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Gap engineering and wave function symmetry in C and BN armchair nanoribbons
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There are many ways of engineering the band gap of nanoribbons, including application of stress, electric
field, and functionalization of the edges. In this paper, we investigate separately the effects of these methods on
armchair graphene and boron nitride nanoribbons. By means of density functional theory calculations, we show
that, despite their similar structures, the two materials respond in opposite ways to these stimuli. By treating
them as perturbations of a heteroatomic ladder model based on the tight-binding formalism, we connect the
two behaviors to the different symmetries of the top valence and bottom conduction wave functions. These
results indicate that opposite and complementary strategies are preferable to engineer the gap width of armchair
graphene and boron nitride nanoribbons.
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I. INTRODUCTION

In the last decades, graphene (Gr) and hexagonal boron
nitride (BN) monolayers have attracted a great deal of interest
because of their remarkable transport and optical properties
[1–5]. A much explored way to modulate them is by a further
reduction of their size like in 2D quantum dots, nanoribbons,
or nanotubes. Confinement comes with novel size-dependent
features dominated by geometrical parameters and by the
characteristics of the edge itself. This is why nanoribbons are
often classified according to their edge shape, which can be
zigzag, armchair, or structured in a more complex manner
[6]. As a matter of fact, the edge characteristics are crucial
for the performances of nanoribbon-based devices such as
transistors, interconnects, and logical devices [7–12], pho-
tovoltaic applications [12,13], or chemical sensing [12,14].
Gr zigzag nanoribbons have well-localized edge states which
confer them antiferromagnetic properties [6,15–20], while
BN zigzag nanoribbons have an indirect gap and display an
intrinsic dipole moment [17,21–28]. At variance, both Gr
[6,11,16–20,23,29–36] and BN [17,22–28] armchair nanorib-
bons (AGNR and ABNNR), have no magnetic states and
display a direct band gap whose energy depends on the width
of the ribbon. To take full advantage of this richness of proper-
ties, several strategies have been explored to engineer the band
gap including, among others [13,16,21,37,38], application of
external electromagnetic fields [17,18,22,23,25,34], of stress
[27,31], or edge functionalization by chemical passivation
[8,11,24,28–33,35,36].

In this paper, we systematically investigate the response of
Gr and BN armchair nanoribbons to these different strategies.
The size of each ribbon is quantified by the width Na designat-
ing the number of longitudinally aligned C–C or B–N dimers
as sketched in Fig. 1. To indicate a specific nanoribbon, we
append Na after the type of material, e.g., AGNR-5 indicates
an armchair Gr nanoribbon of width Na = 5. Simulations
carried out within density functional theory (DFT) include

hydrogens always passivating the edges and all structures are
fully relaxed, i.e., both in-plane atomic coordinates and the
cell parameter a are optimized. We focus our investigation on
the evolution of the gap as a function of Na upon application of
uniaxial stress, biaxial stress, and external electric fields. We
also explore the impact of edge functionalization by dividing
it into an electrostatic and deformation component. For further
details on the parameters of the calculations, see Appendix A.

The paper is divided as follows: In Sec. II A, we discuss
the variations of the gap width upon stimuli corresponding to
the different gap engineering strategies simulated at the DFT
level. Successively (Sec. II B), we extend to the heteroatomic
case a tight-binding ladder model [6,18,20] to investigate the
response of the two materials. In Sec. III, we discuss in more
detail the specific case of H passivation solving the ladder
model numerically and comparing it with analytical pertur-
bative formulas. Conclusions are summarized in Sec. IV.
Appendixes A and B are about computational details and
some useful mathematical relations.

