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Floquet-Bloch theory for nonperturbative response to a static drive
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We develop the Floquet-Bloch theory of noninteracting fermions on a periodic lattice in the presence of a
constant electric field. As long as the field lies along a reciprocal-lattice vector, time periodicity of the Bloch
Hamiltonian is inherited from the evolution of momentum in the Brillouin zone. The corresponding Floquet
quasienergies yield the Wannier-Stark ladder with interband couplings included to all orders. These results are
compared to perturbative results where the lowest-order interband correction gives the field-induced polarization
shift in terms of the electric susceptibility. Additionally, we investigate electronic transport by coupling the
system to a bath within the Floquet-Keldysh formalism. We then study the breakdown of the band-projected
theory from the onset of interband contributions and Landau-Zener resonances in the band-resolved currents. In
particular, we consider the transverse quantum-geometric response in two spatial dimensions due to the Berry
curvature. In the strong-field regime, the semiclassical theory predicts a plateau of the geometric response as a
function of field strength. Here, we scrutinize the conditions under which the semiclassical results continue to
hold in the quantum theory.
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I. INTRODUCTION

A peculiar property of electrons in a crystal is that apply-
ing a constant direct current (dc) electric field gives rise to
periodic motion known as Bloch oscillations. As the name
suggests, this result was first derived by Felix Bloch in 1929
[1], although the oscillatory electron trajectories were only
mentioned explicitly by Clarence Zener five years later [2].
Seemingly counterintuitive, this phenomenon follows natu-
rally from the fact that in the presence of a periodic potential,
momentum space is compactified to a torus, i.e., the first
Brillouin zone (BZ). Since in a dc electric field E , momentum
increases linearly with time, k(t ) = k(0) − eEt/h̄, this gives
rise to oscillatory motion with characteristic Bloch frequency
ωB = e|E|a/h̄, where a is the lattice constant [3–5].

However, Bloch oscillations are typically inconsequential
for electronic transport because most solid-state systems obey
ωBτ � 1, where τ is a typical momentum-relaxation time. In
this case, an electron relaxes its momentum to equilibrium
before a complete oscillation occurs. One approach to reach
the regime ωBτ � 1 at reasonable field strengths is by means
of artificial superlattices, such as quasi-one-dimensional (1D)
semiconductor superlattices [6–8] or two-dimensional (2D)
moiré systems [9–12], among others. Here the large lattice
constant a ∼ 10 nm compresses the BZ, which leads to an
increase in ωB such that full Bloch orbits can be executed
before a scattering event occurs.

Experimental observations of Bloch oscillations in solid-
state systems have therefore been limited to 1D semiconductor
superlattices where a static electric field is applied along the
superlattice direction, and Bloch oscillations with ωB in the
THz regime are excited optically [6,13–17]. Moreover, the
presence of Bloch oscillations also manifests itself in the dc
electronic response through a negative differential conduc-
tance [3,18] for ωBτ � 1. Such a decrease in the current with

increasing electric field strength is due to the Wannier-Stark
(WS) localization of electrons in a static electric field [19–23].
Additionally, it has been recognized recently that the quantum
geometry of Bloch bands, specifically the Berry curvature,
gives rise to so-called geometric oscillations transverse to the
electric field [11]. Moreover, these geometric oscillations lead
to a characteristic peak in the transverse differential conduc-
tance [11,12], as well as peaks in the optical Hall conductivity
that encode the quantum geometry of the band [24]. Further-
more, Bloch oscillations of cold atoms have been observed in
optical lattices [25,26]. The latter are extremely clean systems
such that ωBτ can be large even though the Bloch period can
be up to 10 orders of magnitude larger than in solid-state
superlattices.

As an illustrative example, consider a one-dimensional
crystal with a partially occupied energy band Ek . In this case,
we have E = E x̂ and the semiclassical electron trajectories are
obtained from

dx

dt
= 1

h̄

∂Ek(t )

∂k
= − 1

eE
dEk(t )

dt
, (1)

with −e the electron charge. The solution reads x(t ) =
−E [k(t )]/eE up to an additive constant, where the amplitude
of the oscillation is given by W/e|E | for electronic bandwidth
W . Hence the size of the Bloch orbit is proportional to 1/|E |,
which is the previously mentioned WS localization. Complete
orbits thus require that the size of the orbit be smaller than
the mean free path, while only partial orbits are completed
otherwise.

In higher spatial dimensions, the resulting trajectory in
momentum space is generally not closed for an arbitrary
direction of the electric field and eventually traces out the
entire BZ. In this case, generic trajectories in both momen-
tum and real space are oscillatory but not periodic. Electron
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motion is only periodic when the electric field lies along a
reciprocal-lattice vector g, or equivalently when it is perpen-
dicular to a lattice plane. In this case, the frequency is given
by � = 2πωBa/|g|. The corresponding real-space semiclassi-
cal trajectories generally consist of three parts: an oscillatory
motion with components along the field direction, a transverse
oscillatory motion originating from the anisotropy of the en-
ergy band as well as the anomalous velocity, and a transverse
drift [11]. The latter originates from velocity components
not accelerated by the field and only contributes to the net
transport current when time-reversal symmetry is broken. It
corresponds to a drift of the guiding center of the Bloch orbit
and contains a topological term proportional to the Chern
number of the band.

So far we have tacitly assumed the adiabatic limit where
the energy band is sufficiently isolated from other bands. In
this limit, we can neglect interband Landau-Zener transitions
and only consider the dynamics in the occupied band. At
lowest order, interband corrections induce a field-dependent
polarization shift [27] that corresponds to the electric suscepti-
bility [28]. However, this term only contributes to transport in
systems where spatial inversion symmetry and time-reversal
symmetry are simultaneously broken. In this work, we con-
sider interband corrections for electric transport beyond
perturbation theory in |E|. We accomplish this by treating
the dynamics exactly with Floquet theory for a commensurate
constant electric field E ‖ g [29–33]. In this case, we know
that the band-projected semiclassical dynamics is periodic
since momentum space is defined on a torus whose generators
are reciprocal-lattice vectors. The quantum theory inherits this
feature from minimal substitution k → k + eA(t ) in temporal
gauge (also known as velocity gauge) for a uniform electric
field. As such, we will show that the Bloch Hamiltonian
becomes time periodic up to a unitary transformation for
commensurate fields. Importantly, by treating a static drive in
temporal gauge, one finds that the longitudinal momentum be-
comes a gauge degree of freedom that can be absorbed in the
time origin. Hence, the original time-independent problem in
D spatial dimensions is mapped to a time-dependent problem
in D − 1 spatial dimensions. This is similar to how a periodic
drive in D dimensions can be mapped to a time-independent
problem on the Floquet ladder in D + 1 dimensions [34].
In fact, here we are trading one physical spatial dimension,
defined by the direction of the electric field, with a synthetic
Floquet dimension along which translation symmetry is bro-
ken by the electrostatic potential.

This paper is further structured as follows. In Sec. II,
we introduce the Floquet formalism for the nonperturbative
treatment of a static uniform electric field applied to a peri-
odic lattice of free fermions. Special care is taken to account
for the sublattices by a modified Floquet ansatz yielding
the Floquet Hamiltonian whose quasienergies give the WS
ladder. Then in Sec. III, we couple the clean system to a
reservoir with the Floquet-Keldysh formalism and calculate
the band-resolved charge currents. Next, in Sec. IV, we ap-
ply the transport theory to examples in one and two spatial
dimensions. Specifically, we study the onset of interband
Landau-Zener resonances in a 1D dimer chain, as well as the
current anisotropy and transverse geometric response for the
honeycomb lattice in 2D with sublattice and Haldane mass

terms. We finally present our conclusions in Sec. V. Unless
stated otherwise, we set h̄ = 1 from now on.

II. FLOQUET THEORY OF A CRYSTAL IN A CONSTANT
ELECTRIC FIELD

In this section, we introduce the Floquet formalism for
the nonperturbative treatment of a static uniform electric field
applied to a periodic lattice of noninteracting fermions with
a finite number of orbitals. Here the Floquet quasienergy
spectrum yields the familiar Wannier-Stark (WS) ladder [31].
At the end of this section, we consider an alternative approach
in band basis and obtain an approximate analytical solution
for the WS ladder that is valid up to second order in the field.

A. Lattice Hamiltonian in velocity gauge

Our starting point is the Hamiltonian for noninteracting
electrons hopping on a lattice in D spatial dimensions, which
can be written as

H0 =
∑
r,r′

∑
a,b

Hab
r−r′c†

racr′b, (2)

where r =∑D
i=1 niai (and r′) are lattice vectors that label the

cells with ni integers, and ai are the primitive lattice vectors
of the Bravais lattice. Here a and b are orbital indices, which
includes sublattice degrees of freedom and spin. We also
define the creation (annihilation) operators c†

ra (cra) which
create (destroy) a fermion in cell r in orbital a. The hopping
amplitude from orbital b in cell r′ to orbital a in cell r is then
given by Hab

r−r′ , where the dependence on r − r′ reflects the
translational symmetry of the system.

We now consider a uniform electric field (equivalent to tak-
ing the dipole approximation) E (t ) which can be introduced
without breaking translational symmetry [20] in the velocity
gauge via the Peierls substitution:

Hab
r → Hab

r exp

[
−ie

∫ r+ra

rb

ds · A(t )

]
(3)

= Hab
r e−ieA(t )·(r+rab), (4)

with E (t ) = −∂t A(t ). Here −e is the electron charge, ra is
the sublattice position of orbital a in the unit cell, and rab =
ra − rb. The lattice Hamiltonian can then be diagonalized by
Fourier transform:

cra = 1√
N

∑
k

eik·(r+ra )cka, (5)

with N the number of cells. The Hamiltonian of the system
becomes

HS (t ) =
∑

k

∑
a,b

Hab[k + eA(t )]c†
kackb, (6)

where the Bloch Hamiltonian is explicitly given by

Hab(k) =
∑

r

e−ik·(r+rab) Hab
r . (7)

Hence a uniform electric field can be introduced in the
Bloch Hamiltonian by the usual minimal substitution pro-
cedure on the crystal momentum k → k + eA(t ) since the
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velocity gauge conserves the translational symmetry of the
crystal. Note that we have retained information on the intra-
cell positions in Eqs. (4) and (5) to properly account for the
electrostatic potential [35]. In the (instantaneous) band basis,
this choice corresponds to the periodic gauge where the total
Bloch wave function is defined on a torus: |ψs,k+g〉 = |ψsk〉,
with s the band index and g a reciprocal-lattice vector [36].

