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Impurities in graphene and their influence on the Casimir interaction
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We study the influence of impurities in graphene described by a scattering rate � on the Casimir interaction
between graphene and an ideal conductor or between two identical sheets of graphene at zero temperature
and chemical potential. To this end, we compute the polarization tensor of quasiparticles in graphene and
corresponding conductivities for TE and TM channels. The Casimir energy density is evaluated with the help of
the Lifshitz formula. We find that depending on the value of the mass gap parameter, the presence of � may lead
to a slight damping or to a considerable enhancement of the Casimir interaction.
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I. INTRODUCTION

The Casimir effect [1,2] is an interaction of neutral bodies
due to quantum vacuum fluctuations. The study of Casimir
interaction between advanced materials is a new and promis-
ing area of research [3]. On one hand, the unusual electronic
properties of these materials lead to interesting effects on the
Casimir force. On the other hand, the improved quality of
Casimir experiments makes them a useful tool for exploration
of the materials themselves.

The Dirac materials (where the quasiparticles obey a
quasirelativistic Dirac-type equation at sufficiently low en-
ergies) provide us with an example of interplay between
quantum field theory and condensed matter. Graphene is a
prominent representative of this family [4,5]. Dealing with the
Dirac materials, it is natural to describe the interaction with
electromagnetic field by the polarization tensor of quasiparti-
cles and use this tensor to calculate the Casimir interaction. In
the case of graphene, such an approach was used in [6] and
in [7] at zero and nonzero temperature, respectively. Remark-
ably, the polarization tensor approach to Casimir interaction
of graphene was the only one which was confirmed at
experiments [8–11].

All real materials contain impurities. The particular form
of impurities can vary. Impurities refer to a general form for
breaking the cleanliness of pristine materials. A classification
of impurities and defects in graphenelike materials may be
found in the reviews [12–15]. The two-dimensional nature of
graphene decreases the number of possible types of defects
and impurities. The point is that it is energetically favourable
for adatoms or substitutional impurities to reside outside of
the graphene surface. They may be charged [16–18], mag-
netic [15], isotopic [19,20], topological, such as pentagons
and heptagons [13,21], or be a consequence of imperfections
and growth-induced defects like point [22] and cluster defects
[12]. Intentional impurity is usually called a dopant while the
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impurity itself can be both intentional and unintentional (ac-
cidental). Doping is used to change the physical or chemical
properties of a material. Impurities in graphene [23,24] may
transform the linear dispersion near Dirac points to a quadratic
one which signifies the appearance of a mass gap induced by
impurities. There are different approaches to describing impu-
rities and their impact on the physical properties of materials.
The common ones are the tight-binding model with a shot- or
long-range potential [13], and the scattering approach [25,26].

With this large variety of the types of impurities in
graphene we need a good model which captures the universal
properties of impurities while being sufficiently simple for
being used in calculation of the polarization tensor. A suc-
cessful way of describing impurities consists in adding to the
propagator of quasiparticles a parameter � which describes
the impurity scattering rate. In the language of quantum field
theory, � is an imaginary part of the fermion self-energy (or
an imaginary part of the inverse fermion Greens’ function with
quantum corrections taken into account). Thus, � can be com-
puted by solving the Schwinger-Dyson equation for a given
microscopic model of impurities. This procedure is rather
complicated and in general leads to a frequency dependent �.
In a simplified model used in the present work, � is considered
a constant phenomenological parameter. Such a description
has been applied to graphene mostly in the presence of an
external magnetic field in [27–31]. The computations of [31]
are in a very good agreement with the measurements [32] of
giant Faraday rotation in graphene. Thus, keeping � constant
appears to be a reasonable approximation. (For completeness,
we also mention an analysis of conductivity of graphene in
the presence of charged impurities where the scattering rate
was to supposed to be a constant [16]). In the present work,
we neglect the other role of impurities which is their ability to
create a nonzero chemical potential μ.