II. BAND-GAP ENGINEERING

A. Opposite and complementary responses

The electronic structure of BN and Gr nanoribbons has
been thoroughly studied in the past [6,11,15,16,17,18,19,20–
36]. Our DFT band gap of ABNNRs and AGNRs for widths
ranging from Na = 5 to Na = 19 are reported in red in the
two panels of Fig. 2 and are in good agreement with similar
calculations in literature. We recall that, owing to the 1D
confinement, the gap width of both materials falls in one of
the three families: Na = 3m − 1, Na = 3m or Na = 3m + 1
(with m ∈ N∗). The ordering of the families is the same in the
two materials, with the Na = 3m − 1 branch always lowest in
energy. We remark that size effects on thinner ribbons can be
quite large: in ABNNRs, the gap variation is roughly ±0.1 eV
with respect to the asymptoptic limit, which happens to be
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FIG. 1. Top: Structure of the reference ABNNR-5. Vertical dot-
ted lines enumerate the rows. In blue, we highlight the cell parameter
a, the width w, and the notable lengths dHB, dHN, and dBN. H, N, and
B atoms are placed, respectively, in pink, grey, and green lattice sites.
AGNRs are analogously structured with the relevant edge lengths are
labeled dHC and dCC. Bottom: The corresponding two-atom ladder
model. Sites labeled μ = 1 are drawn with squares and μ = 2 with
circles. The color code is the same as in the panel above. The
homoatomic ladder model is defined by ε1 = ε2 = 0.

lower than in the isolated monolayer because of a residual
edge contribution [22,24]. In AGNRs, size effects are even
stronger, the gap opens up to 1.6 eV at width Na = 7 and
ranges between 0.1 and 0.4 in the Na = 3m − 1 family.

We can now proceed with the inclusion of stimuli ac-
counting for different gap engineering strategies. For reasons
that will become clearer later, we focus our analysis on the
family Na = 3m − 1. In Fig. 3, we report the gap width of
ABNNRs (left panels) and AGNRs (right panels) belonging to
this family as a function of Na and under the effect of different
stimuli. In all panels, the bulleted black solid lines are the
reference band gaps of the fully relaxed calculations (those
reported in Fig. 2). Before discussing the details, one result
immediately jumps out. The two materials display opposite
and complementary responses. When ABNNRs show a vio-
lent modification of their gap width, AGNRs show negligible
variations and the other way around.

In literature, the effect of a transversal (along x) electric
field is predicted to close the gap of ABNNRs already at weak
intensity, with stronger variations in wider ribbons [17,22,25].
Instead, in AGNRS, a width-dependent threshold intensity
must be passed, below which the gap is constant [17,34]. Our
results are reported in Figs. 3(a1) and 3(a2) with green crosses
for a field of 0.5 V/nm, corresponding to a very weak field.
For the comparison to be meaningful, the field is the same in
the two materials. In agreement with literature, DFT predicts a
relatively violent gap closing in ABNNRs where it decreases

(a)

(b)

FIG. 2. Gap of ABNNRs (a) and AGNRs (b) as a function of Na.
Different symbols are associated to different families. Black solid
line: DFT calculations. Red dashed line: numerical diagonalization
of the ladder model parametrized as in Table I.

from 4.4 eV to 4.0 eV eV with an approximately linear trend,
whereas the gap of AGNRs is basically not affected.

The effect of global stretch is reported in Figs. 3(b1)
and 3(b2). In addition to the reference values, we report the
band gap of ribbons experiencing the same longitudinal (y),
transversal (x), or biaxial stretch. More precisely, a tensile
strain of 3% is applied to parameters a, w, or both. This is
a very low strain, corresponding to a harmonic elastic regime
of deformation [24], but what is most important is that it is
the same value for all calculations. At variance from before,
here DFT predicts that the gap of ABNNRs undergoes weaker
variations than that of AGNRs. Typically, uniaxial variations
in ABNNRs are of about 0.1 eV, whereas they reach about
0.3 eV in AGNRs. A comparison with literature is not simple,
but, for instance, a stress of 7% produces gap variations of
about 0.3 eV in ABNNR-7 [27] and more than the double
in AGNR-7 [31]. Interestingly, a biaxial stress has almost no
effect on AGNRs, as if its y and x elongation components
cancel each other, contrary to what is observed in ABNNRs
where the two seem to add in closing the gap by about 0.2 eV.
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FIG. 3. DFT gap width of ABNNRs (left panels) and AGNRs (right panels) as a function of Na under the action of stimuli accounting
for different gap-engineering strategies suggested by the key title and the structural sketch inside the ABNNR panels. a1 and a2: transverse
electric field; b1 and b2: longitudinal, transversal, and biaxial stretch of 3% (red dashed curve is a guide to the eye); c1 and c2: displacement of
the passivating H atoms; d1 and d2: variation of the bond length at the edges. In all panels, the gap width of the reference H-passivated fully
relaxed calculation of Fig. 2 is reported with a bulleted solid black line.
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FIG. 4. DFT band structure of AGNRs with Na = 5, 8 and 11 sustaining various longitudinal stresses.

