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The emergence of gapless surface states, known as Fermi arcs (FAs), is one of the unique properties of the
novel topological Weyl semimetal (WSM). However, extracting the signatures of FAs from the bulk states has
always been a challenge as both of them are gapless in nature and connected to each other. We capture the
signatures of FAs via transport in an inversion symmetry broken WSM. We study the band structure and the
properties of FAs such as shape, and spin polarization considering slab and nanowire (NW) geometry, and
then compute the two-terminal conductance in WSM NWs in terms of the scattering coefficients within the
Landauer formalism. We find the FA-mediated conductance to be quantized in units of 2e2/h. We extend our
study to transport in the WSM/Weyl superconductor NW hybrid junction using the Blonder-Tinkham-Klapwijk
formalism. We show that due to the intricate spin textures, the signatures of the FAs can be captured via the
Andreev reflection process. We also show that our results of conductance are robust against delta-correlated
quenched disorder and thus enhance the experimental feasibility.
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I. INTRODUCTION

Over the past decade, the Weyl semimetal (WSM) has
emerged as a novel gapless topological phase in three-
dimensional (3D) semimetals due to its nontrivial band
structure and intriguing transport properties [1–5]. Weyl
fermions were initially proposed as a solution to the mass-
less Dirac equation in 1929 [6,7]. Later these fermions, as
low-energy excitations, were theoretically proposed in 3D
topological insulators at the transition phase between the triv-
ial and nontrivial insulating phases by breaking either time
reversal symmetry (TRS) or inversion symmetry (IS) [8,9],
topological insulator heterostructures [10–15], pyrochlore iri-
dates [16–18], etc. The experimental realizations of the WSM
phase in real materials, e.g., TaAs, TaP, NbAs, NbP, WTe2,
magnetic Heusler materials, etc. [19–34], have opened up
the opportunity for the plethora of research works for both
theorists and experimentalists.

WSMs exhibit a unique bulk band structure where the
valence and conduction bands intersect at an even num-
ber (minimum two for TRS-broken and four for IS-broken
WSM) of isolated points in momentum space known as Weyl
nodes (WNs). Around these WNs, the bulk bands disperse
linearly with momentum, resembling the dispersion of 3D
massless relativistic fermions. WNs are recognized as the
monopoles of Berry curvature in momentum space, while
their charge, termed chirality, determines their topological
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nature [1–5]. Importantly, WNs always appear pairwise with
opposite chiralities, ensuring a net zero chiral charge over
the entire Brillouin zone. Effects of both weak and strong
disorder [35–39] and interactions [40–46] on the WSM phase
have been investigated.

In addition to the nontrivial bulk bands, an intriguing and
exotic aspect of WSMs is the presence of nontrivial sur-
face states, known as Fermi arcs (FAs) [19–21,23–25,27,31,
47–51]. When projected onto a surface Brillouin zone (sBZ),
these surface states manifest as arcs with their end points
located at the projection of the bulk WNs on the sBZ. Close to
the projection of the WNs, FA states can leak into the bulk and
reappear at the opposite sBZ [1–3]. Notably, both surface and
bulk states of WSMs are gapless. This is in sharp contrast to
the 3D topological insulators, where gapless surface states lie
within the bulk gap and are exponentially localized near the
surface. Signatures of these FAs in transport properties have
been investigated both theoretically [52–57] and experimen-
tally [28,49–51].

Due to the gapless nature, separating these surface states
from the bulk and identifying the sole signatures of FAs in
the transport measurement has always been a challenging
task. Very recently, it has been shown that bulk states are
gapped out in the TRS-broken WSM nanowire (NW) due to
its finite-size effect. Within the bulk confinement gap, only
surface states are present and their contributions to the con-
ductance becomes quantized in units of e2/h in a two-terminal
setup [57]. However, most of the WSM phases in reality are
observed to be IS broken (ISB) because of the plentitude of
crystal structure asymmetries found in nature.

In recent years, investigation of transport properties in
superconducting hybrid junctions of WSMs have attracted
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FIG. 1. (a) Schematic diagram of a WSM slab geometry with
translational invariances along x and z directions, but a finite width
(Ly) along y direction. (b) Schematic diagram of a WSM NW
(−L/2 < z < 0)/WSC NW (L/2 > z > 0) hybrid junction in the
presence of a voltage bias V , where Lx and Ly denote the finite sizes
along x and y directions, respectively.

significant attention due to the interplay of superconductiv-
ity and the nontrivial topology of WSMs [58–67]. Most of
these studies concern the bulk properties of WSM. Transport
phenomena become much more subtle and fascinating when
the role of surface states are also taken into account [68–74].
To date, there are a few studies on FA-mediated transport
phenomena in the literature [57,75–78]. Particularly, signa-
tures of FAs in ISB Weyl NW hybrid junctions have not
been investigated so far in the literature, to the best of our
knowledge. Since NW junctions are very useful in separating
the contributions due to FAs, it remains interesting to look
for the role of FAs in transport phenomena via the Andreev
reflection (AR) in Weyl NW-based superconducting hybrid
junctions.