If we want to treat the external field perturbatively in veloc-
ity gauge, one usually considers a uniform field that oscillates
with frequency ω,

A(t ) = |E|
2iω

(εe−iωt − ε∗eiωt ), (8)

with complex polarization vector ε. Then |A(t )| � E|/ω is
bounded, and the static limit is obtained by taking ω to zero
at the end of the calculation. However, here we are interested
in the nonperturbative treatment of a dc uniform electric field.
Hence, we take

A(t ) = −tE, (9)

such that the Bloch Hamiltonian [37]

H(k, t ) = H[k(t )] = H(k − eEt ). (10)

We now introduce the notion of a commensurate electric field,
which lies parallel to a reciprocal-lattice vector, or equiva-
lently perpendicular to a lattice vector,

E = Eg/g, (11)

where E > 0, and g is a nonzero reciprocal-lattice vector with
g = |g|. For a commensurate field, we thus have

H(k, t + T ) = H(k − g, t ) = U−gH(k, t )U †
−g, (12)

with Bloch period T = g/eE and

U ab
g = e−ig·raδab, (13)

where a, b denote orbital indices, and we used that g · r ∈
2πZ. For a commensurate electric field, the Bloch Hamil-
tonian is thus periodic in time up to a diagonal unitary
transformation.

B. Floquet ansatz

The time periodicity of the Bloch Hamiltonian allows us to
solve the time-dependent Schrödinger equation,

i∂t |	k(t )〉 = H(k, t )|	k(t )〉, (14)

with a modified Floquet ansatz

	ka(t ) = e−i(εk+λa�)t
∑
n∈Z

ein�tφka,n, (15)

where εk is the quasienergy, � = 2π/T is the Floquet fre-
quency, and we defined λa = g · ra/2π such that

	ka(t + T ) = e−iεkT eig·ra	ka(t ), (16)

which undoes the unitary in Eq. (13) and makes Eq. (14)
invariant under t �→ t + T even for systems with sublat-
tice structure. Substituting the ansatz from Eq. (15) into the
Schrödinger equation yields

[εk − (m + λa)�]φka,m =
∑
n∈Z

∑
b

Hab
mnφkb,n, (17)

with Hab
mn = Hab

m−n, where

Hab
m−n = �

2π

∫ 2π/�

0
dt e−i(m−n+λa−λb)�tHab(k, t ) (18)

=
∑

r

e−ik·(r+rab) Hab
r

× �

2π

∫ 2π/�

0
dt e−i(m−n−g·r/2π )�t (19)

=
∑

r

e−ik·(r+rab) Hab
r δm−n,g·r/2π , (20)

where g · r/2π is an integer by definition. The Floquet Hamil-
tonian is then defined as

[HF (k)]ab
mn = �(m + λa)δmnδab + Hab

m−n(k), (21)

with HF (k)|φk〉 = εk|φk〉. Here the first term is interpreted
as the potential energy of a charge −e located at site r + ra.
Indeed, we have �(m + λa) = eE · (r + ra) for g · r = 2πm,
where �λa is a field-induced sublattice potential. The velocity
operator in Floquet representation is then given by

(∇kHF )ab
mn = −i

∑
r

(r + rab)e−ik·(r+rab)Hab
r δm−n,g·r/2π , (22)

which contains both intercell and intracell contributions in pe-
riodic gauge. Note that the Floquet quasienergies correspond
to the WS ladder [19,38,39]. Moreover, the quasienergy is flat
in the momentum direction parallel to the electric field. This
can be understood as the WS localization of Bloch states in a
static electric field [21]. Indeed, we notice that

H[k(t )] = H
(

k⊥ − t − t0
T

g
)

, (23)

with k⊥ = k − (k · g/g2)g such that k⊥ · g = 0 and t0 = T k ·
g/g2. Hence the momentum parallel to the electric field can
always be removed by shifting the origin of time, i.e., by
performing a gauge transformation of the vector potential,
such that εk = εk⊥ . Hence, the time-independent problem in
length gauge in D spatial dimensions is effectively mapped
to a time-dependent problem in velocity gauge in D − 1
spatial dimensions [34]. Equivalently, we have mapped the
physical direction of the electric field to a synthetic Flo-
quet dimension, which is possible only if the electric field
lies along a reciprocal-lattice vector. Finally, we note that
a similar approach was used in Refs. [40,41] to calculate
the Wannier-Stark ladder of the Rice-Mele chain and the
honeycomb lattice, respectively. In these works, the time-
independent equations in length gauge were solved with
generating functions. This results in a system of first-order or-
dinary differential equations, equivalent to the time-dependent
Schrödinger equation in velocity gauge.

C. Band projection, hybrid Wannier basis, and interband
corrections

While the orbital basis is best suited to study the
strong-field limit, e.g., with the Magnus expansion, a good
approximation of the WS ladder in the weak-field limit can be
obtained in the band basis (see Appendix C) by band projec-
tion. In a band-projected theory, one requires that the band Eks
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FIG. 1. Band-projected WS ladder for a two-band model with
energy bands ±Ek shown as the red and blue lines, respectively, and
where E · Aks = 0. The first Floquet zone (FZ) is shown in gray, and
the dashed lines mark the boundaries of the first few zones.

under consideration is energetically isolated from other bands,
and that the interband terms eE · Ass′ are small, where Ass′

(for s′ �= s) is the interband Berry connection [11,20,37,42]. In
this case, time evolution is treated adiabatically, and the band
index remains a good quantum number. The wave function in
velocity gauge is then approximately given by the instanta-
neous eigenstate times a phase modulation,

|	ks(t )〉 = aks(t )|uks(t )〉, (24)

with

aks(t ) = exp

{
−i
∫ t

0
dt ′[Eks(t

′) + eE · Aks(t
′)]
}
, (25)

where we set aks(0) = 1 and where Aks(t ) is the in-
stantaneous intraband Berry connection for band s. For
a commensurate electric field, the wave function satisfies
Eq. (16), and thus aks(t + T ) = e−iεksT aks(t ) with

εk⊥s,n = Ek⊥s + n� + eE · Ak⊥s, (26)

where [40,41]

Ek⊥s = �

2π

∫ 2π/�

0
dt Es(k − eEt ), (27)

Ak⊥s = �

2π

∫ 2π/�

0
dt As(k − eEt ) (28)

are, respectively, the average band energy and the Berry phase
along the field, which is also called the Zak phase [43]. The
latter gives the polarization, i.e., the Wannier center, along
the direction of the field [38]. This is illustrated in Fig. 1 for
the case of two bands. Here we work in a smooth periodic
gauge along the integration path such that Eq. (28) is well
defined. This gauge always exists regardless of the Chern
number of the band. While the Chern number is an obstruction
to a smooth gauge in the entire BZ, one can always construct

a smooth and periodic gauge along one compact direction
[36,44]. Indeed we can always shift the obstruction away from
the path {k⊥ + sg|0 � s < 1} via a gauge transformation of
the cell-periodic Bloch functions. Moreover, under a gauge
transformation that preserves periodic gauge, Eq. (26) is in-
variant modulo �Z since

eE ·
∫ T

0
dt ∇kϕ[k(t )] = −

∫ T

0
dt ∂tϕ(k − eEt ) (29)

= ϕ(k) − ϕ(k − g) ∈ 2πZ. (30)

However, a different choice of sublattice positions will cor-
respond to a different periodic gauge for the cell-periodic
Bloch functions. Indeed, the intracell coordinates enter the
band-projected theory only via the intraband Berry connec-
tion. Similarly, the sublattice positions also enter explicitly in
the Floquet theory [λa in Eq. (21)]. This is not too surprising
as a shift of the spatial origin changes the energy in the
presence of a uniform electric field. In this work, we always
use a periodic gauge where we choose the spatial origin such
that the intraband Berry connection is traceless (

∑
s Aks = 0).

An equivalent result for the band-projected WS ladder can
also be obtained in length gauge [11,38,42] or via the Bohr-
Sommerfeld quantization rule for Bloch oscillations [45,46].

The band-projected result in Eq. (26) has a simple in-
terpretation in terms of a hybrid momentum space and
Floquet-Wannier representation [31]. The first term gives the
on-site energy in the hybrid Wannier basis along the field
direction. The on-site term is the only nonzero term since the
momentum parallel to the field can be gauged away. This is
the WS localization. Obstructions to a global smooth gauge
do not preclude WS localization since it only entails states
that are exponentially localized along the field, which is al-
ways possible as discussed above. In this representation, we
see that both the position n along the field and k⊥ are good
quantum numbers. Indeed, the electrostatic energy associated
with cell r is given by eE · (r + rk⊥s) = n� + eE · Ak⊥s with
g · r = 2πn.

One can go beyond band projection and include interband
corrections to the WS ladder by solving the dynamics in band
basis up to second order in the interband matrix elements. The
result is derived in Appendix C and reads

εk⊥s,n = Ek⊥s + n� + eEi
(
Ai

k⊥s + eE jχ
i j
k⊥s

)
, (31)

where summation over repeated indices is implied, and

χ
i j
ks(t ) =

∑
s′ �=s

Ai
ss′ (k, t )A j

s′s(k, t )

Eks(t ) − Eks′ (t )
, (32)

with Ai
ss′ (k, t ) the instantaneous interband Berry connection

and where χ
i j
k⊥s is the (static) electric susceptibility. The

lowest-order interband correction thus gives a field-dependent
shift of the polarization. To our knowledge, the electric sus-
ceptibility of Bloch bands was first discussed in length gauge
in a 1955 paper by Kane [39] and has recently been recast
in the framework of quantum geometry [27], where it was
shown to give rise to an intrinsic nonlinear Hall effect when
both spatial inversion and time-reversal symmetry are broken.
If, moreover, the system conserves their combination, the
dominant intraband nonlinear Hall effect is absent because the
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FIG. 2. Schematic of the system (lattice in the presence of a
constant electric field E) coupled to a featureless bath that preserves
translational symmetry. Here λ is the system-bath coupling, and the
bath is characterized by a constant density of states ρ0, chemical
potential μ, and temperature T . The resulting scattering rate is given
by � = λ2ρ0.

Berry curvature vanishes. Recently, this effect was observed in
thin films of topological insulators with antiferromagnetic or-
der [47,48]. Since the susceptibility correction only shifts the
polarization, energy gaps in the WS ladder due to interband
transitions only arise at higher orders in the field. These results
are corroborated by a numerical diagonalization of the Floquet
Hamiltonian in the orbital basis, as we will demonstrate in
Sec. IV.

III. FLOQUET-KELDYSH TRANSPORT THEORY

In this section, we use Floquet-Keldysh theory to calculate
the steady-state current by coupling the system to a bath.
As far as we know, other approaches such as an equivalent
treatment in first quantization [49] or a master equation [50]
only studied the dynamics within a single band in the presence
of time-reversal symmetry. For simplicity, we consider a bath
that preserves translational symmetry, as illustrated in Fig. 2.
The steady-state current is defined as

j(t ) =
∫

k
Tr[ jk(t )ρk(t )] =

∑
a,b

∫
k

jab
k (t )ρba

k (t ), (33)

where

jab
k (t ) = −∂Hab[k + eA(t )]

∂A(t )
= −evab

k (t ) (34)

is the instantaneous current operator, and

ρab
k (t ) = 〈c†

kb(t )cka(t )〉. (35)

Here, a and b are orbital indices, vab
k (t ) = ∇kHab(k, t ), and∫

k ≡ ∫BZ dDk/(2π )D, with D the number of spatial dimen-
sions. Here the time dependence of the operators is written in
the Heisenberg picture with respect to the full time-dependent
Hamiltonian, which includes the bath and coupling between
system and bath.