Besides this, a peculiar trend is observed in longitudinally
stretched AGNRs, highlighted by a red dashed line. This is
related to a sort of bouncing of the band gap that closes in
small ribbons and opens again in ribbons larger than the char-
acteristic width Na ≈ 11. This effect is also visible in the data
by Prabhakar and Melnik [31] in the case of AGNR-7. This
bouncing behavior can be appreciated more clearly in Fig. 4,
where we report the AGNR band structure in the vicinity of
the gap for different widths and values of the longitudinal
stretch. The higher the stretch, the smaller the critical width.

Edge functionalization is actually a very complex mecha-
nism which may involve global and edge strain, variations of
the electrostatic potential felt by all atoms of the ribbon and
some charge transfer. Having already addressed global strain,
here we concentrate the study on the electrostatic variation
in Fig. 4(c) and the edge strain in Fig. 4(d). These separate
effects have been studied in the past in the case of AGNRs
[20,33]. Here we extend the analysis to ABNNRs and make
a quantitative comparison by considering the two contribu-
tions separately. In panels c1 and c2, we report the gap under
variations of dHX of ±0.2 or ±0.5 Å (X = B, N , or C). Here
+ signs indicate a displacement away from the edge, −signs
toward it. Notice that the asymptotic limit of the ABNNR gap
width when H atoms are moved 0.50 away from the edges
is not the reference gap, but a sizeably smaller one much
closer to that of the nonpassivated ribbon [24]. Finally, in
panels d1 and d2 we report the band gap under expansion (+)
and contraction (–) of dXY (with XY = BN or CC) of 2% or
5%. Considered together, these four panels show that edge
functionalization efficiently modifies the gap of both mate-
rials, though through different mechanisms. While ABNNRs
respond mostly to variations of the electrostatic potential, AG-
NRs are mostly sensitive to the induced strain at the edges, in
agreement with literature [20,33]. In both cases, gap variations
decrease for increasing width, as expected in the limit of the
isolated monolayer (infinite width limit).

Let us now stop here and summarize our results. We have
shown that the gap width of ABNNRs is strongly sensi-
tive to variations of the electrostatic environment, indicating
the application of electric fields as the most effective way
to engineer the gap of ABNNRs. Edge functionalization
can be effective on the condition that the electrostatic po-
tential is strongly modified by the passivating species. On
the other hand, AGNRs are demonstrated to respond more
strongly to mechanically applied uniaxial strain or to the edge
strain induced by the functionalization. Such an opposite and
complementary response must be rooted in the impact that dif-
ferent stimuli have on the valence band maximum (VBM) and
the conduction band minimum (CBM). As a matter of fact,
these states have very different localization characteristics in
the two materials. While in ABNNRs, the states localize basi-
cally on the lattice sites like in the monolayer [39], in AGNRs
they are spread along the C–C bonds. As a clear example of
this, in Fig. 5 we report the partial density |ψ (r)|2 in � of
the last occupied and lowest empty states in Na = 8 reference
ribbons.

In the next section, we develop a two-atom ladder
model to investigate further the consequences of this
difference.

B. Two-atom ladder model

Here we employ the tight-binding ladder model which
has been initially introduced to study the gap of AGNRs
[6,15,16,18,20]. We extend it to the heteroatomic case with
the intent of describing both Gr and BN nanoribbons’ gap. The
resulting heteroatomic ladder model is sketched in the bottom
panel of Fig. 1. Electric fields, global strain, and edge func-
tionalization decomposed in its electrostatic and edge-strain
components are introduced through first-order perturbation
theory via changes of the on-site and hopping parameters of
the model, as suggested in Refs. [6,20].
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FIG. 5. Reference DFT charge density of the CBM (pink: top
panels) and the VBM (dark green: bottom panels) in ABNNR-8 (left
panels) and AGNR-8 (right panels). B atoms are placed n green sites,
N atoms in grey sites, and C atoms in brown sites. Passivating H
atoms are the pink spheres on the edges.