A particular form of impurities (atoms, mostly sodium, on
the surface of graphene) and their influence on the Casimir
force were considered in [10,11]. According to these papers,
such impurities lead to a mass gap and a nonzero chemical
potential of graphene but not to the appearance of a nonzero
impurity scattering rate �.
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The primary goal of this paper is to study the influence
of impurity scattering rate � on the Casimir interaction be-
tween graphene and an ideal metal, and between two graphene
sheets. We restrict ourselves to the case of a zero temper-
ature and vanishing chemical potential. This is a somewhat
simplified setting. Therefore, we will not try to compare our
results to any existing experiment (they were done at room
temperature). Rather, we will clarify some generic features of
the Casimir interaction of graphene. Our main conclusions is
that turning on � leads to a slight decrease of the Casimir
energy density for small masses and to a considerable en-
hancement thereof for large masses. Thus, taking impurities
into account may be essential for analyzing precision Casimir
measurements.

This paper is organized as follows. In the next section, we
calculate the polarization tensor of quasiparticles in graphene
in the Pauli-Villars subtraction scheme. In Sec. III, we analyze
the conductivities following from this polarization tensor and
discuss their properties which are relevant for the Casimir
interaction. The Casimir interaction itself is studied in Sec. IV.
Section V contains some concluding remarks. We put long
formulas for the conductivities in the Appendix. We use the
units h̄ = c = 1.

II. POLARIZATION TENSOR

To fix our conventions, we start with the Dirac operator
/D = iγ̃ i(∂i + ieAi ) − m, (1)

which describes the propagation of quasiparticles of mass m in
graphene in the presence of an external electromagnetic field
A. The Latin letters from the middle of the Alphabet denote
coordinates of 2 + 1 dimensional vectors, i, j, k = 0, 1, 2,
while a, b, c = 1, 2 denote spatial components. A twiddle
above a vector means that the spatial components are rescaled
with the Fermi velocity,

γ̃ 0 = γ 0, γ̃ a = vF γ a. (2)

The Dirac γ matrices are eight-dimensional (which cor-
responds to four generations of fermions in graphene).
They satisfy the condition γ iγ j + γ jγ i = 2gi j with the
flat metric gi j = (+,−,−). Besides, tr (γ iγ j ) = 8gi j and
tr (γ iγ jγ lγ k ) = 8(gi jglk − gil gjk + gikgjl ). We will use bold-
face to denote spatial components of the momenta three
vectors, k = (k0, k), so that p · k = p0k0 − p · k with p · k =
ka paδ

ab with δab being the Kronecker symbol.
The propagator S(x) is the kernel of an inverse of a free

Dirac operator /D0 = /DA=0, i.e., /Dx
0S(x − y) = δ(3)(x − y).

After a Fourier transform

S(x) =
∫

d3k

(2π )3
eikxS(k), (3)

one arrives at

S(k) = −k0γ
0 + vF kaγ

a + m

k2
0 − v2

F k2 − m2
. (4)

To introduce impurities, characterized by the scattering
rate � and a chemical potential μ, one shifts the temporal
component of the momentum k in the propagator (4) as k0 →
k̂0 = k0 + i�sgn (k0) + μ, (see [27–30,33]). For the rest of
this work we set μ = 0. We denote k̂ = (̂k0, k).

The introduction of � into the quantum field theory ap-
proach leads to certain difficulties with the gauge invariance.
The modification of the fermionic propagator can be under-
stood as a consequence of an additional term in the Dirac
action containing ψ†�sgn (−i∂0)ψ . To maintain gauge in-
variance, each partial derivative has to be accompanied by
a gauge field. That is, one should consider the expression
ψ†�sgn (−i(∂0 + ieA0))ψ . Although it is not clear how one
should deal with the sign function of a differential operator,
new (and rather complicated) vertexes involving ψ†, ψ , and
A0 seem to be inevitable. To overcome this difficulty we
proceed as in [34]. Namely, we consider only the diagrams
without A0 lines which are thus independent of whichever ver-
tices involve A0. i.e., we consider only the spatial components
of polarization tensor

�ab(p) = ie2
∫

d3k

(2π )3
tr (S (̂k)γ̃ aS( ̂k − p)γ̃ b). (5)

The full tensor may be recovered, if needed, with the help of
the transversality condition.