We now rewrite the current in terms of the fermionic
steady-state lesser Green’s function [G<(k; t, t ′)]ab =
i〈c†

kb(t ′)cka(t )〉 in the orbital basis,

j(t ) = ie
∫

k
Tr[vk(t )G<(k; t, t )]. (36)

Note that in this section and afterwards, all Green’s functions
correspond to the coupled system where the system Hamilto-
nian is modified by a self-energy term describing coupling to
the bath. Since we are interested in the range of validity of

the band-projected theory, we also define the intraband and
interband contributions to the current:

jintra(t ) =
∑

s

jss(t ), (37)

jinter(t ) =
∑
s,s′
s �=s′

jss′ (t ), (38)

where s, s′ are band indices of the undriven system, and the
band-resolved currents are given by

jss′ (t ) = −e
∫

k
vss′

k (t )〈c†
ks(t )cks′ (t )〉 (39)

= ie
∫

k
Tr[Pks(t )vk(t )Pks′ (t )G<(k; t, t )], (40)

where we defined the instantaneous band projectors Pks(t ) =
|uks(t )〉〈uks(t )| and where the total current j(t ) = jintra(t ) +
jinter(t ). We prefer to use Eq. (40) over Eq. (39) since it is
more convenient to calculate the lesser Green’s function in
the orbital basis and use band projectors than it is to calculate
the lesser Green’s function in the band basis. Our next goal is
to rewrite the current in the Floquet basis. To this end, we first
define the Green’s function in frequency space,

G<(k; t, t ′) =
∫

ω

∫
ω′

G<(k; ω,ω′) eiωt e−iω′t ′
, (41)

where
∫
ω

≡ ∫ +∞
−∞ dω/2π . The modified Floquet ansatz of

Eq. (15) implies that

[G<(k; t + T, t ′ + T )]ab = e2π i(λb−λa )[G<(k; t, t ′)]ab, (42)

and therefore we must have ω − ω′ = (m + λb − λa)� with
m ∈ Z in Eq. (41). This structure imposes a discrete time-
translation symmetry that eliminates the transient behavior.
Hence,

[G<(k; t, t ′)]ab =
∑
m,n

∫ �

0

dω

2π

∫ �

0

dω′

2π
(G<)ab

mn(k; ω,ω′)

× ei[ω−(m+λa )�]t e−i[ω′−(n+λb)�]t ′
, (43)

where we defined

(G<)ab
mn(k; ω,ω′)

≡ G<[k; ω − (m + λa)�,ω′ − (n + λb)�] (44)

= 2πδ(ω − ω′)(G<)ab
mn(k, ω), (45)

with m and n Floquet indices, and where the last line follows
from Eq. (42). We can then write the equal-time lesser Green’s
function as [51]

[G<(k; t, t )]ab =
∑

m

∫
ω

(G<)ab
m0(k, ω)e−i(m+λa−λb)�t , (46)

where we used G<
mn(k, ω) = G<

m−n,0(k, ω − n�). We note that
while Ref. [51] obtains this result as the steady state of a
system with only Lorentzian broadening, the result applies to
more general Floquet systems such as the ones we consider
here. With this result, the current becomes

j(t ) = ie
∑
m,a,b

∫
k,ω

vab
k (t )(G<)ab

m0(k, ω)e−i(m+λa−λb)�t , (47)
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with the nth frequency component

j (n) = �

2π

∫ 2π/�

0
dt j(t ) ein�t (48)

= ie
∑

m

∫
k,ω

Tr[(∇kHF )nmG<
m0(k, ω)], (49)

where we used the definition of the Floquet Hamiltonian in
Eq. (18). However, for a static field, the steady state is static
and the ac response vanishes. This follows also from the fact
that a static electric field can be treated in length gauge with
a scalar potential giving a time-independent problem with
a static steady state. Hence, even though the semiclassical
trajectories are periodic [1,11], there is no net ac response at
long times compared to the relaxation rate 1/�. Indeed, in the
steady state the density matrix of the WS ladder is completely
diagonal such that interladder coherences are absent, resulting
in a purely dc response. To obtain an ac response, one requires
both a static and oscillating component of the electric field
[5,24]. Since we consider a static field (∂tE = 0), the steady-
state current is therefore static [ j(t ) = j] regardless of �/�.
We show this explicitly in Appendix E 2 for a simple chain in
one spatial dimension, for which one can obtain a closed-form
expression for the current.

The band-resolved currents become

jss′ = ie
∑

m

∑
l,l ′

∫
k,ω

Tr[(PFs)0l (∇kHF )ll ′ (PFs′ )l ′mG<
m0(k, ω)],

(50)

with projectors in the Floquet basis

(PFs)ab
mn = �

2π

∫ 2π/�

0
dt Pab

ks (t )e−i(m−n+λa−λb)�t , (51)

where we suppressed the momentum index on the left-hand
side.

So far, we have assumed that the system reaches a steady
state. To achieve this, we couple the system to a bath and
calculate the lesser Green’s function G< within the Keldysh
formalism [52]. The details of the bath and the Keldysh cal-
culation are given in Appendix D and yield

G< = GR�<GA, (52)

where GR and GA = (GR)† are the retarded and advanced
Green’s functions, and

�< = �A − �R + �K

2
(53)

is the lesser self-energy that takes into account the coupling
of the system to the bath, where �R, �A, and �K are the re-
tarded, advanced, and Keldysh self-energies, respectively. We
emphasize that the Green’s functions of the coupled system
are obtained in terms of the bare Green’s functions of the
disconnected system and the system-bath coupling. The cor-
responding self-energies for wide-band fermionic and bosonic
baths are given below. Additionally, we note that the electric
field already enters in the bare system Hamiltonian through
the dependence k(t ) = k − eEt .

We now introduce a simple model for the bath that retains
translational symmetry by coupling each unit cell to its own

bath in thermal equilibrium [52,53]. In this case, the Green’s
functions

GR/A
mn (k, ω) = [ω1 − HF (k) − �R/A]−1

mn (54)

in the Floquet basis. Moreover, for simplicity we consider an
ideal bath by taking a constant density of states ρ0 (wide-band
limit) and a constant coupling λ between the system and the
bath [49,54]; see Fig. 2. For an ideal bath, the self-energies in
the Floquet basis take the form

(�+)ab
mn =

(
(�K

+ )ab
mn (�R

+)ab
mn

(�A
+)ab

mn 0

)
(55)

= −i�δmnδab

(
1 + 2 f 0

+[ω − (m + λa)�] 1
2

− 1
2 0

)

(56)

for an ideal bosonic bath (e.g., phonons), or

(�−)ab
mn =

(
(�R

−)ab
mn (�K

− )ab
mn

0 (�A
−)ab

mn

)
(57)

= −i�δmnδab

(
1
2 1 − 2 f 0

−[ω − (m + λa)�]

0 − 1
2

)

(58)

for an ideal fermionic bath (i.e., leads attached to each site).
Here we defined � = λ2ρ0, whose role could alternatively
have been played by a disorder-averaged scattering rate � =
1/τ [55], and f 0

±(ω) = 1/[eβ(ω−μ) ∓ 1] is the equilibrium dis-
tribution for fermions and bosons, respectively, with inverse
temperature β and chemical potential μ. The diagonal com-
ponents in Eqs. (58) and (56) give the retarded and advanced
self-energies induced by the bath, and the Keldysh component
reflects the fluctuation-dissipation theorem for the bath: �K =
(1 ± 2 f 0

±)(�R − �A) [53,56,57]. Putting everything together,
we obtain

(�<
± )ab

mn = ∓i�δmnδab f 0
±[ω − (m + λa)�]. (59)

We note that Eq. (59) coincides for an ideal bosonic or
fermionic bath in the low-temperature limit, since f 0

+(ω) =
− f 0

−(ω) when β|ω − μ| becomes large. Combining Eqs. (50)
and (59), we finally obtain for the band-resolved currents

jss′ = ± e�
∑
m,m′

∑
l,l ′

∫
ω,k

Tr
[
(PFs)0l (∇kHF )ll ′ (PFs′ )l ′m′

× GR
m′m(ω, k)F0

±(ω − m�)GA
m0(ω, k)

]
, (60)

with [F0
±(ω − m�)]ab = δab f 0

±[ω − (m + λa)�]. While the
frequency integral can be done analytically by using the
single-particle Lehmann representation of the Floquet Green’s
functions GR/A, we find in practice that it is faster to per-
form the frequency integral numerically, where we ensure
convergence by taking a step size of �/2, which is below
the energy resolution of the Green’s functions. Nevertheless,
the analytical results are useful in certain cases. For example,
in Appendix E 1 we conclusively show that in the zero-
temperature limit, while also keeping β� fixed such that the
coupling to the bath is also taken to zero, the ideal bosonic and
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fermionic bath both yield the same results. For this reason, we
will only consider a fermionic bath in the remainder of the
paper.

IV. EXAMPLES

In this section, we calculate the current in response to a
static electric field up to nonperturbative order for noninter-
acting electrons coupled to an ideal fermionic bath with the
Floquet quantum theory. We start with a one-band model
in D = 1 spatial dimensions for which the current can be
obtained analytically in a closed-form expression. We then
consider the effect of Landau-Zener tunneling with a two-
band model in D = 1. Finally, we consider a two-band model
in D = 2 on a honeycomb lattice, for which we closely inves-
tigate the quantum-geometric transverse response.

A. Examples in D = 1

1. Simple chain

We first consider a chain with a single orbital per site in
D = 1 spatial dimensions with lattice constant a and nearest-
neighbor hopping J . In this case,

H(k, t ) = 2J cos (ka − �t ), (61)

with � = eEa. The quasienergies are obtained from

ε − n�

J
φkn = e−ikaφk,n−1 + eikaφk,n+1. (62)

If we substitute φkn = e−iknaϕn, we find normalizable solu-
tions for ε = m�,

m − n

J/�
ϕn = ϕn−1 + ϕn+1, (63)

which is the recurrence relation for Bessel functions. The
solution is thus given by

φkn = e−iknaJm−n(2J/�), (64)

and for ε = 0 the wave function is given by

	k (t ) =
∑

n

ein(ka−�t )Jn(2J/�) (65)

= e2iJ sin(ka−�t )/�, (66)

which can also be obtained from directly integrating the
Schrödinger equation. Moreover, the corresponding Floquet-
Wannier function centered at the origin is [31]

Wm(t ) = a

2π

∫ 2π/a

0
dk 	k (t )e−ikma (67)

= e−im�t Jm(2J/�), (68)

whose spread is (�x)2 = 〈x2〉 − 〈x〉2 = 2(Ja/�)2. Here we
used J−m(z) = (−1)mJm(z) for real z and the generating
function for Bessel functions. This coincides with the period-
averaged spread of the semiclassical trajectory, which for
k(0) = 0 reads x(t ) = x(0) + (2Ja/�)[cos(�t ) − 1]. Alter-
natively, we can understand this in terms of a Floquet-induced

FIG. 3. Convergence of the current for the simple 1D chain cou-
pled to an ideal fermionic bath. Steady-state current for the simple
chain at half-filling with βJ = 50 and �/J = 0.1 for different num-
bers of Floquet sidebands as indicated. We only show the current
for E = E x̂ with E > 0 since inversion symmetry yields j(−E ) =
− j(E ). The solid line gives the semiclassical result [see Eq. (B16)].
Here we do not show the exact result (see Appendix E 1) as it is
indistinguishable from the converged numerical result.

quantum metric that bounds the spread of the Wannier func-
tion:

g =
∑

n

[|∂kφkn|2 − (φ∗
kni∂kφkn)2]. (69)

We now consider the current j(E )x̂ for E = E x̂. Since
there is only a single band in this case, the results for the
simple chain are somewhat trivial. Therefore, we will use the
one-band problem to demonstrate convergence as we take into
account more Floquet modes in the Floquet-Keldysh calcula-
tion. This is shown in Fig. 3 for an ideal fermionic bath, where
we plot the current as a function of �τ = eEa/� (by fixing
�/J and varying eEa/J) for different numbers of Floquet
sidebands. Here we only consider positive values for eEa/J
because 1D inversion symmetry (x �→ −x) gives j(−E ) =
− j(E ). We find that convergence is reached for NF ∼ 100,
where NF is the dimension of the Floquet Hamiltonian used
in the numerical calculation. In general, one requires more
Floquet modes to reach convergence when �/J � 1 since
there are many overlapping Floquet replicas in this case. In the
opposite limit, we have �/J � 1 such that the Floquet repli-
cas are well separated and few Floquet modes are required to
reach convergence.