Let us first diagonalize the unperturbed Hamiltonian,
which reads

H0 =
∑
j,μ

(
εμ |μ, j〉 +

∑
n.n.

t |μ′, j′〉
)

〈μ, j| . (1)

The index j ∈ [1, Na] labels the row, while μ = 1, 2 indicates
both the atomic site and the atomic species in the row (C1

or C2 in AGNRs and B or N in ABNNRs). Note that μ = 1
is below μ = 2 in even rows, and vice versa in odd rows. The
basis function 〈r|μ, j〉 is the pz orbital of the atom μ of the jth
row. The inner sum is limited to first neighbors and the on-site
energies are ε1 = −ε2 = ε. In ABNNRs, ε > 0 to associate N
atoms a negative on-site energy and B atoms a positive one
[39]. AGNRs are obtained for ε = 0.

The discrete spectrum of H0 is E0
n± = ±En, where n ∈

[1, ..., Na] and the following definitions are introduced: En =√
ε2 + τ 2

n , τn = t[1 + 2 cos(θn)], and θn = nπ/(Na + 1). The
− and + signs label occupied and empty states, respectively,
which implies that the VBM and the CBM are those that min-
imize |τn|. They are labeled ñ = 2m + 1 in families Na = 3m
and Na = 3m + 1, and ñ = 2m if Na = 3m − 1. The generic
normalized unperturbed eigenstate |n,±〉 reads

|n,±〉 =
√

2

Na + 1

Na∑
j=1

sin ( jθn)

× [
Dn,±

1 |1, j〉 + Dn,±
2 |2, j〉 ]

, (2)

with the coefficients

Dn±
1 = − τn√

2En(En ∓ ε)
and

Dn±
2 = ∓En + ε√

2En(En ∓ ε)
. (3)

FIG. 6. Representation of the last occupied (VBM) and first un-
occupied (CBM) eigenstates of the ladder model. Squares and circles
indicate sites with label μ = 1 or μ = 2, respectively. Nodes with
no symbol designate sites associated to vanishing total weight by
expression (2). In the heteroatomic model, all weights are either√

3/2 or 0. In the homoatomic one, the ± symbols are for weights
of ±√

3/8. Bonding combinations are formed between sites sharing
the same sign. Shaded areas highlight the similarity with Fig. 5.

Finally, the unperturbed band gap of the ladder model reads

E0
g =

{
2ε for Na = 3m − 1

2E2m+1 for the other values of Na.
(4)

It is worth stopping here to evaluate explicitly the wave
functions of the VBM and CBM.

ABNNRs. Since τ2m ≡ 0, in the Na = 3m − 1 family the
Hamiltonian of the VBM and CBM is effectively a non-
interacting Hamiltonian. The corresponding wave function
coefficients read

VBM: D2m,−
1 = 0 and D2m,−

2 = 1, (5)

CBM: D2m,+
1 = 1 and D2m,+

2 = 0, (6)

corresponding to pure N states in valence (μ = 2), and pure
B states in conduction (μ = 1), as expected in all BN-based
materials [39]. These coefficients have to be multiplied by
the standing wave envelop sin( jθ2m). The example for Na = 8
is given in the left panels of Fig. 6 to be compared with
the partial charge densities reported in Fig. 5. The ladder
model results match extremely well with the first-principles
calculations. In the other two families, |τ2m+1| does not vanish
exactly, but is minimized, so the deviation from perfectly pure
states is small and actually gets smaller for wider ribbons.

AGNRs. In the homoatomic case, one has to set ε = 0 in the
Hamiltonian prior to any further manipulation. This condition
completely changes the nature of the wave functions, leading
to symmetric and antisymmetric combinations of the atomic-
centered wave functions. Regardless of the gap family, the
coefficients read

VBM: Dñ,−
1 = − sgn(τñ )√

2
and Dñ,−

2 = 1√
2
, (7)

CBM: Dñ,+
1 = − sgn(τñ )√

2
and Dñ,+

2 = − 1√
2
. (8)

Here sgn(x) takes value 1 if x > 0 and −1 is x � 0. The final
wave function at Na = 8, including the envelop prefactors, is
reported in the right panels of Fig. 6 and once again the match
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with the DFT partial charges of Fig. 5 is excellent. Note that
in the Na = 3m − 1 family, it is incorrect to distinguish be-
tween VBM and CBM states within the model, because they
are actually degenerate [20] at E0

2m,± = 0. One should rather
speak about symmetric (CBM) and antisymmetric (VBM)
states, but we will keep the VBM and CBM labeling for
convenience.