With these motivations, in this present article, we inves-
tigate the ISB WSM NW in a two-terminal setup in two
conditions: (i) the bare NW and (ii) its hybrid junction with
superconducting pairing (WSC) tailoring a WSM/WSC NW
junction as shown in Fig. 1. Here, superconductivity in WSC
NW can be generated either via the proximity effect [68] or
electron-electron correlation [59,69,79,80]. In our work, we
address the following intriguing questions: (1) Is it possible
to separate out the contributions of FAs from the bulk states
in ISB WSM NW, similar to the TRS-broken WSM case? (2)
Is it possible to capture the signature of FAs via the Andreev
process in such hybrid junction? (3) Does the transport sig-
nature become quantized in ISB WSM junctions too? (4) Are
these quantizations robust against disorder?

The rest of the article is organized as follows. In Sec. II,
we introduce our model and compute and analyze the band
structure and FAs in slab and NW geometry. In Sec. III, we in-
vestigate the conductance in WSM NW and WSM/WSC NW
hybrid junctions, and subsequently in Sec. IV, we check the
robustness of our results against the random on-site disorder.
Finally, in Sec. V, we summarize and conclude our results.

II. MODEL AND BAND STRUCTURE

In this section, we first introduce our model of ISB WSM
and WSM with superconducting correlation. For the discus-
sion on the WSM phase in detail, we show the bulk band

structure, followed by a thorough discussion on the surface
states. To obtain the surface states, we require a finite bound-
ary which can be achieved by making the WSM finite at
least along one direction. For the sake of understanding the
nature of surface states in detail, let us consider two different
geometries: (i) the slab where it is finite along the y direction
and (ii) NW where it is finite along both x and y directions. In
both the slab and NW geometries, we analyze the locations
of the FAs with their spin textures. For the NW geometry
which is our main concern, we discuss the surface states in
the WSM and WSC phases, with both the open boundary
condition (OBC) and periodic boundary condition (PBC).

A. Model Hamiltonian

We consider an ISB WSM described by the second-
quantized Hamiltonian on a cubic lattice with lattice spacing
l (= 1) given by

H =
∑

k

ψ
†
k HWSM(k) ψk, (1)

where ψk = (ck,A,↑, ck,B,↑, ck,A,↓, ck,B,↓)T and ck,α,σ (c†
k,α,σ )

represents the annihilation (creation) operator for an electron
in the orbital α (= A, B) and spin σ = (↑,↓). The momen-
tum, k (= {kx, ky, kz}), runs over the first BZ. Here, HWSM(k)
is described by the four-band model as [64,65,81]

HWSM(k) = λx sin kxτ1s3+λy sin kyτ2s0+βτ2s2+α sin kyτ1s2

+
⎡
⎣(m − 4t ) + 2t

∑
j=x,y,z

cos k j

⎤
⎦τ3s0, (2)

where λx,y and t represent the spin-orbit coupling and
nearest-neighbor hopping amplitudes, respectively, m is the
crystal-field splitting energy, and β, α are the real param-
eters of the model. The Pauli matrices τi and si for i ∈
{0, 1, 2, 3} act on the orbital and spin degrees of freedom
of the electron, respectively. The term βτ2s2 in Eq. (2) is
responsible for the breaking of IS, whereas the TRS is pre-
served following the conditions P†HWSM(k)P �= HWSM(−k)
and T †HWSM(k)T = HWSM(−k) where P = τ3s0 and T =
is2K, with K being the complex conjugation operator. After
diagonalization of the Hamiltonian in Eq. (2), the eigenvalues
for HWSM are obtained as

E2(k) = [
√

sin2 kx + sin2 ky ± β]2 + (α sin ky)2

+
⎛
⎝m − 4t + 2t

∑
j=x,y,z

cos k j

⎞
⎠

2

. (3)

Broken IS leads to four bulk WNs Qs (s = 1, 2, 3, 4)
located at (±k0

x , 0,±k0
z ), with k0

x = sin−1(β ) and k0
z =

cos−1(1 −
√

1 − β2 − m
2t ) as depicted in Figs. 2(a) and 2(b).

The presence of TRS implies that the WNs must appear in
Kramer pairs (KPs) [1,2]. In our model, Q1, Q3 and Q2, Q4

form these KPs. TRS also ensures that WNs within a KP share
the same chirality. Consequently, the overall chirality of the
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FIG. 2. (a) Bulk band structure of the ISB WSM is depicted
in the ky = 0 plane. (b) Locations of the four WNs are shown in
the kx-kz plane choosing ky = 0. (c), (d) Band structure of WSM
considering slab geometry is demonstrated choosing Ly = 40 and
considering both OBC and PBC along y direction.

system remains zero. Following that, the chiralities of Q2, Q4

are opposite to those of Q1, Q3.
For the superconducting part of the Hamiltonian, we con-

sider s-wave spin-singlet intraorbital pairing which couples
the electrons and holes between the WNs with same chirality,
i.e., between Q1, Q3 and Q2, Q4 [63–65]. With this consider-
ation, the Bogoliubov–de Gennes (BdG) Hamiltonian for the
WSC part can be written as

HBdG = (1/2)
∑

k

�
†
kHWSC(k)�k, (4)

where

HWSC(k) = λx sin kxτ1s3π0 + λy sin kyτ2s0π3 + βτ2s2π3

+α sin kyτ1s2π3 + 
τ0s2π2 − μτ0s0π3

+
⎡
⎣(m − 4t ) + 2t

∑
j=x,y,z

cos k j

⎤
⎦τ3s0π3, (5)

with �k=(ck,A,↑,ck,B,↑,ck,A,↓,ck,B,↓,c†
−k,A,↑,c†

−k,B,↑, c†
−k,A,↓,

c†
−k,B,↓) as the Nambu spinor. The Pauli matrices, πi (i =

0, 1, 2, 3), act on the particle-hole degree of freedom. Here,

 denotes the s-wave pairing potential and μ is the chemical
potential measured with respect to Weyl nodes. For the rest of
the article, we choose the following parameter values in our
model: λx = λy = 1, t = 1, β = 0.9, α = 1.0, μ = 0, m = 0,

 = 0.5, and accordingly, we have k0

x � 1.11 and k0
z � 0.97.

