K. Emani, Z. Pan, R. M. Bakker,
R. Paniagua-Dominguez, and A. I. Kuznetsov, Directional
lasing in resonant semiconductor nanoantenna arrays, Nat.
Nanotechnol 13, 1042 (2018).

[53] M. S. Hwang, H. C. Lee, K. H. Kim, K. Y. Jeong, S. H. Kwon,
K. Koshelev, Y. Kivshar, and H. G. Park, Ultralow-threshold
laser using super-bound states in the continuum, Nat. Commun.
12, 4135 (2021).

[54] J. M. Foley, S. M. Young, and J. D. Phillips, Symmetry-
protected mode coupling near normal incidence for narrow-
band transmission filtering in a dielectric grating, Phys. Rev.
B 89, 165111 (2014).

[55] K. K. Voo, Trapped electromagnetic modes in forked transmis-
sion lines, Wave Motion 45, 795 (2008).

[56] N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saun-
ders College Publishing, Philadelphia, 1976).

[57] J. Friedel, The distribution of electrons around impurities in
monovalent metals, Philos. Mag. 43, 153 (1952).

[58] H-W. Lee, Generic transmission zeros and in-phase resonances
in time-reversal symmetric single channel transport, Phys. Rev.
Lett. 82, 2358 (1999).

235431-14

https://doi.org/10.1002/adom.202002001
https://doi.org/10.1364/OE.515152
https://doi.org/10.1021/acsphotonics.9b01202
https://doi.org/10.1103/PhysRevA.99.053804
https://doi.org/10.1103/PhysRevA.31.3964
https://doi.org/10.1103/PhysRevLett.100.183902
https://doi.org/10.1103/PhysRevA.100.063803
https://doi.org/10.1103/PhysRevLett.119.243901
https://doi.org/10.1103/PhysRevA.106.063514
https://doi.org/10.1364/OE.488846
https://doi.org/10.1088/1361-6633/abefb9
https://doi.org/10.1364/OE.482894
https://doi.org/10.1038/s41566-018-0177-5
https://doi.org/10.1364/OE.424930
https://doi.org/10.1103/PhysRevApplied.18.054021
https://doi.org/10.1103/PhysRevApplied.15.034041
https://doi.org/10.1088/1361-6463/aa8a19
https://doi.org/10.1038/s41467-023-38367-y
https://doi.org/10.1103/PhysRevB.109.085436
https://doi.org/10.1103/PhysRevLett.107.183901
https://doi.org/10.1038/s41586-019-1664-7
https://doi.org/10.1007/978-981-19-6223-3_25
https://doi.org/10.3762/bjnano.13.116
https://doi.org/10.1364/JOSAB.442660
https://doi.org/10.1364/OPTICA.6.001342
https://doi.org/10.1038/s41566-019-0394-6
https://doi.org/10.1021/acsphotonics.1c01840
https://doi.org/10.1103/PhysRevA.105.033518
https://doi.org/10.1038/nature20799
https://doi.org/10.1038/s41565-018-0245-5
https://doi.org/10.1038/s41467-021-24502-0
https://doi.org/10.1103/PhysRevB.89.165111
https://doi.org/10.1016/j.wavemoti.2008.02.001
https://doi.org/10.1080/14786440208561086
https://doi.org/10.1103/PhysRevLett.82.2358


FABRY-PÉROT AND FRIEDRICH-WINTGEN BOUND … PHYSICAL REVIEW B 109, 235431 (2024)

[59] C. Texier, Scattering theory on graphs: II. The Friedel sum rule,
J. Phys. A: Math. Gen. 35, 3389 (2002).

[60] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.109.235431 for details on the analytical cal-
culation of the transmission and reflection coefficients through
a triple-stub cavity grafted between two ports either horizon-
tally or vertically as well as the reflection coefficient of the
symmetric cavity attached to only one wire at the input (SM1);
a comparison between the variation of the DOS and the first
derivative of the argument of the determinant of the scattering
matrix (the so-called Friedel phase; SM2); details about the ex-
perimental procedure and the setup (SM3); a fit of the EIT and
Fano resonances by analytical formula (SM4); a comparison
between analytical, simulation, and experimental results (SM5);
a discussion of the mechanism behind FW and FP BICs (SM6);
numerical and experimental comparison between the variation
of DOS and the delay time (SM7); and a validation of the
analytical results to the plasmonic MIM waveguides operating
in the infrared domain (SM8), which includes Ref. [64].

[61] S. Khattou, M. Amrani, A. Mouadili, E. H. El Boudouti, A.
Talbi, A. Akjouj, and Bahram Djafari-Rouhani, Comparison of

density of states and scattering parameters in coaxial photonic
crystals: Theory and experiment, Phys. Rev. B 102, 165310
(2020).

[62] B. Djafari-Rouhani, E. H. El Boudouti, A. Akjouj,
L. Dobrzynski, J. O. Vasseur, A. Mir, N. Fettouhi,
and J. Zemmouri, Surface states in one-dimensional
photonic band gap structures, Vacuum 63, 177
(2001).

[63] Y. Rezzouk, M. Amrani, S. Khattou, E. H. El Boudouti, and B.
Djafari-Rouhani, Plasmonic Tamm states in periodic stubbed
MIM waveguides: Analytical and numerical study, J. Opt. Soc.
Am. B 39, 600 (2022).

[64] Z. Qiong-Gan and W. Zhi-Guo, The Green’s function method
for metal-dielectric-metal SPP waveguide network, Europhys.
Lett. 103, 17004 (2013).

[65] M. Amrani, I. Quotane, C. Ghouila-Houri, E. H. El Boudouti,
L. Krutyansky, B. Piwakowski, P. Pernod, A. Talbi, and
B. Djafari-Rouhani, Experimental evidence of the existence
of bound states in the continuum and Fano resonances in
solid-liquid layered media, Phys. Rev. Appl. 15, 054046
(2021).

235431-15

https://doi.org/10.1088/0305-4470/35/15/303
http://link.aps.org/supplemental/10.1103/PhysRevB.109.235431
https://doi.org/10.1103/PhysRevB.102.165310
https://doi.org/10.1016/S0042-207X(01)00188-9
https://doi.org/10.1364/JOSAB.440599
https://doi.org/10.1209/0295-5075/103/17004
https://doi.org/10.1103/PhysRevApplied.15.054046