Now that we solved the unperturbed problem, we can
follow the suggestions of Refs. [6,20] and introduce the dif-
ferent band engineering manipulations through a perturbation
Hamiltonian δH which includes:

(1) Transverse electric field terms j fμ with μ = 1, 2. The
fμ perturbative parameters modify the on-site energies of the
entire ribbon linearly with the x coordinate of the atomic site,
here replaced by the row index j = 1, ..., Na;

(2) Longitudinal (y) and transverse (x) stretch terms δt‖
and δt⊥, respectively, added to all hopping terms depending
on their direction.

(3) Edge electrostatic corrections δεμ modifying the on-
site energies of atoms at the edges (i.e., only on j = 1 and
j = Na);

(4) Edge stress terms δte modifying the hopping between
atoms forming the edges, i.e., belonging to rows j = 1 and
j = Na.

This perturbative Hamiltonian diagonalizes on the basis as

〈μ, j|δH |μ, i〉 = [ j fμ + δεμ(δ j,1 + δ j,Na )] δ j,i (9)

for both μ = 1 and μ = 2; and

〈2, j|δH |1, i〉 = 〈1, j|δH |2, i〉
= [δt‖ + δte(δ j,1 + δ j,Na )]δ j,i

+ δt⊥(δ j−1,i + δ j+1,i ). (10)

The resulting correction to the generic state 〈n,±|δH |n,±〉 =
δFn± + δSn± + δCn± is the sum of three perturbations cor-
responding to the application of a transverse electric field
(δF ), the application of uniaxial and/or biaxial stress (δS),
and to edge functionalization (δC). After some not so obvious
trigonometric manipulation reported in Appendix B, one gets

δFn± = Na + 1

2

[(
Dn±

1

)2
f1 + (

Dn±
2

)2
f2

]
, (11)

δSn± = 2Dn±
1 Dn±

2 [δt‖ + 2 cos(θn)δt⊥], (12)

and

δCn± = 4 sin2(θn)

Na + 1

[
2Dn±

1 Dn±
2 δte + (

Dn±
1

)2
δε1 + (

Dn±
2

)2
δε2

]
.

(13)

The perturbative correction to the band gap is δEg =
〈ñ,+|δH |ñ,+〉 − 〈ñ,−|δH |ñ,−〉. Note, however, that in the
homoatomic Na = 3m − 1 family, since the unperturbed so-
lution is gapless, the absolute value of this expression must
be taken. By plugging into this expression the terms (12) and
(13), one gets the generic gap correction

δEg = [(
Dñ+

1

)2 − (
Dñ−

1

)2][4 sin2(θñ)

Na + 1
δε1 + Na + 1

2
f1

]
+ [(

Dñ+
2

)2 − (
Dñ−

2

)2][4 sin2(θñ)

Na + 1
δε2 + Na + 1

2
f2

]

+ 2
[
Dñ+

1 Dñp+
2 − Dñ−

1 Dñ−
2

][4 sin2 (θñ)

Na + 1
δte + δt‖ + 2 cos(θñ)δt⊥

]
. (14)

We finally understand why the two materials have different
responses to the different stimuli. In fact, if we now insert the
wave function coefficients (3) into (14), one finds different
band gap corrections for ABNNRs and AGNRs.

ABNNRs. In the heteroatomic solution, for families Na =
3m and Na = 3m + 1, one gets

δEg = ε

E2m+1

[
4 sin2(θ2m+1)

Na + 1
(δε1 − δε2) + Na + 1

2
( f1 − f2)

]

+ 2τ2m+1

E2m+1

[
4 sin2(θ2m+1)

Na + 1
δte + δt‖ + 2 cos(θ2m+1)δt⊥

]
.