Apart from small oscillations that appear for eEa/� > 1,
we see that the converged current coincides almost perfectly
with the semiclassical theory. This is to be expected since
band projection is exact if there is only one band. Finally, we
find that the oscillations are suppressed when � is reduced.
Contrary to the semiclassical theory, the current is thus gen-
erally a function of both � and � separately. Using the exact
closed-form expression of the current for an ideal fermionic
and bosonic bath, we find that the oscillations are more pro-
nounced in the bosonic case and vanish upon decreasing �

(see Appendix E 2). However, reducing � increases the num-
ber of Floquet sidebands required to reach convergence, as we
need smaller � to obtain the same eEa/�.
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FIG. 4. WS ladder of the 1D Rice-Mele chain. (a) Illustration
of the RM model. The dashed rectangle gives the unit cell, and the
hopping amplitudes and on-site energies are indicated. (b) WS ladder
for Eg = 2. (c) WS ladder for Eg = 1. Parameters are shown in units
of J . The thin red and blue lines give the band-projected result for the
conduction and valence band, respectively, and black lines give the
quasienergy in the FZ, demarcated by dashed lines, obtained from
diagonalizing the Floquet Hamiltonian numerically.

2. Rice-Mele chain

To address the role of interband Landau-Zener transitions,
we need to consider a multiband system. For simplicity, we
study a two-band model,

H(k) = d0(k)σ0 + d(k) · σ, (70)

where σ0 is the 2 × 2 unit matrix and σ = (σx, σy, σz ) are the
Pauli matrices. The energy bands are given by Eks = d0 + sd ,
with s = ±1 the band index and d = |d|. Specifically, we
consider the Rice-Mele (RM) dimer chain [58] illustrated in
Fig. 4(a) with

d0 = 0, d =

⎡
⎢⎣

2J cos
(

ka
2

)
−2δ sin

(
ka
2

)
�

⎤
⎥⎦, (71)

where a is the lattice constant, and we set J = 1. Here 1 ± δ

is the intracell/intercell hopping amplitude, respectively, and
� is a sublattice bias potential. We further choose sublat-
tice positions xA/B = ±a/4, which fixes the periodic gauge:
uk+2π/a,σ = e−i2πxb/aukσ (σ = A, B), or explicitly,

|uks〉 = eika/4

√
2(1 + sn3)

(
n3 + s

n1 + in2

)
, (72)

with n = d/d and which together with d0 = 0 results in a
symmetric quasienergy spectrum. This gauge is smooth ev-
erywhere, i.e., ψk (xa) = eikxa uka is smooth and periodic, since
n3 never equals −s.

To calculate the WS ladder, we send k �→ k − eEt and
construct the Floquet Hamiltonian where we gauge away the
momentum with the unitary transformation

(Uk )mn = eika(mσ0+σz/4)δmn, (73)

such that the two bands in the first Floquet zone (FZ) are flat,
although their splitting varies with �. The Floquet spectrum
is obtained from [40]

[ε − (m + λA)� − �]ϕAm = (1 + δ)ϕBm + (1 − δ)ϕB,m−1,

(74)

[ε − (m + λB)� + �]ϕBm = (1 + δ)ϕAm + (1 − δ)ϕA,m+1.

(75)

In the molecular dimer limit δ → 1, there is an exact solution
with quasienergy

lim
δ→1

ε±,n = n� ±
√

4 + (�
4 − �

)2
, (76)

giving the usual Stark ladder of a dimer of length a/2 centered
at position x = na. A similar result holds for δ → −1, but now
the dimers are centered at x = (n + 1/2)a. For the general
case, we diagonalize HF numerically. Some results are shown
in Fig. 4, where we take both a large and small energy gap
Eg relative to the range of field strengths that we consider. In
Fig. 4(b), we take Eg = 2 such that interband coupling is weak
and the dominant effect comes from the electric susceptibility,
giving rise to a shift of the WS ladder that scales linearly with
the field:

ε±,n = n� ±
[

d +
(
A
a

+ χ

a2
�

)
�

]
+ O(�3), (77)

with

χks(t ) = [∂kn(k, t )] · [∂kn(k, t )]

8sd (k, t )
(78)

for a two-band model. In this case, χ is given by the quan-
tum metric divided by the energy gap. This makes sense as
the quantum metric determines the spread of the maximally
localized Wannier state. Increasing the spread thus results in
a larger electrostatic potential difference across the support
of the Wannier state and hence to an increase in the electric
susceptibility. The band-projected result is recovered from the
linear in � part of Eq. (77) and shown as the thin lines in
Fig. 4, while the full result of Eq. (77) containing the lowest-
order interband coupling is compared to the numerical results
in Fig. 5. We see that the shift induced by the susceptibility
matches perfectly the numerical results. This matching be-
comes less good when we decrease the energy gap or increase
the field strength, both of which increase the magnitude of
interband matrix elements. For the RM chain, we explicitly
find

d =
√

4 + �2E
[

4−4δ2

4+�2

]+ √
4δ2 + �2E

[
4δ2−4

4δ2+�2

]
π

, (79)

with E (k) = ∫ π/2
0 dθ

√
1 − k sin2 θ the complete elliptic inte-

gral of the second kind, and

A
a

= sgn(δ) − 1

4
− δ��

[
1 − δ2, 4−4δ2

4+�2

]
2π

√
4 + �2

(80)

in periodic gauge, and our choice of sublattice positions
where �(n, k) = ∫ π/2

0 dθ/[(1 − n sin2 θ )(1 − k sin2 θ )1/2] is
the complete elliptic integral of the third kind. We further
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FIG. 5. Electric susceptibility. (a) Comparison between the nu-
merical results (black lines) and the analytical result beyond band
projection (thin purple lines) up to second order in the field, which
includes the polarization correction arising from interband transitions
for the RM chain with the same parameters as in Fig. 4(b). We only
show the numerical result in the FZ, which is demarcated by dashed
lines. (b) Electric susceptibility χ for the RM chain.

obtain

χ

a2
= (8 + 8δ2 + �2)E

[
4−4δ2

4+�2

]− (4δ2 + �2
)
K
[

4−4δ2

4+�2

]
48π

√
4 + �2(4δ2 + �2)

,

(81)

where K (k) = ∫ π/2
0 dθ/

√
1 − k sin2 θ is the complete elliptic

integral of the first kind. On the other hand, when the energy
gap becomes sufficiently small relative to the electric field,
higher-order interband Landau-Zener transitions induce gaps
in the WS ladder. This can be seen in Fig. 4(c) for Eg = 1.
Now there is significant band mixing and a large Landau-
Zener gap opens up as the field strength increases.

We proceed to consider the band-resolved currents for the
RM chain. To this end, we need the instantaneous band pro-
jectors. In general, for a two-band model as given by Eq. (70),
these are given by

Pks(t ) = 1
2 [σ0 + sn(k, t ) · σ]. (82)

Results for the currents for the same parameters as shown in
Figs. 4(b) and 4(c) for the WS ladders are shown in Figs. 6(a)
and 6(b), respectively. We note that the effect of the field-
induced polarization shift cannot be seen in the transport
calculation since in all cases considered there is a cancellation
due to time-reversal or spatial inversion symmetry. For small
fields eEa/� � 1, the system evolves adiabatically, leaving
the current predominantly intraband. In this regime, we find
perfect matching to the semiclassical result. For large fields,
on the other hand, interband transitions become important,
and the current deviates from the semiclassical result. We find
that the peaks in the current correspond to the avoided cross-
ings in the WS ladder (see Fig. 4) where the Landau-Zener
transition rate is maximal. As expected, these Landau-Zener
resonances in the current become larger in magnitude when
the energy gap Eg is small relative to the electric field. As a

FIG. 6. Current for the RM chain. (a),(b) Band-resolved currents jss′ for the RM chain for two different choices of δ and �. The
corresponding energy bands are shown in the inset. Here we choose the chemical potential μ so that the lower band is half-filled. The
semiclassical result is plotted as a black dashed line. (c),(d) The total current for different fillings ν of the lower band. In all plots, we set
β = 50 and � = 0.1, where energy is measured in units of J .
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FIG. 7. Honeycomb lattice. (a) Illustration of the honeycomb
lattice. The dotted diamond is the unit cell, and the nearest-neighbor
(solid), next-nearest-neighbor (dashed) hopping amplitudes, and on-
site energies are indicated. Here t ′ = 2�1/(3

√
3), and we only show

the next-nearest-neighbor hopping for sublattice A; it has an oppo-
site sign for sublattice B. (b) Some commensurate field directions
g = m1g1 + m2g2 considered in this work are shown with juxtaposed
coordinates m1m2, where the overline indicates a minus sign. Here
the small orange hexagons are the BZs in the extended zone scheme,
and the large black hexagons correspond to different stars.

function of the filling ν of the bottom band, we further find
that while the current for small fields is maximal near half-
filling, the current for large fields peaks for a fully filled bottom
band. This is shown in Figs. 6(c) and 6(d). We attribute this to
the fact that since the Landau-Zener transitions are driven by
the interband Berry connection, which is largest in magnitude
near the top of the lower band, the interband current is greatest
when the states near the top of the band are filled. Otherwise,
the field has to first drive a significant population to the top
of the band on a timescale smaller than the relaxation rate. A
rough estimate of the validity of the band-projected theory in
the strong-field regime can be obtained by demanding that the
lowest-order interband correction is small:

E2
g

W
∼ a2Eg

|Ainter|2 � � � �, (83)

where W is the bandwidth. A similar bound can be found
from semiclassical considerations [11,12,59]. Note that we
have four relevant energy scales in our problem: the energy
gap Eg, the bandwidth W , the electrostatic energy eEa, and
the system-bath coupling �.