In expression (5), one can change the integration variable
k → k̃. The Jacobian factor v−2

F cancels v2
F coming from γ̃ a

and γ̃ b. As a result, the whole dependence on (5) vF remains
in the external momentum only, so that

�ab(p) = �ab
vF =1( p̃). (6)

In other words, to compute the spatial components of po-
larization tensor it is sufficient to do the computations for
vF = 1 and then replace p by p̃. Till the end of this section, all
computations will be done for vF = 1:

�ab(p) = ie2

π3

∫
d3k

× −δab(m2 − k̂ · ( ̂k − p)) + 2kakb − ka pb − kb pa

(̂k2 − m2)(( ̂k − p)2 − m2)
.

(7)

By using the Feynman parametrization, this integral can be
rewritten as

�ab(p) = ie2

π3

∫
d3k

∫ 1

0
dx

× −δab(m2 − k̂ · ( ̂k − p)) + 2kakb − ka pb − kb pa

(x[̂k2 − m2] + (1 − x)[( ̂k − p)2 − m2])2
.

(8)

The denominator of the integrand reads

(x[̂k2 − m2] + (1 − x)[( ̂k − p)2 − m2])2 = (q2 − R)2,

q = k − (1 − x)p,

R = xk̂2
0 + (1 − x)( ̂k − p)2

0 − x(1 − x)p2 − m2. (9)

Note that for μ �= 0 the Feynman parametrization is not appli-
cable since the denominator has roots in the integration region.
For nonzero chemical potential one should use the Schwinger
representation which leads to some technical complications.

We change the integration variable d2k → d2q. Note, that
the terms in numerator of (8) which are linear in q are inte-
grated to zero. Also, under the integral one may replace qaqb
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by 1
2δabq2. After the integration over q one arrives at

�ab(p) = ie2

π2

∫ 1

0
dx

∫
dk0

δab(m2 − k̂0( ̂k − p)0 − x(1 − x)p2) + 2x(1 − x)pa pb

R
. (10)

To integrate over k0 one has to split the integration region into a union of intervals where the signs of k0 and k0 − p0 are
constant. If, for simplicity, we restrict ourselves to the case p0 > 0, these are the intervals: (−∞, 0), (0, p0), and (p0,∞). One
can easily show that the integrals over the first and the last intervals coincide. We have

�ab(p) = ie2

π2

∫ 1

0
dx

[
2

∫ 0

−∞
dk0

δab(m2 − (k0 − i�)(k0 − p0 − i�) − x(1 − x)p2) + 2x(1 − x)pa pb

x(k0 − i�)2 + (1 − x)(k0 − p0 − i�)2 − x(1 − x)p2 − m2

+
∫ p0

0
dk0

δab(m2 − (k0 + i�)(k0 − p0 − i�) − x(1 − x)p2) + 2x(1 − x)pa pb

x(k0 + i�)2 + (1 − x)(k0 − p0 − i�)2 − x(1 − x)p2 − m2

]
. (11)

The integral over k0 is divergent, so that we need a regularization and renormalization procedure for which we choose the
Pauli-Villars subtraction. We subtract from the integrand in (11) the same expression due to a regulator field with a mass M,
compute the integrals and then send M → ∞. Symbolically,

�ab
PV(p) = lim

M→∞
(�ab(p, m) − �ab(p, M )). (12)

We represent the polarization tensor through two form factors, α and β, as

�ab
PV(p) = α(p)δab + β(p)

pa pb

p2
. (13)