Note that the qualitative behavior of our results is not sensitive
to the change in the parameter values as long as the WSM
phase is preserved.

B. Slab geometry

With the discussions on the bulk properties, we now focus
on the surface FA states in WSM. For that, we consider a slab
geometry schematically shown in Fig. 1(a). Since the WNs
are located in the kx-kz plane, we choose a slab to have a
finite size along the y direction with thickness Ly such that
the projection of all four WNs can be observed in the sBZ.
Along the x and z directions, the WSM slab is infinite, so
the momenta along these directions are still good quantum
numbers. Consideration of the finite size along the y direction
gives rise to two surfaces located at y = 1 (bottom surface)
and y = Ly (top surface) as shown Fig. 1(a).

Since the momentum along the y direction is not well
defined, to find the band structure in slab geometry we first
obtain the real-space Hamiltonian by performing an inverse
Fourier transformation (FT) only along the y direction using

ck,α,σ = 1√
Ly

Ly∑
y=1

eikyyckxkzy,α,σ ,

ψk = 1√
Ly

Ly∑
y=1

eikyyψkxkzy. (6)

With this transformation, the Hamiltonian takes the form

Hslab =
∑
kxkz

Ly∑
y,y′=1

ψ
†
kxkzyH

slab
WSM(kx, kz, y, y′)ψkxkzy′ ,

where

Hslab
WSM(kx, kz, y, y′) = [λx sin kxτ1s3 + βτ2s2 + (m − 4t )τ0s0

+ 2t (cos kx + cos kz )τ3s0]δy,y′

+ [(λy/2i)τ2s0 + (α/2i)τ1s2 + tτ3s0]

× δy,y′+1 + H.c. (7)

We numerically diagonalize the above Hamiltonian for each
set of (kx, kz ) values with Ly = 40 slices considering both
OBC and PBC along the y direction. Note that surface states
can be observed only in OBC, while PBC is employed to
identify only the bulk states. We show the band structure as
a function of kx by setting kz = 0.9 in Fig. 2(c). The choice
of kz can be made anywhere in between [−k0

z , k0
z ] since the

surface states only appear in between the WNs with opposite
chiralities. Similarly, we depict the band structure as a func-
tion of kz with kx = 1 in Fig. 2(d) employing both OBC and
PBC along the y direction. In both figures, we observe the
gapless dispersive FA surface states between the WNs when
OBC is implemented.

Now, we investigate the shape of the FAs obtained in
the WSM slab geometry. FAs are the open constant energy
contours in the kx-kz plane residing at the boundary of the
system. We fix the energy at E = 0.08t (t sets the energy
scale in the system) and draw the Fermi surface in Fig. 3(a).
With the OBC, we observe the existence of four FAs denoted
by FAγ with γ = 1, 2, 3, 4. As expected, two FAs connect
WNs with opposite chirality, i.e., FA1 and FA2 (FA3 and FA4)
connect the WNs, Q2 and Q3 (Q1 and Q4). On top of FAs,
we also show the Fermi surface in PBC, which only contains
the bulk states around each WN as shown in Fig. 3(a) using
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(a)

(b) (c)

FIG. 3. (a) The features of Fermi arcs (FAs) (collection of brown points) for the ISB WSM, labeled as FAγ (γ = 1, 2, 3, 4) are depicted
along with four WNs, Qs (s = 1, 2, 3, 4) (orange color), in kx-kz plane considering slab geometry with Ly = 40 and E = 0.08t . Bulk Fermi
surfaces are shown around each WN in teal color. The spin polarizations (〈Sz〉 in the kx-kz plane) for the states on FAs are shown by blue
arrows, where vertically upward (downward) arrows indicate the positive (negative) values of 〈Sz〉, respectively, with the length of each arrow
being proportional to the magnitude of 〈Sz〉. (b), (c) |�|2 is illustrated as a function of position y for the six states [marked by red dots in panel
(a)] to highlight their locations.

teal color. Interestingly, the shape of FAs obtained in this
model closely resembles the FAs observed in real materi-
als [20,21,23,25,31,33].

To get insight about the locations of the states on the FAs
in real space, we depict |�|2 [≡ |ψkxkz (y)|2] as a function of
y in Figs. 3(b) and 3(c) for the states on the FAs marked in
red dots [see Fig. 3(a)]. We observe that the FA states are
either localized on the top surface (y = Ly) or at the bottom
surface (y = 1). Specifically, the states in the FA2 are localized
at the bottom surface [see Fig. 3(b)]. We also note that on FA2

the states away from the WNs, i.e., close to the center of the
arc, are distinctly localized at the bottom surface [see curves
2 and 3 in Fig. 3(b)]. On the other hand, the states close to
the WNs have significant overlap with the bulk states [see
curve 1 in Fig. 3(b)]. This happens since the FAs leak into
the bulk states near the WNs as mentioned in the previous
section. Similarly, we also choose points from FA1, FA3, FA4

[red colored dots marked by 4, 5, 6 in Fig. 3(a)] and present
the behavior of |�|2 in Fig. 3(c). We find that FA1 and FA4

states are localized on the top surface, while those for FA2

and FA3 are localized at the bottom surface. Note that we
show curve 2 in panel (b) too for the sake of comparison and
clarity.