B. Example in D = 2: Honeycomb lattice

In two spatial dimensions, a general commensurate electric
field is parametrized by a pair of coprime integers (m1, m2),

E = E
g0

m1g1 + m2g2√
m2

1 + m2
2 − m1m2

, (84)

where g1,2 are primitive reciprocal-lattice vectors with length
g0 = |g1,2| and gi · a j = 2πδi j . As a concrete example, we
consider s or pz electrons hopping on a honeycomb lattice
with nearest-neighbor hopping amplitude J = 1, sublattice
bias �0, and Haldane mass �1 [60], as illustrated in Fig. 7.
We choose primitive lattice vectors a1,2 = a(±1/2,

√
3/2)

with a the lattice constant and reciprocal vectors

g1,2 = g0(±√
3/2, 1/2) with g0 = 4π/

√
3a. The Bloch

Hamiltonian in periodic gauge is then given by

H(k) =
[
�0 + �1γ (k) f (k)

f (k)∗ −�0 − �1γ (k)

]
= d · σ, (85)

with d1 − id2 = f , d3 = �0 + �1γ , and

f (k) = eik·(rB−rA )(1 + eik·a1 + eik·a2 ), (86)

γ (k) = 2

3
√

3
(sin k · a1 − sin k · a2 − sin k · a3), (87)

with a3 = a1 − a2. For concreteness, we take rA/B =
(0,±a/2

√
3) for the sublattice positions, which fixes the pe-

riodic gauge. One possibility is given by

|uk±〉 = e−ik·rA

√
2(1 ± n3)

(
n3 ± 1

n1 + in2

)
(88)

for states with energies ±d , respectively, where d = |d| and
n = d/d . This choice gives a traceless intraband Berry con-
nection. Note that this gauge is smooth everywhere except
at the zone corners when 1 ± n3 = 0, which is the case for
sgn(�0 + τ�1) = ∓1, where τ = ±1 at the K and K ′ points,
respectively [see Fig. 7(b)]. We can try to remove this singu-
larity with the gauge transformation

|ũk±〉 = ± n1 − in2√
n2

1 + n2
2

|uk±〉 (89)

= e−ik·rA

√
2(1 ∓ n3)

(
n1 − in2

±1 − n3

)
, (90)

which is now smooth except at the zone corner where
sgn(�0 + τ�1) = ±1. Therefore, when |�1/�0| < 1, one
can remove all singularities and obtain a smooth gauge by
appropriately choosing either |uk±〉 or |ũk±〉. However, for
|�1/�0| > 1, the gap is inverted between K and K ′ and the
gauge transformation only moves the singularity from one
zone corner to the other. Moreover, taking a superposition
of |uk±〉 and |ũk±〉 allows one to place the singularity at
an arbitrary point in the BZ. This obstruction to a global
smooth gauge is of course due to the finite Chern number
for |�1/�0| > 1, which by Stokes’ theorem is given by the
winding of the gauge transformation in Eq. (89) around the
singularity [61]. Note that in the trivial phase if we choose to
take the gauge with a singularity at both K and K ′, the net
winding number vanishes. Care is taken in band basis to avoid
spurious results due to these singularities.

Next, we discuss the symmetries of the honeycomb model
in the presence or absence of the sublattice mass �0 and the
Haldane mass �1. For �0 = �1 = 0, the model has time-
reversal symmetry T and point group D6h = C6v × σh with
C6v = 〈C6z,Mx〉, where C6z is a sixfold rotation about the z
axis, Mx : x �→ −x is the in-plane mirror with respect to the
x axis, and σh is the mirror with respect to z. Since we already
fixed the symmetry of the orbitals with respect to σh, we can
restrict ourselves to C6v . A finite sublattice potential �0 breaks
C2z symmetry, i.e., inversion symmetry when restricted to the
plane, which reduces the point group to C3v = 〈C3z,Mx〉. On
the other hand, a finite Haldane mass �1 breaks T symmetry
and all mirrors, allowing for a finite linear Hall response,
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FIG. 8. WS ladder of the honeycomb lattice in the trivial phase
for (�0, �1) = (0.5, 0). (a) WS ladder in the FZ for (m1, m2) =
(1, 0). The solid (dashed) curves give the crossings in the ladder
at zero (edge of the FZ) as calculated in band basis up to second
order. We only show positive quasienergies since the spectrum is
symmetric in traceless gauge. (b) Projected Berry phase (Wannier
center) for the two bands, and (c) susceptibility χ k⊥s = sχ k⊥ as a
function of k⊥ for the field in (a). (d) WS ladder, (e) Berry phase,
and (f) susceptibility for (m1, m2) = (1, −1). In this case, the Berry
phase vanishes because the field lies perpendicular to a mirror line.

but �1 conserves C2z symmetry as well as combinations of
mirrors and time reversal such as MxT . This gives rise to the
magnetic point group 6mm, which is also denoted as C6v (C6)
[62]. In the presence of both mass terms, the magnetic point
group is given by 3m or C3v (C3).

We now consider the WS ladder of the honeycomb model
[63]. To this end, we introduce the dimensionless momentum
k⊥ normal to the field direction g such that a general momen-
tum can be written as

k = k‖g + k⊥ẑ × VBZg/g2, (91)

where we choose a rectangular Brillouin zone with k‖, k⊥ ∈
[−1/2, 1/2) and VBZ = 8π2/

√
3a2. In Fig. 8(a) we show the

WS ladder for (m1, m2) = (1, 0), i.e., the armchair direction,
as a function of the field strength E and k⊥ in the trivial
phase. Here we only show positive quasienergies in the FZ
as the spectrum is symmetric in the traceless gauge. We see
that the crossings in the ladder disperse as a function of k⊥
which is mainly due to the change in the center of the hybrid
Wannier state. This is evident from the evolution of the Berry
phases (equivalent to the Wilson loop spectrum because the
bands do not cross) shown in Fig. 8(b). Note that there is
no net pumping of the Wannier center in the trivial phase
as expected. We have also superimposed on the WS ladder
the crossings obtained in band basis up to lowest order in
interband corrections by taking into account the susceptibility.

FIG. 9. WS ladder of the honeycomb lattice in the Chern phase
for (�0, �1) = (0, 0.5). (a) WS ladder in the FZ for (m1, m2) =
(1, 0). The solid (dashed) curves give the crossings in the ladder at
zero (edge of the FZ) as calculated in band basis up to second order.
We only show positive quasienergies since the spectrum is symmetric
in traceless gauge. (b) Projected Berry phase (Wannier center) for the
two bands, and (c) susceptibility χ k⊥s = sχ k⊥ as a function of k⊥ for
the field in (a). (d) WS ladder, (e) Berry phase, and (f) susceptibility
for (m1, m2) = (1, −1).

The latter is shown in Fig. 8(c) and peaks when the integration
path cuts across the zone corners where gi j/2d is maximal. We
also show the WS ladder for a field along the zigzag direction
(m1, m2) = (1,−1) in Fig. 8(d). In this case, the Berry phase
vanishes because the field lies perpendicular to a mirror line
[the y axis in Fig. 7(a)] and therefore the projected Wannier
center is pinned at the origin. This is why the ladder is much
less dispersive. Furthermore, the susceptibility correction is
now largest at k⊥ = 0 since this is where both zone corners
are projected on top of each other.

The WS ladder is qualitatively different when the Chern
number C is finite, since the Berry phase winding as k⊥ ad-
vances one unit is by definition given by C [32,64]. In our
case, we have C = ±1 such that during one cycle the Wannier
center moves one cell over: n �→ n ± 1. This can be observed
in the WS ladder which is shown for (m1, m2) = (1, 0) in
Fig. 9(a) and can be explicitly seen from the Berry phase
winding shown in Fig. 9(b). Following the crossings in the WS
ladder from k⊥ = −1/2 to k⊥ = 1/2, we end up at a different
field value from the one we started from due to the shift of the
Wannier center. Changing the sign of �1 reverses the pump
and the corresponding shift in the WS ladder. A similar effect
occurs in Weyl semimetals where the Weyl charge acts as a
topological defect in the WS ladder [46].

We next consider the current response. Before we proceed
to the results, we first address how the current is constrained
by the crystalline symmetries. Under a spatial symmetry S ,
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the current transforms as j(E ) = S j(S−1E ). This motivates
us to define the longitudinal and transverse current compo-
nents as

j‖ = Ê · j, j⊥ = ẑ × Ê · j, (92)

which, respectively, transform as a scalar and pseudoscalar
under S . Next, in order to make sense of the results obtained
with the full quantum theory, we construct linear combi-
nations of the currents that transform in the same way as
their band-projected counterparts in the adiabatic theory (see
Appendix B). Note that these current components generally
contain interband contributions, but in the limit E2

g /W � �

they become purely intraband. Other parts of the current that
do not transform as intraband currents are then attributed
solely to interband corrections. On the computational side,
we consider commensurate fields E = Eg/g = E (cos θ, sin θ )
up to |g| = √

73 g0 in the range θ ∈ [−π/3, π/3]. This is
sufficient to reconstruct the entire angular dependence of the
current from the lattice symmetries.

In particular, we consider magnetic symmetries ST and
define the even and odd components with respect to this
symmetry as follows:

j±(E ) ≡ j(E ) ± S j(−S−1E )

2
, (93)

such that j+ transforms as the intraband geometric current
due to the Berry curvature, while j− transforms as the Bloch
current originating from the dispersion, which is a Drude-type
contribution (see Appendix B). Hence, the longitudinal part
of j+ is purely interband. For example, when C2z is broken
but T is conserved (�1 = 0), we choose S = 1. We illustrate
this case with the current roses [12] in Fig. 10 for �0 = 0.5
and �1 = 0. The nodes in the transverse response are due
to the presence of the mirror symmetry Mx, which forbids
a transverse response when the field lies along a mirror line,
given here by the y axis and its C3z partners.

We also observe that the odd current components, which
are mainly due to intraband Drude-like contributions, display
a maximum [5]. Indeed, at low fields j−‖ is isotropic and
increases linearly (Ohm’s law). With increasing field strength,
the current becomes more anisotropic as the entire energy
band is probed by the accelerated electrons, and attains an
extremum for eEa/� ∼ 1. In this regime, complete Bloch
orbits occur before a scattering event and the current decays as
1/E until interband transitions become significant. The latter
give rise to many oscillations from Landau-Zener resonances
whose details are captured by the WS ladder. However, as
long as interband contributions are small near eEa/� ∼ 1, the
longitudinal differential conductance d j‖/dE becomes nega-
tive over an extended range [3]. This is illustrated in Fig. 11,
where we show both the current and the differential conduc-
tance for the field direction θ = 0◦ [(m1, m2) = (1,−1)] for
several fillings of the lower band. Generally, we observe that
interband contributions become larger as the filling increases.
This makes sense because electrons in the lower band that
have a higher Fermi energy are more likely to reach the band
edge, where interband coupling is stronger, before intraband
relaxation can occur. Note also that the current calculated
with the quantum theory is not fully converged for very small

FIG. 10. Current roses for the honeycomb lattice in the trivial
phase with C3v and T symmetry at half-filling of the lower band.
Parameters are β = 50 and � = 0.1 with masses (�0,�1) = (0.5, 0)
such that T is preserved. Even and odd components for S = 1 are
shown. Starting from j+‖ and going clockwise, radial ticks are spaced
by 0.002, 0.004, 0.025, and 0.01 in units of eJ/h̄a. The odd compo-
nents are nonzero because �0 breaks C2z symmetry. The maximum
number of Floquet sidebands is NF = 1122. Note that the current is
not fully converged for the smallest field shown.

fields. This is most clearly seen in Fig. 11(b) by comparison
to the semiclassical result, which becomes exact in the limit
E → 0.