These form factors read

α(p) = 2ie2

π2

∫ 1

0
dx

{
−iπ p2(1 − x)x√−q

− 2p2(1 − x)x√
q

arctan

(
p0x + i�√

q

)
+ 2P2(1 − x)x√

Q
arctan

(
P0x − i�√

Q

)

+ 1

2
p0(1 − 2x) ln((p0x + i�)2 + q) − 1

2
P0(1 − 2x) ln((P0x − i�)2 + Q)

}
,

β(p) = −4ie2p2

π2

∫ 1

0
dx x(1 − x)

{
iπ

2
√−q

+ 1√
q

arctan

(
p0x + i�√

q

)
− 1√

Q
arctan

(
P0x − i�√

Q

)}
, (14)

where q = p2(1 − x)x − m2, Q = P2(1 − x)x − m2, P2 = P2
0 − p2, and P0 = p0 + 2i�. Note that the integrals over x in (14) are

convergent.
In the limit � → 0 our results agree with previous calculations,

�ab
PV(� = 0) = −e2

π

(
δab + pa pb

p2

)
2m|p| − (p2 + 4m2)arctanh(|p|/2m)

2|p| , (15)

see [35] and also [6].

III. CONDUCTIVITIES

From now on we restore the dependence of polarization
tensor on the Fermi velocity according to Eq. (6).

In this section, we consider the conductivity tensor
defined as

σ ab = �ab
PV

ip0
. (16)

For vanishing spatial momenta, pa = 0, only a scalar conduc-
tivity σ (p0) entering the tensor conductivity as

δabσ (p0) = σ ab|pa=0 (17)

is important. It is convenient to measure σ (p0) in the units
of universal conductivity of graphene σgr = e2/4 which is

nothing else than the conductivity of a pristine graphene with
� → +0 at m → 0. In terms of the form factors from the
previous section, σ (p0) = α(p0, 0)/(ip0). For arbitrary values
of the parameters, σ (p0) can only be evaluated numerically.
However, an expansion in p0 for p0 � � and p0 � m can be
done analytically,

σ

σgr
= 4

π2

{
2�2

�2 + m2
+ ip0

3m

(
�m(�2 − 5m2)

(�2 + m2)2

+ 2 arctan

(
�

m

)
− π

)
+ O(p2

0)

}
. (18)

At p0 = 0 this equation coincides with a relation obtained
in [27].
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FIG. 1. The plots of the parameters of the Drude model given by Eq. (20).

Let us check whether at small frequencies p0 the conduc-
tivity can be approximated by the Drude formula

σDr

σgr
= sg

ip0 + g
= sg2

p2
0 + g2

− i
sp0g

p2
0 + g2

, (19)

where g has the meaning of an inverse scattering rate
(similarly to �) while s is the Drude weight. This is a phe-
nomenological formula valid mostly for metals. There is no
profound reason why it should describe the conductivity of
graphene. However, this is an interesting check.

By identifying the leading terms in the small p0 expansion
of (19) with (18), we obtain

s = 8�2

π2(�2 + m2)
,

g = − 6�2m

(�2 + m2)
(

�m(�2−5m2 )
(�2+m2 )2 + 2 arctan

(
�
m

) − π
) . (20)

These quantities are plotted in Fig. 1, while the real and imag-
inary parts of σ are depicted in Fig. 2 in comparison with the
Drude formula. Somewhat surprisingly, the Drude scattering
rate g may be considerably larger or considerably smaller
than the scattering rate � of the quasiparticles. By looking
at Fig. 2, we see that the agreement between imaginary parts
of σ and σDr is fairly good at low frequencies, though the

deviations become larger at higher frequencies. The real parts
show qualitatively different behavior. �σ increases at low
frequencies while �σDr decreases. Besides, �σDr does not
have a jump at the threshold of pair creation p0 = 2m which
is a characteristic feature of the conductivity of graphene. We
conclude that the Drude formula fails to give a reasonable
approximation to the conductivity of graphene with impurities
in the range of frequencies which are relevant for the Casimir
effect. The quality of approximation may be improved by
using the Drude-Lorentz formulas for conductivities [36].