(15)

Notice that, since |τñ| is minimized in the VBM and CBM
and it gets closer to 0 as the width increases, the gap cor-
rection is dominated by the first term containing only on-site
perturbations, i.e., the application of electric fields and the
electrostatic component of the edge functionalization. The
extreme case of this is encountered in the Na = 3m − 1 family,
where τñ ≡ 0 and the wave function coefficients are the pure
state combinations reported in expressions (5) and (6). This
makes the second term disappear completely and the resulting

variation of the gap reads simply

δEg = 1

m
(δε1 − δε2) + 3

2
m( f1 − f2). (16)

ABNNRs In all families of the homoatomic case, the wave
function coefficients are the symmetric and antisymmetric
combinations (7) and (8). As a consequence, all the terms
modifying on-site energies vanish because of the mutual can-
cellation of the coefficients (Dñ+

μ )2 − (Dñ−
μ )2 in (14). Instead,

the coefficients of the global and edge stress terms add to-
gether constructively into Dñ+

1 Dñ+
2 − Dñ−

1 Dñ−
2 = sgn(τñ). In

families Na = 3m − 1 and Na = 3m, this leads to the pertur-
bative gap correction

δEg = sgn(τñ)

[
8 sin2(θ2m+1)

Na + 1
δte + 2δt‖ + 4 cos(θ2m+1)δt⊥

]
,

(17)

whereas in the Na = 3m − 1 family, the final expression reads

δEg = 2

∣∣∣∣ 1

m
δte + δt‖ − δt⊥

∣∣∣∣. (18)
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TABLE I. TB parameters in eV for H-passivated nanoribbons.
Resulting gaps are reported in Fig. 2.

ABNNR

εB = −εN t δε δte

2.285 −2.460 −0.145 −0.190

AGNR

εC1 = εC2 t δε δte

0.0 −2.600 0.0 −0.400

Expressions (16) and (18) indicate how the band gap varies
in the family Na = 3m − 1 and can be qualitatively compared
with the DFT results of Fig. 3. Concerning the applied field
engineering method (panels a1 and a2) the model correctly
predicts the strong dependence of ABNNRs on the electric
field together with its linear dependence on Na. In the case
of applied stress (panels b1 and b2), the perturbative formu-
las predict the right qualitative behavior with the AGNRs,
much more sensitive to the ABNNRs (for which there is no
variation in the model to be compared with the relatively
weak variations predicted by DFT). Also well captured by the
model is the opposite sign of δt‖ and δt⊥ in Eq. (18), which
indicates two opposite results upon application of longitudi-
nal and perpendicular stress. Even though the gap bouncing
discussed earlier cannot be described by our tight-binding
(TB) model, the opposite sign predicts the negligible effect
of biaxial strain. Coming to the two components of the edge
functionalization, the responses predicted by the model are
again in very good agreement with the DFT results. According
to the formulae, ABNNRs are extremely sensitive to on-site
modifications of this gap-engineering method, that is, to the
passivation-induced electrostatic variations (panels c1 and c2)
contrary to AGNRs that are instead more sensitive to the
hopping variations, i.e., to the edge strain (panels d1 and d2).

The origin of the opposite and complementary response
in ABNNRs and AGNRs is now made transparent by the
heteroatomic ladder model and is ultimately related to the
symmetries of the VBM and CBM in the two materials. In
ABNNRs, they are basically pure B or N states, conferring the
ribbon a higher sensitivity to on-site variations. In AGNRs, on
the contrary, they are basically symmetric and antisymmetric
combinations which make the wave functions extend on the
bonding. This makes AGNRs much more sensitive to changes
of the hopping parameters.

III. LADDER MODEL OF H-PASSIVATED NANORIBBONS

In this section, we provide some additional information
on the ladder model when applied to H-passivated ribbons.
We retain only the edge-functionalization parameters of δH ,
namely, δεμ and δte, and we diagonalize numerically the
Hamiltonian H = H0 + δH . Successively, we fit by hand the
parameters of H against the DFT band gaps reported in Fig. 2.
Guided by physical intuitions, we take δε1 = δε2 = δε in
the case of AGNRs, and δε1 = −δε2 = δε in the case of
ABNNRs. The resulting parameters and the TB band gap
are reported, respectively, in Table I and in Fig. 2 with red
dashed lines. Note that we take a nonvanishing value for δte

FIG. 7. band gap correction δEg as a function of δte (squares)
and δε (circles) in ABNNRs (left panels) and AGNRs (right panels)
of width Na = 11, 12 and 13 from top to bottom. Colored symbols:
perturbative formulas; Empty symbols: numerical diagonalization.

in ABNNRs even though its influence should be weak. This is
indeed the case in the Na = 3m − 1 family [expression (16)],
where large variations of this parameter have minor effects in
the gap width, but in the other two families [expression (15)]
it is necessary to ensure the right energy ordering.