Here, we explore the spin textures of the FA states. We
compute the expectation value of the spin operator along the
z direction for each site along the y direction. To perform
that, we expand the states in terms of the basis |y, α, σ 〉 with

y = 1, 2, . . . , Ly; σ =↑,↓; α = A, B for the slab geometry as

∣∣ψFA
kxkzy

〉 =
Ly∑

y=1

∑
σ=↑,↓

∑
α=A,B

d (y, α, σ ) |y, α, σ 〉 . (8)

The spin-polarization along the z direction is defined as

Sz = 1

2
(|↑〉 〈↑| − |↓〉 〈↓|), (9)

and the corresponding expectation value of Sz is given by〈
ψFA

kxkzy

∣∣ Sz

∣∣ψFA
kxkzy

〉

=
Ly∑

y=1

∑
α=A,B

1

2
[|d (y, α,↑)|2 − |d (y, α,↓)|2]. (10)

We show the spin textures, i.e., the expectation values 〈Sz〉
taking into account the FA states in Fig. 3(a) for the sake of
understanding. The up (down) arrows, ↑ (↓), are used to ex-
press the positive (negative) values of 〈Sz〉. The length of each
arrow is proportional to the value of 〈Sz〉 with a maximum
value of 1/2. We observe that the states on FAs exhibit both up
and down spin polarization. Specifically, the states on FA1 and
FA2 (FA3 and FA4) host down (up) spin polarized states. Now,
focusing on FA1 and FA4, we infer that the electrons localized
on the top surface have spin polarizations along both positive
and negative z axis. Notably, this information is very crucial
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for the formation of the superconducting pair between the sur-
face state electrons indicating a strong possibility of Andreev
reflection in the WSM-WSC hybrid junction mediated by the
surface states. Similarly, the FA2 and FA3 states are localized
at the bottom surface and contain both spin polarizations. Note
that |〈Sz〉| �= 1/2 for all the states on FAs. States in the center
of FAs have |〈Sz〉| = 1/2 while states close to the WNs are
partially spin polarized. The presence of TRS in the system is
also reflected in the spin textures of FAs since any FA state
with (kx, kz ) and its time-reversed partner (−kx,−kz ) have
spin polarizations opposite to each other.

C. Nanowire geometry

With the understanding of the surface FA states in WSM
slab geometry, we now turn our focus to the NW geometry,
which is the prime concern of our present work. The size of
the NW along the x and y directions is Lx and Ly, respectively,
where Lx = Ly. To find the band structure of the NW, we
consider the NW to be infinite along the z direction so that
the momentum along the z direction becomes well defined
(PBC), while the momenta along the x and y directions remain
ill defined (OBC) due to the finite size.

1. WSM NW

For the WSM NW, we obtain the Hamiltonian by perform-
ing the inverse FT along the x and y directions using

ck,α,σ = 1√
LxLy

Lx∑
x=1

Ly∑
y=1

ei(kxx+kyy)cx y kz,α,σ ,

ψk = 1√
LxLy

Lx∑
x=1

Ly∑
y=1

ei(kxx+kyy)ψx y kz,α,σ . (11)

With this transformation, the Hamiltonian takes the form

HNW =
∑

kz

Lx∑
x,x′=1

Ly∑
y,y′=1

ψ
†
x y kz

HNW
WSM(x, x′, y, y′, kz )ψx′,y′,kz ,

where

HNW
WSM(x, x′, y, y′, kz )

=
(

λx

2i
τ1s3 + tτ3s2

)
δx,x′+1δy,y′ + [βτ2s2 + (m − 4t )τ0s0

+ cos kzτ3s0]δx,x′δy,y′

+
[
λy

2i
τ2s0 + α

2i
τ1s2 + tτ3s0

]
δx,x′δy,y′+1 + H.c., (12)

For the WSM NW, we consider Lx = Ly = W = 20 and nu-
merically diagonalize the above Hamiltonian for each value
of kz. We present the eigenspectrum as a function of kz in
Fig. 4(a) employing both PBC and OBC. As mentioned ear-
lier, in OBC we obtain the information about both bulk and
surface states of the system while in PBC information about
only the bulk states can be achieved.

For TRS-broken WSM NW, it has already been shown
in Ref. [57] that the bulk states are gapped out due to the
finite-size effect, and within the bulk gap, Ebulk

g , only surface
states exist. A finite-size gap, E surface

g , is also developed on the

FIG. 4. Band structure is shown as a function of kz for (a) WSM
and (b) WSC NW choosing Lx = Ly = 20 and employing both OBC
(teal color) and PBC (dark-red color) along x and y directions. The
finite-size gap, Eg (= 0.05t ), in WSM NW bulk band structure is
highlighted by the dashed lines.

surface state spectrum but the bulk confinement gap is larger
than that developed on the surface. Specifically, Ebulk

g ∼ 1/W
whereas E surface

g ∼ 1/4W . This feature is also observed in the
present model where the bulk gap Eg = 0.05t and Ebulk

g ∼
1/W and within the energy regime, [−Eg, Eg], only surface
states are present [shown by teal color in Fig. 4(a)]. This be-
havior is not present in the slab geometry where both the bulk
and surface states are gapless, and thus distinguishing the sur-
face states from the bulk does not seem possible in the WSM
slab. Therefore NW geometry is the possible platform where
the surface states can be clearly distinguished from the bulk
states and can possibly be probed in such a way that the contri-
bution of the bulk states in the measurement can be excluded.