For p �= 0, it is convenient to use two different
conductivities,

σte = α

ip0
and σtm = α + β

ip0
. (21)

As we will see in the next section, these conductivities de-
scribe the reflection of TE and TM waves, respectively, on the
surface of graphene. We will also see that TM modes give a
dominant contribution to the Casimir interaction.

We would like to discuss a property of the conductivi-
ties which will be important for the analysis of the Casimir
effect. When � = 0 and the p̃ is much smaller than m, the
imaginary parts conductivities are small while the real part
vanishes, see (15). The smallness is a direct consequence
of the Pauli-Villars subtraction which ensures that the po-
larization tensor vanished at m → ∞. Since � influences
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1

p0/Γ

�(
σ
/σ

gr
)

m/Γ = 0.3
m/Γ = 1.0

0.5 1 1.5 2 2.5 3

−0.4

−0.3
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−0.1

0.1

(b)

p0/Γ

�(
σ
/σ

gr
)

m/Γ = 0.3
m/Γ = 1.0

(a)

FIG. 2. Real and imaginary parts of the conductivity as functions of p0/�. The solid lines are for Drude model (19) with parameters (20).
The dashed lines are the conductivity derived from the polarization tensor with p = 0.
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FIG. 3. The normalized conductivity �σtm(�)/|σtm(� = 0)| as a
function of � for m = 0.01 eV, p = 0, and three different values of
frequency p0.

conductivities, switching on � at p̃ < 2m should lead to an
increase of �σtm. One should only find whether this increase
is large or small. Our numerical results are presented in Fig. 3)
where �σtm(�) divided by the absolute values of σtm at � = 0
is depicted as a function of � for three different frequencies p0

and a fixed m = 0.01 eV. For p0 much smaller than 2m there is
a strong enhancement of the conductivity. This enhancement
becomes weaker and disappears as p0 approaches 2m.

IV. THE CASIMIR ENERGY

Let us consider two parallel infinite planes in the vacuum
separated by a distance a. One plane will be always occupied
by graphene, while the other plane will be either graphene or
an ideal conductor. The Casimir energy per unit surface for
two interacting plane surfaces I and II is given by the Lifshitz
formula (see, for example, [1])

E I,II =
∫

d2p
(2π )3

∫ ∞

0
dξ

[
ln

(
1 − e−2apE r (I )

te r (II )
te

)
+ ln

(
1 − e−2apE r (I )

tm r (II )
tm

)]
, (22)

where the integrations are done over the spatial momentum
p parallel to the plates and over the imaginary frequency
ξ , p0 = iξ , and pE =

√
ξ 2 + p2. In (22), rI,II

te,tm denotes the
reflection coefficient for TE and TM waves on the first and
second surfaces, respectively. These coefficients can be ex-
pressed through the polarization tensor as [7]

rte = −
(

1 + 2pE

ξσte

)−1

, rtm =
(

1 + 2ξ

pEσtm

)−1

, (23)

where σte,tm have been defined above in Eq. (21). After con-
tinuation to the imaginary frequencies they read σte = −α/ξ ,
σtm = −(α + β )/ξ .

For an ideal conductor rtm = −rte = 1, which can be seen
from (23) in the limits σte,tm → ∞. The Casimir energy den-
sity for two ideal conductors reads

Eid = − π2

720a3
. (24)

We like to mention that Eq. (22) is valid only if the reflec-
tion matrix is diagonal in the TE-TM basis. Otherwise, the
Lifshitz formula is a bit more complicated, see, e.g., [37].