Moreover, the transverse differential conductance, shown
in Fig. 11(d), which is purely geometric for θ = 0◦ when
interband coupling is negligible, is cubic at low fields due to
a Berry curvature hexapole in the presence of C3z but broken
C2z [12,65] and shows a peak for eEa/� ∼ 1 indicative of the
incipient plateau in the geometric current. However, unlike in
the band-projected theory, the plateau itself is never reached
for the chosen parameters because of interband coupling.
Hence, the extremum in the transverse differential conduc-
tance at the onset of full Bloch orbits provides a more robust
signature of the nominal plateau due to geometric oscillations
in the band-projected theory.

On the other hand, when C2z is conserved, only even cur-
rent components with respect to S = 1 are nonvanishing such
that the above distinction becomes superfluous. Instead, we
decompose the current with S = Mx since MxT is always
conserved regardless of the sublattice or Haldane masses.
This is shown in Fig. 12 for the case with 6mm symmetry
in the Chern phase where we take �0 = 0 and �1 = 0.5.
While the pure interband component j+‖ and the odd com-
ponents with respect to MxT are qualitatively the same
as the components defined with respect to T for the case
with C3v and T symmetry (see Fig. 10), the transverse even
component j+⊥ looks very different. This is because of the
finite Chern number, which gives rise to a dominant linear
contribution to the current that is isotropic and given by
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FIG. 11. Currents vs filling for the honeycomb lattice in the
trivial phase with C3v and T . The left and right columns show results
for the quantum and band-projected semiclassical theory, respec-
tively. Parameters are β = 50 and � = 0.1 for E = E x̂ (θ = 0◦) with
masses (�0, �1) = (0.5, 0) such that T is preserved. (a) Current
component j−‖ for S = 1 and (b) the corresponding differential con-
ductance. Other components vanish for θ = 0◦. (c),(d) Same for the
transverse even part j+⊥ . The color gives the filling of the lower band
(ν = 0.1, 0.2, . . . , 0.9) and NF = 562.

(e2E/Vch̄)
∑

r f 0
r �−r = (e2VcE/2πh)

∫
BZ d2k f 0

k �k, which is
the Hall conductance. We note that in Fig. 12, the seemingly
nonlinear bunching at small fields for j+⊥ is due to our choice
for the E grid, which has twice the number of points for
|eEa/�| � 1.2.

Finally, we consider the case with 3m symmetry for which
both C2z and T are broken. Here we consider the trivial
phase with �0 = 0.75 and �1 = 0.25. Similar to before, since
MxT remains conserved, we decompose the current in terms
of even and odd components with respect to this symmetry.
Since both T and C6z are broken, the current roses shown in
Fig. 13 only retain C3z symmetry. Moreover, the even trans-
verse component that is due to the Berry curvature in the
intraband limit now contains both contributions from broken
C2z (�0) and broken T (�1) which have a different angular
dependence such that they either add or subtract giving rise to
the j+⊥ rose shown in Fig. 13. We further note that because C2z

and T are both broken in this case, interband contributions
are generally more important. This is because the lowest-
order interband contribution to the current, i.e., due to the
electric susceptibility, vanishes in the presence of either of

FIG. 12. Current roses for the honeycomb lattice in the Chern
phase with 6mm symmetry at half-filling of the lower band. Param-
eters are β = 50, � = 0.1 with (�0, �1) = (0, 0.5) such that C2z

is preserved. Even and odd components for S = Mx are shown.
Starting from j+‖ and going clockwise, radial ticks are spaced by
0.0004, 0.014, 0.025, and 0.01 in units of eJ/h̄a. The maximum
number of Floquet sidebands is NF = 1122. Note that the current
is not fully converged for the smallest field shown.

FIG. 13. Current roses for the honeycomb lattice in the trivial
phase with 3m symmetry at half-filling of the lower band. Parameters
are β = 50, � = 0.1 with (�0, �1) = (0.75, 0.25) such that T is
broken. Even and odd components for S = Mx are shown. Starting
from j+‖ and going clockwise, radial ticks are spaced by 0.0011,
0.003, 0.025, and 0.014 in units of eJ/h̄a. The maximum number
of Floquet sidebands is NF = 1002. Note that the current is not fully
converged for the smallest field shown.
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these symmetries [27]. It would be interesting to study the
current nonperturbatively for a system that has broken C2z

(or P = MzC2z) and T symmetry but still conserves their
combination C2zT such that the Berry curvature vanishes. In
this case, the even current component j− (not just the longi-
tudinal part) is entirely due to interband coupling. Moreover,
at order E2, this response yields a measure for the quantum
metric of the occupied band [27,47,48]. However, this would
require a lattice model that is either strongly anisotropic or has
more than two bands, and therefore we leave this for future
work.

V. CONCLUSIONS

In this work, we considered the full quantum theory of the
electric current response to a static uniform electric field of
noninteracting fermions on a lattice in the regime of Bloch
oscillations (ωBτ � 1). As such, our theory is nonperturbative
in the interband coupling. We achieve this by first mapping the
physical time-independent problem in D spatial dimensions
to a time-dependent problem in D − 1 spatial dimensions
by treating the field in temporal gauge. In this gauge, the
longitudinal momentum becomes a gauge degree of freedom
which can be absorbed in the time origin. Moreover, when the
electric field is commensurate to the lattice, i.e., when it lies
along a reciprocal-lattice vector (equivalently perpendicular to
a lattice plane), Bloch oscillations in the semiclassical theory
become periodic and likewise the Bloch Hamiltonian in the
quantum theory becomes time-periodic up to a unitary trans-
formation. The latter is a consequence of working in periodic
gauge for the total Bloch wave function and properly takes
into account the sublattice positions. By using a modified
Floquet ansatz, one obtains a problem in D − 1 spatial dimen-
sions with an additional synthetic Floquet dimension that can
be interpreted as the spatial direction that lies longitudinal to
the commensurate electric field. The corresponding Floquet
quasienergies then yield the familiar Wannier-Stark ladder
beyond the single-band approximation.

To obtain the current, we coupled the system to a reservoir
using the Floquet-Keldysh Green’s function formalism. For
simplicity, we considered a reservoir that conserves the peri-
odicity of the lattice in the wide-band limit. In this case, the
self-energy due to the bath is diagonal in momentum space
and Floquet space yielding a relatively simple expression for
the current. Moreover, in order to study the onset of interband
contributions to the current, we also derived expressions for
the band-resolved currents using the Floquet representation
of band projectors. We then used this formalism to study the
current response in D = 1 and 2 spatial dimensions.

In 1D for a single-band model, we find nearly perfect
agreement with the band-projected semiclassical theory apart
from small oscillations related to the nature of the bath and
which vanish in the limit �/W → 0, where W is the band-
width and � is the system-bath coupling. For a two-band
model in 1D, deviations from the semiclassical theory arise
due to interband currents (Landau-Zener transitions) which
become significant for eEa ∼ E2

g /W . Moreover, as we in-
crease the chemical potential and the lower band becomes
more filled, one finds that interband contributions become
more important since Landau-Zener transitions are more

likely to occur before intraband relaxation. Hence, in the
regime of full Bloch orbits, the validity of the band-projected
theory is estimated as a2Eg/|Ainter|2 � � � �, where Ainter

is the interband Berry connection.
In 2D, we considered a honeycomb lattice with both sub-

lattice (C2z breaking) and Haldane mass (T breaking) terms
that exhibits both trivial gapped and Chern phases. In the
latter case, the finite Chern number can be expressed as the
winding number of the Berry phase along the momentum
direction transverse to the field direction, giving rise to a net
pumping of the Wannier center across the real-space cell. This
can be observed directly in the Wannier-Stark ladder, which
encodes the Berry phase winding through the polarization as
one traverses the zone. We proceeded to calculate the current
response for a honeycomb model. To compare our results to
the semiclassical theory, we decomposed the current into parts
that transform in the same way as their semiclassical coun-
terparts under a magnetic symmetry ST . Most interestingly,
when T is conserved but C2z is broken, we find that unless
the band gap opened by the sublattice mass is very large, the
transverse geometric response does not plateau as a function
of the field strength, as was predicted in the band-projected
theory. Instead, interband contributions become significant
before the plateau is reached. However, we find that the cor-
responding peak in the differential conductance due to the
incipient plateau provides a more robust probe of geometric
oscillations.
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APPENDIX A: LENGTH GAUGE

Here we give a short overview of the transformation be-
tween velocity gauge and length gauge. Like velocity gauge,
length gauge is an incomplete gauge that becomes fixed in the
electric-dipole approximation. In length gauge, one describes
a uniform electric field E (t ) with an electrostatic potential
ϕ(r, t ) = −E (t ) · r. The upside of length gauge is that the
Hamiltonian itself remains time-independent, but the down-
side is that it breaks translational symmetry. We can transform
the Hamiltonian in velocity gauge given by Eq. (6) to length
gauge with the unitary transformation U (t ) = eiS(t ), where

S(t ) = eA(t ) ·
∑
r,a

(r + ra)c†
racra. (A1)

The Hamiltonian transforms as

H → H̆ = UHU † + iU̇U †, (A2)

where the second term on the right-hand side is straightfor-
ward to evaluate. To deal with the first term, consider

eiS(t )c†
racr′be−iS(t ), (A3)
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which can be obtained from a special case of the Baker-
Campbell-Hausdorff formula given by

eiXYe−iX = Y + i[X,Y ] + i2

2
[X, [X,Y ]] + · · · , (A4)

with X = S(t ) and Y = c†
racr′b. From

[c†
r′′ccr′′c, c†

racr′b] = c†
racr′b(δrr′′δac − δr′r′′δab), (A5)

we find [X,Y ] = YeA(t ) · (r − r′ + rab). We obtain

eiS(t )c†
racr′be−iS(t ) = c†

racr′beieA(t )·(r−r′+rab), (A6)

and the transformed Hamiltonian becomes

H̆ = H0 + eE (t ) ·
∑
r,a

(r + ra)c†
racra, (A7)

where the last term gives the potential energy of charge −e
fermions on the lattice in a uniform field E (t ).