Furthermore, similar to the slab geometry, we here dis-
cuss the properties of FAs in the NW geometry. In the NW
geometry, FAs are present within the bulk confinement gap,
i.e., −Eg � E � Eg. From the band structure, presented in
Fig. 4(a) (shown by teal color), it is clear that only the low-
est energy band with E>0 is present inside the confinement
gap, Eg, between the WNs (−k0

z � kz � k0
z ). Therefore, we

focus on this band to obtain the properties of FAs. First,
we compute |�n,kz (x, y)|2 as a function of position, (x, y),
with kz = 0 where �n,kz is the eigenstate of the Hamiltonian
[Eq. (12)] corresponding to the lowest positive energy band
having momentum, kz. We depict the probability |�n,kz (x, y)|2
in Fig. 5(a) and establish that the states within the bulk gap, Eg,
are indeed localized on the surface of the NW with significant
population in the y = 1 and y = Ly (= 20) surface. Then, we
compute the expectation value of polarization along the z axis
in the earlier mentioned energy band and show it in Fig. 5(b).
We observe that the states within this band carry polarization
along both positive and negative z directions. The presence of
both up and down spin polarized states on the NW surface is
very crucial for generating AR process mediated via FAs in
a WSM/WSC NW junction [see Fig. 1(b)], which we discuss
extensively in Sec. III B.

2. WSC NW

After explaining the nature of FAs in WSM NW, let us
discuss the effect of superconductivity in the NW geometry.
We consider an s-wave spin-singlet intraorbital pairing with
amplitude 
 in both the bulk and surface of the NW. Since
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FIG. 5. (a) Probability of wave function |�n,kz |2 is shown as a
function of the position x and y with kz = 0 for the state correspond-
ing to the lowest positive energy band within the gap Eg as illustrated
in Fig. 4(a). (b) Average spin polarization 〈Sz〉 for those states are
depicted by the blue arrows on top of the lowest positive energy band
(teal color). The direction and length of all arrows carry the same
meaning as mentioned in Fig. 3.

the surface states contain electrons with both spin polariza-
tions (as shown in the slab geometry calculations), s-wave
spin-singlet pairing between the electrons is expected to be
prominent over the spin-triplet pairing. Similar to the WSM
NW, we perform the inverse FT to obtain the WSC NW
Hamiltonian as

HNW
WSC(x, x′, y, y′, kz )

=
(

λx

2i
τ1s3π0 + tτ3s2π3

)
δx,x′+1δy,y′

+ [βτ2s2π3 + (m − 4t )τ0s0π3 + cos kzτ3s0π3]δx,x′δy,y′

+
[
λy

2i
τ2s0 + α

2i
τ1s2π3 + tτ3s0

]
δx,x′δy,y′+1

+ 
δx,x′δy,y′τ0s2π2 + H.c. (13)

We then numerically diagonalize the Hamiltonian considering
the same system size as mentioned for the WSM NW and plot
the band structure as a function of kz in Fig. 4(b) employing
both OBC and PBC. We observe that due to the superconduct-
ing correlation, both bulk and surface states acquire a gap of
magnitude 
.

III. CONDUCTANCE

In this section, we present our numerical results for the
conductance in the WSM and WSM/WSC NW setups.

A. WSM NW

Let us begin by analyzing the transport signatures of FAs in
an ISB WSM NW based two-terminal setup. For this purpose,
we first exclude the WSC NW part in Fig. 1(b) by extend-
ing the WSM NW and attach two semi-infinite leads at z =
−L/2 and z = L/2. We model both the leads using the same
Hamiltonian which is used to describe the WSM NW. The
chemical potential at the left (right) lead is fixed at μL (μR).
Under the application of voltage bias, eV (= μL − μR), we
compute two-terminal charge transport employing the Lan-
dauer formula [82]. To obtain the current traversing through
the NW, we first construct the scattering matrix, which re-

lates the incoming propagating modes to the outgoing modes
in the leads with the central WSM NW being considered as
the scatterer. Incoming and outgoing states and the scattering
matrix are defined as

� in = [
ψL

1 , ψL
2 , . . . , ψL

4NL
, ψR

1 , ψR
2 , . . . , ψR

4NR

]T
, (14)


out = [
φL

1 , φL
2 , . . . , φL

4NL
, φR

1 , φR
2 , . . . , φR

4NR

]T
,


out = Ŝ� in, (15)

where ψ
L(R)
i is the incoming state from the left (right) lead

in the ith mode. Here, 4NL (4NR) is the number of occupied
modes/channels in the left (right) lead for a given voltage
bias eV (including both spin and orbital degrees of freedom).
Similarly, φ

L(R)
i is the outgoing state into the left (right) lead

in the ith mode after the scattering event takes place. Here, T
denotes the transpose operation. The unitary scattering matrix
Ŝ of dimension (4NL + 4NR )×(4NL + 4NR) reads