Since the reflection coefficients depend on |p| rather than
on individual components of p we can integrate over the
angular coordinates in the Lifshitz formula (22) which boils
down to the replacement d2p → (2π )|p|d|p|. Next, we intro-
duce new variables, y and z, by the formulas p2 = p2

E (1 − y2),
ξ = pE y, and pE → z/a. In these new variables,

E I,II = 1

a3

∫ ∞

0

z2dz

(2π )2

∫ 1

0
dy

×

⎡⎢⎣ln

⎛⎜⎝1 − e−2z(
1 + 2

yσ I
te

)(
1 + 2

yσ II
te

)
⎞⎟⎠

+ ln

⎛⎜⎝1 − e−2z(
1 + 2y

σ I
tm

)(
1 + 2y

σ II
tm

)
⎞⎟⎠

⎤⎥⎦. (25)

One can notice that apart from an overall factor of 1/a3

the distance a enters the Casimir energy (25) through the
combinations

m̃ = am

z
, �̃ = a�

z
. (26)

Explicit formulas for σte and σtm are quite long and deferred
to the Appendix, see (A1). The limit a → 0 is equivalent to
taking m → 0 and � → 0 corresponding to gapless pristine
graphene studied in [6] with E ∼ 1/a3.

To analyze the opposite limit of large distance, we have to
take m̃ → ∞ and �̃ → ∞ while keeping the fraction �̃/m̃ =
�/m fixed. In this limit, σte and σtm behave identically,

σte

σgr
,

σtm

σgr
→ 8�̃2

π2(�̃2 + m̃2)
= 8

π2
G, (27)

where

G ≡ �2

m2 + �2
� 1. (28)

Thus, we have the case of constant conductivities analyzed in
[38]. The Casimir energy decays as 1/a3 and

Eg,g
tm

Eid
≈ 4.3 × 10−3G,

Eg,g
te

Eid
≈ 1.3 × 10−5G2, (29)

Eg,id
tm

Eid
≈ 2 × 10−2G,

Eg,id
te

Eid
≈ 2.1 × 10−3G, (30)

where the superscripts g, g and g, id mean the interaction be-
tween two identical sheets of graphene and between graphene,
and an ideal conductor, respectively. We normalized the re-
sults to the Casimir energy of two ideal conductors (24) and
separated the contributions of TE and TM modes. As usual
[7], the contributions of TE modes are much smaller than the
TM contributions.

For � = 0 the terms on the right hand sides of (27) vanish
and the leading terms in the a → ∞ expansion read

σte

σgr
= 4z((1 − y2)vF

2 + y2)

3πy(am)
,

σtm

σgr
= 4zy

3π (am)
. (31)
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(a) (b) (c)

FIG. 4. The Casimir energy density as a function of the distance normalized Eid [Eq. (24)] for the system of graphene and an ideal conductor
[on (a) and (b)] and for two identical graphene sheets (c). The impurity scattering rate is � = 5 × 10−3 eV on (a) and (c), and � = 5 × 10−2 eV
on (b).

As a result, the Casimir energy of two graphene sheets be-
haves at large distances as E ∼ 1/(a3(am)2), while for the
system of a perfect metal and graphene the asymptotic be-
havior is E ∼ 1/(a3(am)), in agreement with [6].

The rest of the analysis will be done numerically. For orien-
tation, we present the value of � = 4.4 × 10−3 eV which gives
the best fit [31] between the quantum field theory polarization
tensor and the Faraday rotation experiment [32] at 7 T.1 The
separation a used in the Casimir experiments with graphene
[8,10] is between 200 nm and 2000 nm. The value for m for
the graphene sample used in the Casimir experiment [11] was
∼0.15 eV. The presence of a damping factor e−2apE in the
Lifshitz formula (22) indicates that the region of relevant Eu-
clidean momenta is restricted by the inequality pE � (2a)−1,
e.g., for a = 500 nm one has (2a)−1 � 0.2 eV.