APPENDIX B: SEMICLASSICAL BAND-PROJECTED
THEORY OF BLOCH AND GEOMETRIC OSCILLATIONS

Here we give a short review of the semiclassical band-
projected transport theory of Bloch and geometric oscillations
[5,11,12,24]. In this section, we restore h̄ for consistency with
existing literature. For a crystal in a uniform electric field,
the Boltzmann transport equation for the occupation func-
tion in the relaxation-time approximation has the steady-state
solution [59]

f (t ) = f 0(t ) + e

h̄

∫ t

−∞
dt ′ exp

(
−
∫ t

t ′

ds

τ (s)

)
∇k f 0(t ′) · E (t ′),

(B1)

with τ (t ) = τ [k(t )] the momentum-relaxation time. For a
static field and a constant relaxation time, this can be solved
exactly [12,66],

f (t ) = fk(t ) =
∑

r

f 0
r eik(t )·r

1 − ieτ r · E/h̄
, (B2)

where the sum runs over lattice vectors r, and f 0
r =

[Vc/(2π )d ]
∫

BZ dd k f 0
k e−ik·r are lattice Fourier components

of the Fermi-Dirac distribution. The current in the band-
projected theory is given by jBloch + jgeom, with

jBloch = − e

h̄

∫
k

fk∇kεk, (B3)

jgeom = −E × e2

h̄

∫
k

fk�k, (B4)

where
∫

k ≡ ∫BZ dDk/(2π )D, εk is the energy band, and �k =
∇k × Ak is the Berry curvature in periodic gauge written
as a pseudovector. Plugging in the occupation function from
Eq. (B2) yields

jBloch = ie

Vch̄

∑
r

r f 0
r ε−r

1 − ieτ r · E/h̄
, (B5)

jgeom = −E × e2

Vch̄

∑
r

f 0
r �−r

1 − ieτ r · E/h̄
, (B6)

with Vc the unit-cell volume, and where εr and �r are lattice
Fourier components of the energy band and Berry curvature,

respectively. In particular, note that f 0
0 gives the filling fraction

of the band, and for D = 2 we have �0 = VcC/2π with C the
Chern number.

It is instructive to rewrite the Bloch current as

jBloch = ie

Vch̄

⎛
⎝∑

r·E=0

r f 0
r ε−r +

∑
r·E �=0

r f 0
r ε−r

1 − ieτ r · E/h̄

⎞
⎠, (B7)

where the first term vanishes in the presence of time-reversal
or spatial inversion symmetry. Each of these symmetries in-
dividually implies that εr = ε−r and f 0

r = f 0
−r are real, such

that jBloch(−E ) = − jBloch(E ). Restricting to D = 2, we de-
fine jgeom = jgeomẑ × Ê with

jgeom = e2E
Vch̄

⎛
⎝∑

r·E=0

f 0
r �−r +

∑
r·E �=0

f 0
r �−r

1 − ieτ r · E/h̄

⎞
⎠, (B8)

where now the first term only vanishes in the presence of time-
reversal T . Indeed, time-reversal symmetry implies that �r =
−�−r is imaginary, and jgeom is even in E in this case. On
the other hand, inversion symmetry gives real �r = �−r, and
jgeom is odd in E in this case.

The transformation properties of the Bloch and geometric
current under a general crystalline symmetry S follow sim-
ilarly from εr = εSr, f 0

r = f 0
Sr, and �r = det(S )�Sr, while

a magnetic symmetry ST implies that εr = ε−Sr, f 0
r =

f 0
−Sr, and �r = − det(S )�−Sr. With these relations, one can

demonstrate readily that the currents transform as

S : j(E ) = S j(S−1E ), (B9)

ST :
jBloch(E ) = −S jBloch(−S−1E ),

jgeom(E ) = S jgeom(−S−1E ).
(B10)

Moreover, defining the longitudinal and transverse compo-
nents,

j‖ = Ê · j, j⊥ = ẑ × Ê · j, (B11)

we find that

S :
j‖(E ) = j‖(S−1E ),

j⊥(E ) = det(S ) j⊥(S−1E ),
(B12)

ST :

j‖Bloch(E ) = j‖Bloch(−S−1E ),

j⊥Bloch(E ) = det(S ) j⊥Bloch(−S−1E ),

jgeom(E ) = − det(S ) jgeom(−S−1E ).

(B13)

As an example, consider a Bloch band in D = 1 with
time-reversal or inversion symmetry. Now we only have a
longitudinal response

jBloch = ie

h̄

∞∑
n=1

n f 0
n εn

(
1

1 − in�τ
− 1

1 + in�τ

)
(B14)

= −2e�τ

h̄

∞∑
n=1

n2 f 0
n εn

1 + (n�τ )2 , (B15)

with � = eEa/h̄, where a is the lattice constant. Specifically,
for a linear chain with nearest-neighbor hopping amplitude J ,
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we find

jBloch = −2eJ f 0
a

h̄

�τ

1 + (�τ )2
, (B16)

which is shown in Fig. 3. Here the lattice Fourier transform
of the Fermi-Dirac distribution is given by [substituting u =
cos(ka)]

f 0
a = a

2π

∫ π/a

−π/a
dk f 0(εk ) cos(ka) (B17)

= 1

π

∫ 1

−1
du

u f 0(2Ju)√
1 − u2

(B18)

� − sgn(J )

π

√
1 −

( μ

2J

)2
θ
(

1 −
∣∣∣ μ
2J

∣∣∣), (B19)

where the last line holds for β|J| � 1 and whose magnitude
is largest at half-filling (μ = 0).

APPENDIX C: BAND BASIS

As an alternative to the orbital basis in velocity gauge, we
can instead work in the instantaneous band basis by writing
[11,20]

|	k(t )〉 =
q∑

s=1

aks(t )|uks(t )〉, (C1)

with |uks(t )〉 = |us[k + eA(t )]〉 such that

H(k, t )|uks(t )〉 = Eks(t )|uks(t )〉, (C2)

with Eks(t ) the instantaneous band energy and normaliza-
tion 〈uks(t )|uks′ (t )〉 = δss′ . The dynamics is determined by
Eq. (14), which yields

i∂t ak(t ) = H (k, t )ak(t ), (C3)

with ak = (ak1, . . . , akq)t , and

H ss′
(k, t ) = δss′Eks(t ) + eE (t ) · Ass′ (k, t ) (C4)

is the Hamiltonian in the instantaneous band basis. Here we
used

〈uks(t )|i∂t |uks′ (t )〉 = (e∂t A) · 〈uks(t )|i∂k|uks′ (t )〉 (C5)

= −eE (t ) · Ass′ (k, t ), (C6)

where Ass′ (k, t ) = Ass′ [k + eA(t )] is the instantaneous Berry
connection. To find an approximate solution, we first rewrite
Eq. (C3) by an instantaneous diagonalization, defined by
ak(t ) = U (k, t )ăk(t ), which yields

i∂t ăk(t ) = [D (k, t ) − iU †U̇ ]ăk(t ), (C7)

where D (k, t ) = U †(k, t )H (k, t )U (k, t ) is a diagonal ma-
trix, and

−iU †U̇ = ieE (t ) · U †∇kU − iĖ · U †∇EU (C8)

is an effective connection for the Hamiltonian in band basis
which is at least third order in E and Ė . Up to second order,
we can thus approximate the right-hand side of Eq. (C7)
by standard nondegenerate perturbation theory. This yields

instantaneous eigenvalues,

λks(t ) = Eks(t ) + eE (t ) · Aks(t )

+
∑
s′ �=s

[eE (t ) · Ass′ (k, t )][eE (t ) · As′s(k, t )]

Eks(t ) − Eks′ (t )
, (C9)

with Aks(t ) = Ass(k, t ) the instantaneous intraband Berry
connection. Hence we obtain

ăks(t ) ≈ e−i
∫ t

0 dt ′ λks (t ′ )ăks(0), (C10)

which is valid up to second order. Here the coefficients ăks(t )
are superpositions of the original aks(t ) such that H (k, t ) be-
comes diagonal. Moreover, for a commensurate static electric
field E = Eg/g, the quasienergies are defined by ăks(t + T ) =
exp(−iεksT )ăks(t ), which yields

εk⊥s,n = 1

T

∫ T

0
dt Eks(t ) + �

[
n + gi

2π

1

T

∫ T

0
dt

×
(
Ai

ks(t ) + �
g jχ

i j
ks(t )

2π

)]
(C11)

= Ek⊥s + �

[
n + gi

2π

(
Ai

k⊥s + �
g jχ

i j
k⊥s

2π

)]
, (C12)

where summation over repeated indices is implied, � =
2πeE/g, and

χ
i j
ks(t ) =

∑
s′ �=s

Ai
ss′ (k, t )A j

s′s(k, t )

Eks(t ) − Eks′ (t )
, (C13)

where χ
i j
k⊥s is the state-resolved (static) electric susceptibility

[28]. We see that the lowest-order interband correction is
quadratic in the electric field and corresponds to the electric
susceptibility, which gives a field-induced shift of the polar-
ization [27,39]. Energy gaps in the WS ladder due to interband
Landau-Zener transitions thus only arise at higher orders in
the field, which is corroborated by our numerical results in
the main text.

As a minimal example, we consider a two-band model with
Bloch Hamiltonian H(k) = d0(k)σ0 + d(k) · σ and bands
Eks = d0(k) + sd (k) (s = ±1), where d = |d|. In this case,
Eq. (C13) simplifies to

χ
i j
ks = gi j

k

2sd (k)
, (C14)

with gi j
k = (∂ki n) · (∂k j n)/4 the quantum metric of either band

and where n = d/d .

APPENDIX D: KELDYSH FORMALISM

Here we review the essential parts of the Keldysh formal-
ism for the treatment of responses. In particular, we present a
derivation for the expression G< = GR�<GA, which gives the
lesser Green’s function in terms of dressed Green’s functions
and the lesser self-energy, and we present an expression for
�< in terms of the advanced, retarded, and Keldysh self-
energies.
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1. Lesser Green’s function

We begin with the Dyson equation

G = G0 + G0�G, (D1)

where � is the irreducible self-energy, which is composed of
one-part irreducible diagrams [55]. To proceed, we consider
P = ABC for any operators A, B, C on the (Keldysh) contour.
Then the corresponding Langreth rule that takes operators on
the contour to operators in real time is [56]

P< = ARBRC< + ARB<CA + A<BACA. (D2)

Now for the problem of interest, P = G0�G, giving

G< = G<
0 + GR

0 �RG< + GR
0 �<GA + G<

0 �AGA, (D3)

where the first term is the boundary term at the initial time.
This expression still contains bare Green’s functions. To elim-
inate these, we solve iteratively for the dressed lesser Green’s
function G<. This yields an expression that consists of a term
that is linear in bare Green’s functions, a term with only
dressed Green’s functions, and a term with infinite-order bare
Green’s functions,

G< = (1 + GR�R)G<
0 (1 + �AGA)

+ GR�<GA + (GR
0 �R

)∞
G<. (D4)

In the steady state, the first term vanishes [56], and for � small
compared to the bandwidth such that |det(GR

0 �R)| < 1, the
last term also vanishes and so

G< = GR�<GA. (D5)

2. Self-energies

In the Keldysh formalism, the self-energies have the same
structure as the Green’s functions [67],

�R(t1, t2) = �(t1 − t2)[�>(t1, t2) − �<(t1, t2)], (D6)

�A(t1, t2) = −�(t2 − t1)[�>(t1, t2) − �<(t1, t2)], (D7)

�K (t1, t2) = �>(t1, t2) + �<(t1, t2), (D8)

with �(t ) the Heaviside step function. Hence we have

�R − �A = �> − �<, (D9)