Ŝ =
[

r̂ t̂ ′

t̂ r̂′

]
, (16)

where, r̂ (r̂′) is a square matrix of dimension
4NL×4NL (4NR×4NR ) and t̂ (t̂ ′) is a matrix of dimension
4NR×4NL (4NL×4NR ). Physically, r̂ (r̂′) represents the
reflection matrix with elements ri, j (r′

i, j ) being the amplitude
of reflection from the jth mode to the ith mode in the left
(right) lead. Similarly, t̂ (t̂ ′) represents the transmission
matrix with elements ti, j (t ′

i, j ) denoting the amplitude of
the transmission from the jth mode in the left (right)
lead to the ith mode in the right (left) lead following the
unitarity condition: r†r + t†t = I. Within this formalism,
the two-terminal conductance at zero temperature can be
obtained using the Landauer formula given by [82]

GN(eV ) = G0 Tr[t†t]|E=eV , (17)

where G0 = e2/h is the unit of quantum conductance. The
scattering amplitudes can be calculated numerically using the
Python package KWANT [83].

We depict the two-terminal conductance in the WSM NW
setup in units of quantum conductance as a function of voltage
bias, eV , in Fig. 6(a) assuming the length along the z direction
is Lz = 80 lattice sites. We observe that conductance initially
increases in steps of G0 and a plateau-like behavior appears
after that. For a more clear understanding we refer to the inset
of Fig. 6(a). However, when we increase the bias voltage,
the steplike behavior is lost and a continuous enhancement in
conductance is observed. Similar behavior of the conductance
has also been observed for TRS-broken WSM NW [57]. In-
terestingly, in the case of ISB WSM NW, the quantization of
the conductance occurs in steps of 2G0, whereas in the case
of TRS-broken WSM NW, the steps appear in units of G0

as shown in Ref. [57]. This happens due to the presence of
four FAs (two on each surface) in such system as compared
to TRS-broken WSM where two FAs are present. The step-
like behavior appears due to the FA surface states within the
finite size gap in the system, while the following continuous
enhancement happens since the bulk states start contributing.
Due to the semimetallic nature of the bulk spectrum, the
conductance for the higher bias voltages varies as (eV )2.
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FIG. 6. Two-terminal conductance in units of quantum conductance, G0 = (e2/h), is illustrated as a function of voltage bias eV in (a) WSM
NW and (b), (c) WSM/WSC NW hybrid junction considering Lx = Ly = 20 and Lz = 80 lattice sites. (c) (1 − Ree/Nm ) and Reh/Nm are
depicted as a function of voltage bias eV , explicitly exhibiting the contribution to conductance via AR process within the bulk confinement gap
(eV < Eg) and superconducting gap (eV < 
0 ).

In clean systems, the conductance does not depend on the
length of the WSM NW along the z direction because of
phase-coherent transport along the NW axis considering the
same Hamiltonian for the leads. Increasing the system size
along the transverse directions does not affect the qualitative
picture of the conductance plot, but the quantitative behavior
of the conductance changes since both Ebulk

g (∼ 1/W ) and
E surface

g (∼ 1/4W ) decrease. Additionally, increasing the value
of Lx and Ly usually enhances the number of transverse modes
in the lead spectrum. Hence, the occupancy of propagating
modes increases within the leads for a given voltage bias,
which in turn can enhance the conductance according to
Eq. (17).

B. WSM/WSC NW

Here, we discuss another main finding of our analysis
which deals with the transport signatures of the FAs in the
WSM/WSC NW hybrid junction. For this purpose, we con-
sider the geometry shown in Fig. 1(b) under the application
of voltage bias eV . We model this hybrid setup using the
Hamiltonian in Eq. (13). The uniform superconducting pair-
ing potential is chosen as


(x, y, z) =
{

0 ∀z > 0, x, y ∈ (0,W ),
0 ∀z < 0, x, y ∈ (0,W ). (18)

The leads are also modeled by the same Hamiltonian as
mentioned in Eq. (13). The left lead is chosen to be non-
superconducting (
0 = 0), while the right lead possesses a
superconducting pairing gap as mentioned above. This hybrid
setup mimics a normal-superconductor (NS) junction.

The additional mechanism that comes into play while
considering charge transport in such superconducting hybrid
junction is the Andreev reflection (AR) where an incoming
right-moving electron from the left lead with spin σ com-
bines with another electron with opposite spin σ̄ to form a
spin-singlet Cooper pair leaving behind a hole that reflects
back from the interface. The Cooper pairs, formed at the
interface, propagate through the WSC and give rise to a
supercurrent [84]. In our work, the primary motivation to

capture the signatures of FAs via the AR lies in these spin
textures of the FAs [see Figs. 3(a)–3(c)]. Note that within a
particular surface, the spin polarization of electrons along the
z direction has components along both positive and negative z
axes, indicating the strong possibility of AR mediated via the
FAs.