The Casimir energy density normalized to the Casimir
energy density between two ideal conductors is plotted on
Fig. 4. By comparing Figs. 4(a) and 4(b) with Fig. 4(c) we
see that the Casimir interaction of graphene with graphene
behaves qualitatively similarly to the interaction of graphene
with an ideal conductor though the former is about five times
weaker than the latter. Thus, in what follows we will only
consider the interaction of graphene with an ideal conductor.
In Figs. 4(a) and 4(b) we see that the Casimir interaction is
damped by the mass exactly as it happens for � = 0, see [6].
The line for m = 0 appears slightly higher for � = 0.005 eV
than for � = 0.05 eV, while the line for m = 0.05 eV passes
significantly lower on Fig. 4(a) than on Fig. 4(b). Thus, the
effect of � strongly depends on the mass. To see this effect
more clearly, we depicted in Fig. 5 the relative variation of
Casimir energy density

δ�Eg,id = Eg,id(�) − Eg,id(� = 0)

Eg,id (� = 0)
(32)

at a fixed separation a = 500 nm and three different values of
the mass.

The large relative enhancement of the Casimir effect for
m = 0.1 eV can be explained by the observation made at the

1For a magnetic field of 3 T different values of the parameters
were obtained as well as a much worse fit. This can be attributed
to some specific physics in particular samples of graphene used in
the experiment, see [39].

end of the previous section that turning on � leads to a signif-
icant enhancement of �σtm for the frequencies p0 � m. For a
larger mass the interval of frequencies where the enhancement
of conductivity takes place becomes larger which is translated
to the enhancement of Casimir interaction. Since the Casimir
effect is an integral effect containing competing contributions
from all frequencies and tangential momenta it is impossible
to predict the amplitude of the enhancement based on this
type of arguments. For the same reason, it is hard to give a
precise explanation to the very moderate damping of Casimir
force by � at very small masses, like m = 10−3 eV at Fig. 5.
We can only suppose that at the absence of the mechanism
described above the impurity scattering should reduce the
conductivities, and thus, the Casimir interaction, according to
the high school physics intuition. For an intermediate mass,
m = 10−2 eV, we see an intermediate behavior.

Another characteristic feature of the Casimir interaction in
the presence of � is a 1/a3 behavior of the Casimir energy
at large distances. However, the asymptotic values (30) are
reached at very large a. For example, for m = � = 0.01 eV
at a = 106 nm the difference between exact and asymptotic
values is still at the 10% level. For some other choices of m
and � the agreement may be reached at somewhat smaller
distances which are anyway beyond the distances used in
experiments.

In real experiments, one studies the interaction of graphene
with nonideal metallic surfaces. To compute the Casimir force

FIG. 5. The plots of relative variation of the Casimir energy
density (32) at a = 500 nm as a function of � for three values of
the mass.
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FIG. 6. The Casimir energy density for two interacting graphene
sheets characterized by impurity scattering rates �1 and �2 and
masses m1 and m2, respectively, as a function of �2 for fixed values
�1 = 5 × 10−2 eV.

one has to replace in the Lifshitz formula (22) the reflection
coefficients rte,tm for an ideal conductor by that for the real
metal. The analytic and numerical expressions for the latter
coefficients are very well known. The whole procedure is
described in detail in [1]. As was shown in [7] the differ-
ence between Casimir force between pure graphene and ideal
metal, and that between pure graphene and gold for the dis-
tances larger than 50 nm is at the level of a few percent.

The measurements of Casimir interaction between two
graphene are quite challenging. This is why we paid less atten-
tion to such configurations. However, if such experiments are
to be done they will most likely involve graphene sheets with
distinct mass and � parameters. To perform the numerical
analysis in this case it is sufficient to use in the Lifshitz for-
mula (22) the reflection coefficients derived above for distinct
values of � and m. Qualitative behavior of the Casimir energy
density can be understood by using the same arguments as
above. For example, for large masses the Casimir energy den-
sity should increase with increasing impurity scattering rate
for each of the surfaces. Further increase on the mass gap at
each of the surfaces should reduce the Casimir energy. These
features are illustrated at Fig. 6.