�R − �A − �K = −2�<, (D10)

and thus

�< = �A − �R + �K

2
, (D11)

which differs from Ref. [52] by opposite definitions of �R and
�A. Furthermore, for an ideal bath (illustrated in Fig. 2), we
have

HB =
∑
k, j

ξ jd
†
k jdk j, (D12)

HSB = λ
∑

k

∑
a, j

(c†
kadk j + d†

k jcka), (D13)

where j are bath degrees of freedom, ξ j = ε j − μ, with μ

the chemical potential, and λ gives the coupling between

the system and the bath. Here c†
k j (ck j) creates (destroys) a

system particle, and d†
k j (dk j) creates (destroys) a bath par-

ticle, which can be fermionic or bosonic with [dk j, d†
k′ j′]± =

δkk′δ j j′ , where +/− is the commutator/anticommutator. The
total Hamiltonian is

H (t ) = HS (t ) + HB + HSB, (D14)

where HS (t ) is given by Eq. (6). The retarded and advances
self-energies are given by [54]

[�R/A(t, t ′)]ab =
∑
j, j′

(HSB)a jG
R/A
B, j j′ (t, t ′)(H†

SB) j′b, (D15)

where

GR
B(k j; t − t ′) = −i�(t − t ′)〈[dk j (t ), d†

k j (t
′)]±〉 (D16)

= −i�(t − t ′)e−iξ j (t−t ′ ), (D17)

GA
B(k j; t − t ′) = i�(t ′ − t )〈[dk j (t ), d†

k j (t
′)]±〉 (D18)

= i�(t ′ − t )e−iξ j (t−t ′ ), (D19)

such that

[�R(k, t − t ′)]ab (D20)

= −iδabλ
2�(t − t ′)

∑
j

e−iξ j (t−t ′ ) (D21)

= −iδabλ
2�(t − t ′)

∫ ∞

−∞

dω

2π
ρ(ω + μ)e−iω(t−t ′ ) (D22)

≈ − i�

2
δabδ(t − t ′), (D23)

where we used �(0) = 1/2 and we assumed a constant
density of states ρ(ω) ≈ ρ0 (the wide-band limit of the
bath), with � = λ2ρ0. Similarly, one finds [�A(k, t − t ′)]ab ≈
(i�/2)δabδ(t − t ′). In frequency space, this yields Eqs. (56)
and (58) of the main text.

APPENDIX E: ANALYTICAL RESULTS

1. Frequency integral

The ω integral in Eq. (60) can be solved by closing the
counter in the upper complex plane. Indeed, for Re z > 0 the
integrand decays as e−β Re z for both the fermionic and bosonic
bath, such that the contribution of the upper great half-circle
vanishes.

a. Fermionic bath

For the fermionic bath, the frequency integral gives∫ ∞

−∞

dω

2π i

f 0
−(ω)

(ω − a − i�/2)(ω − b + i�/2)
(E1)

= f 0
−(a + i�/2)

a − b + i�
(E2)

− 1

β

∞∑
j=0

1(
z j − a − i�/2

)(
z j − b + i�/2

) , (E3)

with z j = μ + iπ (2 j + 1)/β and where a and b in Eq. (60)
correspond to Floquet eigenenergies when we plug in the
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single-particle Lehmann representation of the Green’s func-
tions. The sum can be evaluated, e.g., with MATHEMATICA,
and we find

1

a − b + i�

[
f 0
−(a + i�/2) + ψ

(
1
2 + A

)− ψ
(

1
2 + B

)
2π i

]
,

(E4)

where ψ (z) is the digamma function, A = iβ(a − μ +
i�/2)/2π , and B = iβ(b − μ − i�/2)/2π . Making use of

f 0
−(ω) = 1

2

{
1 − tanh

[
β

2
(ω − μ)

]}
(E5)

= 1

2
+ ψ

(
1
2 − γ

)− ψ
(

1
2 + γ

)
2π i

, (E6)

with γ = iβ(ω − μ)/2π , the fermionic integral [49]

1

a − b + i�

{
1

2
+ ψ

[
1
2 − iβ

2π

(
a − μ + i�

2

)]− ψ
[

1
2 + iβ

2π

(
b − μ − i�

2

)]
2π i

}
(E7)

= 1

a − b + i�

[
θ (μ − a) + θ (μ − b)

2
− ln

∣∣∣∣a − μ

b − μ

∣∣∣∣+ �

4π

(
1

a − μ
+ 1

b − μ

)
+ O

(
β−2
)]

, (E8)

where the last line is a low-temperature expansion with respect to |a − μ| and |b − μ| while keeping β� constant. Note that the
temperature dependence only enters in the subleading terms.

b. Bosonic bath

For the bosonic bath, the frequency integral gives

P
∫ ∞

−∞

dω

2π i

f 0
+(ω)

(ω − a − i�/2)(ω − b + i�/2)
(E9)

= f 0
+(a + i�/2)

a − b + i�
+ 1

2βab
(E10)

+ 1

β

∞∑
j=1

1

(z j − a − i�/2)(z j − b + i�/2)
, (E11)

with z j = μ + i2π j/β, and P indicates the Cauchy principal value. Here we took into account that the pole of f 0
+ at the origin

only contributes half of its residue since it lies on the contour. The sum can again be evaluated with MATHEMATICA, and we find

1

a − b + i�

[
f 0
+(a + i�/2) − ψ (1 + A) − ψ (1 + B)

2π i

]
+ 1

2βab
. (E12)

Making use of

f 0
+(ω) = 1

2

{
coth

[
β

2
(ω − μ)

]
− 1

}
(E13)

= 1

z
− 1

2
+ ψ (1 + γ ) − ψ (1 − γ )

2π i
, (E14)

the bosonic integral becomes

−1

a − b + i�

{
1

2
+ ψ

[
1 − iβ

2π

(
a − μ + i�

2

)]− ψ
[
1 + iβ

2π

(
b − μ − i�

2

)]
2π i

− 1

2β
(
a − μ + i�

2

) − 1

2β
(
b − μ − i�

2

)
}

, (E15)

which up to order β−2 has the same low-temperature limit, up to an overall minus sign, as the fermionic case. The minus sign
cancels with the prefactor in Eq. (60) such that the particle statistics of the ideal bath becomes unimportant at sufficiently low
temperature and system-bath coupling � while keeping β� constant.

2. Simple chain

For the simple chain in D = 1 (see Fig. 14), the Floquet Hamiltonian (for a given momentum k) is given by

HF =
∑

l

l�|φkl〉〈φkl |, (E16)
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FIG. 14. Exact results for the simple chain coupled to an ideal bath. Steady-state current for the simple chain as given in Eq. (E26)
calculated for l ∈ [−400, 400] at half-filling with Jβ = 50, and different values of � as indicated. The solid line gives the semiclassical result
[Eq. (B16)].

where the projector (|φkl〉〈φkl |)mn = e−ik(m−n)aJl−m(ζ )Jl−n(ζ ) with ζ = 2J/�. We further have

GR/A(k, ω) =
∑

l

|φkl〉〈φkl |
ω − l� ± i�/2

(E17)

and

∂kHF =
∑

l

l�(|∂kφkl〉〈φkl | + |φkl〉〈∂kφkl |). (E18)

Hence, the current for the ideal fermionic (+) or bosonic (−) bath becomes

j = ±e�
∑
m,n

∑
l,l ′

∫
ω,k

f 0
±(ω − n�)

(∂kHF )0m(|φkl〉〈φkl |)mn(|φkl ′ 〉〈φkl ′ |)n0

(ω − l� + i�/2)(ω − l ′� − i�/2)
(E19)

= ∓iae�
∑
m,n

∑
l,l ′

∑
p

p�
∫

ω,k
f 0
±(ω + n�)

mJp(ζ )Jp+m(ζ )Jl+m(ζ )Jl+n(ζ )Jl ′+n(ζ )Jl ′ (ζ )

(ω − l� + i�/2)(ω − l ′� − i�/2)
. (E20)

We see explicitly that the ac response vanishes, since this would result in an extra phase factor eikna in Eq. (E20) for the nth
harmonic, yielding δn0 after performing the momentum integral. Using

∑
n

nJn(ζ )Jn+m(ζ ) = ζ

2
δm,±1, (E21)

we obtain

j = ∓ieJ�
∑

n

∑
l,l ′

∫
ω

f 0
±(ω + n�)

[Jl+1(ζ ) − Jl−1(ζ )]Jn+l (ζ )Jn+l ′ (ζ )Jl ′ (ζ )

(ω − l� + i�/2)(ω − l ′� − i�/2)
(E22)

= ∓ieJ�
∑

n

∑
l,l ′

∫
ω

f 0
±(ω)

[Jl+1−n(ζ ) − Jl−1−n(ζ )]Jl (ζ )Jl ′ (ζ )Jl ′−n(ζ )

(ω − l� + i�/2)(ω − l ′� − i�/2)
(E23)

= ∓ieJ�
∑

l

∫
ω

f 0
±(ω)Jl (ζ )

ω − l� + i�/2

(
Jl+1(ζ )

ω − (l + 1)� − i�/2
− Jl−1(ζ )

ω − (l − 1)� − i�/2

)
(E24)

= ∓eJ�
∑

l

Jl (ζ )Jl+1(ζ )
∫ ∞

−∞

dω

2π i

[
f 0
±(ω)

(ω − a − i�/2)(ω − b + i�/2)
− f 0

±(ω)

(ω − b − i�/2)(ω − a + i�/2)

]
, (E25)
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where we used
∑

n Jn(ζ )Jn+m(ζ ) = δm0 in the second line, a = l�, and b = (l + 1)�. Using our result above for the frequency
integral, we obtain for the fermionic bath

j = −2eJ�
∑

l

Jl (ζ )Jl+1(ζ ) Re

(
1

� − i�

ψ
[

1
2 − iβ

2π

(
l� − μ + i�

2

)]− ψ
[

1
2 + iβ

2π

(
(l + 1)� − μ − i�

2

)]
2π i

)
(E26)

= 1

π

eJ�/�

1 + (�/�)2

∑
l

Jl (ζ )

{
[Jl−1(ζ ) + Jl+1(ζ )]Im(Ql ) + �

�
[Jl−1(ζ ) − Jl+1(ζ )]Re(Ql )

}
(E27)

= 1

π

2eJ�/�

1 + (�/�)2

∑
l

Jl (ζ )

[
lJl (ζ )

ζ
Im(Ql ) + �

�

dJl (ζ )

dζ
Re(Ql )

]
, (E28)

with Ql ≡ ψ[1/2 + (iβ/2π )(l� − μ + i�/2)] and ζ = 2J/�. A similar result can be obtained for the bosonic bath. The current
for both a fermionic and bosonic ideal bath is plotted versus the electric field in Fig. 14. We find numerically that the part of
the sum that is proportional to Im(Ql ) gives the largest contribution and depends weakly on �, while the other part that is
proportional to Re(Ql ) is relatively smaller and gives rise to oscillations. Moreover, note that 1D inversion symmetry (x �→ −x)
implies that j(−E ) = − j(E ), which can be seen explicitly in Eq. (E28) as J−l (−ζ ) = Jl (ζ ).
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