To find the conductance in this hybrid junction, we employ
the scattering matrix formalism which now takes more com-
plex form compared to the bare WSM NW due to the presence
of the AR process. It can now be written as⎡

⎢⎢⎢⎣

L

e


L
h


R
e


R
h

⎤
⎥⎥⎥⎦ = SNS

⎡
⎢⎢⎢⎣

�L
e

�L
h

�R
e

�R
h

⎤
⎥⎥⎥⎦, (19)

where, �
L(R)
e(h) is a column matrix of dimension 4NL(R) and it

represents the incoming electron (hole) from the left (right)
lead. Similarly, 


L(R)
e(h) designates the outgoing electron (hole)

in the left (right) lead. The scattering matrix SNS can be
written as

SNS =

⎡
⎢⎢⎢⎣

ree reh t ′
ee t ′

eh

rhe rhh t ′
he t ′

hh

tee teh r′
ee r′

eh

the thh r′
he r′

hh

⎤
⎥⎥⎥⎦, (20)

where ree, reh, rhe, and rhh denote the complex matrices with
dimension 4NL×4NL. The matrix element (rαβ )i j represents
the amplitude of reflection from the particle type β in the
jth channel of the left lead to the particle type α in the ith
channel of left lead with α, β = (e, h). For our purpose, it is
now sufficient to focus on the reflection matrices in the left
lead, i.e.,

RNS =
[

ree reh

rhe rhh

]
. (21)

The reason behind writing Eq. (21) is the absence of the quasi-
particle states within the superconducting gap which prevents
the transmission of electron-like (or hole-like) particles from
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the left normal lead to the right superconducting lead. Simi-
larly, there are no single-particle states present inside the right
lead to propagate through the WSC and reach the left lead. In
this circumstance, within the subgap regime, the only possible
scattering processes are reflection of electrons as an electron
(normal reflection), denoted by the ree matrix in Eq. (21), and
AR. Note that it follows the unitarity relation of RNS as given
by

r†
eeree + r†

herhe = I. (22)

With this understanding, we now employ the Blonder-
Tinkham-Klapwijk (BTK) formalism to obtain the conduc-
tance of this hybrid junction as [84–87]

GNS(eV ) = G0[Nm(E ) − Ree(E ) + Reh(E )]|E=eV , (23)

where Ree(E ) = Tr(r†
eeree) and Reh(E ) = Tr(r†

herhe). Nm(eV )
is the number of occupied modes/channels in the left lead
for a given voltage bias eV . Using the Python package
KWANT [83], we obtain the reflection matrices, ree , reh, and
also Nm to compute the conductance.

We depict the conductance, GNS, as a function of voltage
bias, eV , in Fig. 6(b). We also show (Nm − Ree) and Reh for
comparison, normalized by the number of available modes in
the left lead (Nm), as a function of eV in Fig. 6(c). For the bias
voltage less than the bulk confinement gap (eV < Eg) where
only the FA surface states exist [see Fig. 4(a)], we find GNS

exhibits nonzero value and becomes almost equal to 7G0 [see
Fig. 6(b)]. This is concomitant with nonzero value of Reh [see
Fig. 6(c)] which establishes the possibility of AR mediated
by FAs which is one of the main claims of the present work:
capturing the signatures of FAs in this superconducting hybrid
junction. In the subgapped regime (eV < 
0), (Nm − Ree)/Nm

and Reh/Nm identically follow each other which can be ex-
plained using the unitarity relation of RNS [see Eq. (22)] as
Reh = Tr(r†

herhe) = Tr(I − r†
eeree) = Nm − Ree. For eV > Eg,

we observe GNS suddenly drops to zero and then gradually in-
creases with the voltage bias as shown in Fig. 6(b). For better
clarity, we also refer to the inset of Fig. 6(b). When eV > 
0,
Reh �= (Nm − Ree) and Reh decays with the increase in voltage
bias. This is due to the presence of finite quasiparticle density
of states for eV > 
0, which allows tee and the matrices to be
nonzero, and as a result, Eq. (22) does not hold.

Interestingly, in the subgapped regime, GNS/G0 is not
quantized in the regime where GN/G0 exhibits quantized val-
ues as shown in the inset of Fig. 6(a). This is unusual since
in the absence of any interfacial insulating barrier (transpar-
ent limit), the subgap conductance is expected to be twice
the conductance in the absence of the superconductors, i.e.,
GNS = 2GN (see Ref. [84] for details). This peculiarity can
originate from two correlated reasons as follows. First, even
though FAs host both up and down spin textures, the expec-
tation value of spin polarization |〈Sz〉| �= 1/2, for all states on
the FAs. This makes the AR deviated from the unit probability
within the subgap regime even in the transparent limit which
indicates that all the electrons may not reflect as holes from
the interface. Thus, perfect AR does not take place restricting
the quantization of GNS. Second, in Fig. 6(c), we note the
finite value of Ree/Nm (since Nm is quantized in the region
of concern) even in the absence of any insulating barrier at
the interface. Such normal reflection probability can originate

FIG. 7. Two-terminal conductance is demonstrated for a disor-
dered (a) WSM NW and (b) WSM/WSC NW junction as a function
of voltage bias, eV , choosing various disorder strengths, Vdis. Di-
mensions of the NWs are considered to be the same as mentioned
in Fig. 6. We choose the delta-correlated disorder to be uniformly
distributed between [−Vdis/2,Vdis/2]. We consider 30 disorder con-
figurations for our analysis.

from the interchannel scatterings in the WSM NW which can
also prohibit the perfect quantization.