V. CONCLUSIONS

In this paper, we studied the Casimir interaction of
graphene containing impurities described by a scattering rate
�. We evaluated the polarization tensor of quasiparticles in
the Pauli-Villars subtraction scheme and computed the corre-
sponding conductivities. Next, we used the conductivities in
the Lifshitz formula to calculate the Casimir energy density
for various values of parameters. Our main message is that the
presence of impurities can considerably enhance the Casimir
interaction for large values of the mass (about m = 0.1 eV)
and somewhat damp the Casimir interaction for near zero
mass. Thus, the nonzero impurity scattering rate � should be
taken into account in the analysis of precision Casimir exper-
iments with graphene. To do this, however, one should also
take into consideration the chemical potential and temperature
since both influence the Casimir force in an essential way
[7,11,40]. This will be our next task which we are going to
take up in the near future.

An additional motivation for considering the influence of
impurities jointly with the temperature comes from the old
discussion on the Nernst theorem in the Casimir physics
[41–43], see [44] for a recent review. The violation of Nernst
theorem was blamed on the relaxation rate parameter present
in the Drude formula. It is interesting to check what happens
if this rate appears in a different model.

In [34] an unconventional version of the Pauli-Villars sub-
traction scheme in the presence of impurities was suggested.
It would be interesting to study the influence of this scheme
on Casimir interaction.

Finally, we would like to mention an approach to the
Casimir interaction of graphene based on the QFT effective
action [6,45]. This approach is equivalent to a fine structure
constant expansion of the Lifshitz formula.
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APPENDIX: LONG BUT USEFUL FORMULAS

Here we present the explicit form of the conductivities after the changes of variables made above Eq. (25) and in (26):

σte

σgr
= 8

π2y

∫ 1

0
dx

{
π ((1 − y2)vF

2 + y2)(1 − x)x√
m̃2 + (1 − x)x((1 − y2)vF

2 + y2)
− 2((1 − y2)vF

2 + y2)(1 − x)x√
m̃2 + (1 − x)x((1 − y2)vF

2 + y2)

× arctan

(
�̃ + yx√

m̃2 + (1 − x)x((1 − y2)vF
2 + y2)

)
− 2((1 − y2)vF

2 + (y + 2�̃)2)(1 − x)x√
m̃2 + (1 − x)x((1 − y2)vF

2 + (y + 2�̃)2)

× arctan

(
�̃ − x(y + 2�̃)√

m̃2 + (1 − x)x((1 − y2)vF
2 + (y + 2�̃)2)

)

+ 1

2
y(1 − 2x) ln((yx + �̃)2 + m̃2 + (1 − x)x((1 − y2)vF

2 + y2))
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− 1

2
(y + 2�̃)(1 − 2x) ln((�̃ − (y + 2�̃)x)2 + m̃2 + (1 − x)x((1 − y2)vF

2 + (y + 2�̃)2))

}
,

σtm

σgr
= 8

π2y

∫ 1

0
dx

{
πy2(1 − x)x√

m̃2 + (1 − x)x((1 − y2)vF
2 + y2)

− 2y2(1 − x)x√
m̃2 + (1 − x)x((1 − y2)vF

2 + y2)
arctan

(
�̃ + yx√

m̃2 + (1 − x)x((1 − y2)vF
2 + y2)

)

− 2(y + 2�̃)2(1 − x)x√
m̃2 + (1 − x)x((1 − y2)vF

2 + (y + 2�̃)2)
arctan

(
�̃ − x(y + 2�̃)√

m̃2 + (1 − x)x((1 − y2)vF
2 + (y + 2�̃)2)

)

+ 1

2
y(1 − 2x) ln((yx + �̃)2 + m̃2 + (1 − x)x((1 − y2)vF

2 + y2))

− 1

2
(y + 2�̃)(1 − 2x) ln((�̃ − (y + 2�̃)x)2 + m̃2 + (1 − x)x((1 − y2)vF

2 + (y + 2�̃)2))

}
. (A1)
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