In addition, we check the range of validity of the pertur-
bative approach by comparing the numerical solution (empty
symbols in Fig. 7) with the perturbative formulas (colored
symbols) in the range −1 eV, +1 eV in nanoribbons of width
Na=11, 12, and 13, i.e., one representative nanoribbon per
family. Globally, the numerical and perturbative results are
in very good agreement in the parameter range considered.
Deviations of δε are a bit larger than those of δte because
numerical solutions display a quadratic trend whereas the
perturbative formulas are linear in δε .

IV. CONCLUSION

We have carried out a comparative study of three gap
engineering strategies on armchair BN and Gr nanoribbons,
namely, the application of an electric field, of strain and edge
functionalization. The latter effect has been divided into two
main contributions scrutinized separately: the electrostatic
contribution and the deformation of the edges. The study
has been conducted by means of DFT calculations and by
extending to the heteroatomic case a ladder model which we
solved both numerically and perturbatively.
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We have shown that the two materials, despite their simi-
larities, respond in opposite and complementary ways to the
different modifications they undergo. In particular, while the
gap of ABNNRs is much more sensitive to the application of
electric field and to the electrostatic component of the edge
functionalization, the gap of AGNRs is much strongly modi-
fied by the application of stress, being it global or localized on
the edges.

The heteroatomic model provides the explanation of this
opposite behavior. In fact, the states responsible for the gap
formation have very different symmetries in the two materials,
being basically pure N or B states in ABNNRs and symmetric
or antisymmetric combinations in AGNRs. As a consequence,
in ABNNRs the wave functions of the top valence and the
bottom conduction are localized on the atomic sites, which
makes them much more sensitive to variations of the on-site
energies (i.e., electrostatics). On the contrary, in AGNRs the
wave functions extend over the bonding between C atoms,
causing a much stronger sensitivity to variations of the hop-
ping parameter (i.e., stress).
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APPENDIX A: COMPUTATIONAL DETAILS

All DFT calculations are carried out within the generalized
gradient approximation using the Perdew-Burke-Ernzerhof
[40] exchange correlation potential as implemented in the
QUANTUM ESPRESSO [41] simulation package. To avoid inter-
actions between consecutive cells, we include 15 Å and 20
Å of empty space in the z and x directions, respectively. In
electron density calculations and relaxation runs, the periodic
axis is sampled with 20 k-points centered in �. This mesh

is dense enough to converge total energies in the smallest
nanoribbons. We use norm-conserving pseudopotentials [42]
and set the kinetic energy cutoff at 80 Ry in both materials.

It is worth stressing that using a large vertical empty space
and a high energy cutoff is essential even in the relaxation runs
to prevent nearly free-electron states from hanging below the
pz states, hence jeopardizing the gap description. In fact, as
already well-known for freestanding layers [43–47] and nan-
otubes [48–50], in BN nanomaterials there is a competition
at the bottom conduction between 2pz and 3s states, whose
right alignment requires a dedicated convergence study. If
sometimes one can overlook this issue in BN layers, because
the two competing states create two separate valleys in the
Brillouin zone, this is not the case in ABNNRs where both
states give rise to a direct gap at �.

All reference structures are fully relaxed, allowing op-
timization of both atomic positions and cell parameter a.
Relaxation runs have been performed with the Broyden–
Fletcher–Goldfarb–Shanno (BFGS) algorithm with the stop-
ping criterion of all forces being lower than 5 × 10−5 eV/Å.
In modified systems (i.e., calculations with applied electric
fields, applied global or edge stress, and with H displace-
ments), no additional relaxation has been done.

APPENDIX B: NOTABLE TRIGONOMETRIC IDENTITIES

Some notable trigonometric identities used in the deriva-
tion of the tight-binding perturbative corrections:

sin2(θn) = sin2(Naθn) ; (B1)

Na∑
j=1

sin2( jθn) = Na + 1

2
; (B2)

Na−1∑
j=1

sin( jθn) sin [( j + 1)θn] = Na + 1

2
cos(θn) ; (B3)

Na∑
j=1

j sin2 ( jθn) =
(

Na + 1

2

)2

. (B4)
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