IV. STABILITY AGAINST DISORDER

So far, all the results are presented for clean systems. We
now extend our analysis to include the effect of disorder and
investigate the robustness of our results in both the WSM NW
and WSM/WSC NW junction. Usually, the bulk properties of
WSM are robust against disorder unless the disorder strength
is strong enough to allow internode scatterings and create a
gap to destroy the topological phase [35–37,39]. Specifically,
to check the stability of FAs against the disorder that breaks
translational symmetry of the system, we consider random
quenched disorder which is delta-correlated, in terms of an
on-site energy potential in the Hamiltonian, as

Hdis(r) = V (r)�, (24)

where V (r) is random number uniformly distributed in the
range [−Vdis/2,Vdis/2] and Vdis is referred to as the disorder
strength. We choose � = τ0 s0 for WSM NW and � = τ0 s0π3

for WSM/WSC NW junction. For the hybrid junction, the dis-
order is considered only in the −L/2 < z < 0 region [88–90].

To compute the conductance, GN and GNS [Eq. (17) and
Eq. (23)], in the presence of disorder, we again employ scat-
tering matrix formalism and extract the reflection (ree, rhe) and
transmission (t) matrices using KWANT [83]. We show the
disorder-averaged conductance, GN and GNS, as a function
of voltage bias for various disorder strengths in Figs. 7(a)
and 7(b), respectively. The results are obtained after averaging
over 30 disorder configurations.

The average energy level spacing of the FAs in the WSM
NW geometry is estimated approximately as 
El = 0.08t
where the average level broadening induced by disorder is

Edis = π

3 V 2
dis [57]. From here, we can estimate the criti-

cal disorder strength above which the quantized conductance
plateau does not survive as V c

dis = √
3
El/π = 0.27. From
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Fig. 7(a) and Fig. 7(b), we can verify that the quantized
conductance plateau, arising due to the FA surface states,
survive up to the disorder strength, Vdis = 0.25 [see the
inset of Fig. 7(a) for better clarity], above which the con-
ductance quantization is diminished. Similarly, in the case
of the WSM/WSC NW junction, we observe our results
to be sustained up to sufficiently large disorder strength.
Note that, unlike the clean system, where the conductance
is independent of NW length, in the presence of disorder,
conductance depends on the NW length since phase co-
herency is lost. In particular, keeping the disorder strength
moderate, the conductance decreases as the NW length is
increased.

V. SUMMARY AND CONCLUSIONS

To summarize, in this article, we have explored an ISB
WSM with four bulk Weyl nodes in the kx-kz plane. We have
analyzed the properties of FAs in a slab geometry considering
the y direction to be finite and found both up and down
spin polarized FA states at both y = 1 and y = Ly surfaces.
We have then investigated the FAs with further confinement
in another direction which leads to a NW geometry. In the
WSM NW setup, due to the finite-size effects, both the bulk
and surface states are gapped out. Interestingly, the surface
state gap is still smaller than the bulk confinement gap, thus
allowing one to probe only surface states and explore various
transport signatures mediated due to only FAs. We also ana-
lyze the localization properties of FAs in the NW geometry
and find the spin textures similar to that in WSM slab. To
obtain the conductance, we have extracted the matrix ele-
ments within the scattering matrix formalism using the Python
package KWANT [83]. Specifically, we have computed the
two-terminal conductance of the WSM NW using the Lan-
dauer formula and observed the conductance quantization in
units of 2e2/h. To capture the signatures of FAs in AR, we
have constructed a WSM/WSC NW hybrid junction and found
the conductance using the BTK formula [84–87]. We show
that the signatures of the FAs can be separated out via the AR
process too. Note that the conductance in this hybrid setup is
not quantized. Finally, we have investigated the stability of the
conductance against the random on-site disorder potential in
both the WSM NW and WSM/WSC NW hybrid junction and
find our results to be robust against disorder strength up to a
critical value V c

dis.

Here we convey a few comments as far as the experimental
feasibility of our transport setups is concerned. Earlier theo-
retical works to capture the signature of FAs are mainly based
on TRS-broken WSM [56,57,75,91]. In reality, TRS-broken
WSM needs application of large magnetic field [92], whereas
experimentally observed WSM phases are mostly ISB, e.g.,
TaAs, TaP, NbAs, NbP, etc. [19–34]. Specifically, there exist
several works on the Dirac semimetal Cd3As2 NW where
WSM phase can be achieved by applying a strong external
magnetic field (∼1 T) with diameter of the NW ∼20–100
nm [49,51,93,94]. Application of large external magnetic field
can generate Landau levels and the phenomenon of chiral
anomaly may affect the results. Hence, our work based on
ISB WSM NW is out of such scope and carries potential from
the practical point of view. Note that the bulk gap in NW
due to quantum confinement is observed to be ∼10 meV with
gap size being ∼h̄v f

√
π/S (v f , S being the Fermi velocity

and cross section of the NW, respectively). For a typical
value of v f ∼ 105 m/s in Cd3As2 NW and W ∼ 20 Å (for
lattice constant ∼1 Å), gap size comes out to be ∼100 meV
which closely resembles the bulk confinement gap, Ebulk

g =
0.05t ∼ 50 meV (assuming t ∼ eV), obtained in our numer-
ical calculation of band structure. Therefore, the realization
of our theoretical results regarding FA mediated transport
is subjected to the chemical potential lying within the bulk
confinement gap, i.e., μ � 50–100 meV. Finally, the realiza-
tion of a WSC can be achieved by introducing a common
s-wave superconductor such as Al or Nb in close proximity
to the WSM NW [95]. Thus, our proposal serves as a possible
potential experimental test bed, offering experimentalists the
opportunity and challenge to validate our findings.
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