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Photonic spin Hall effect in Haldane model materials
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We investigate the photonic spin Hall effect (PSHE) of light beams reflected from surfaces of various
two-dimensional crystalline structures while considering their associated time-reversal T and inversion I sym-
metries. Using the modified Haldane model Hamiltonian with tunable parameters as a generic system, we explore
longitudinal and transverse spin separations of the reflected beam in both topologically nontrivial and trivial
systems. The PSHE observed in these materials is attributed to their topology. Topological phase transitions in
buckled Xene monolayer materials are demonstrated through the PSHE, showing the manipulation of spin-orbit
coupling and external electric fields. Moreover, we investigate spatial shifts in the PSHE of monolayer transition
metal dichalcogenides, suggesting that the spin and valley degrees of freedom of charge carriers provide a
promising avenue to manipulate the PSHE in both classes of these materials. The study suggests that the PSHE in
Haldane model materials can serve as a metrological tool for characterizing topological phase transitions through
quantum weak value measurement techniques.
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I. INTRODUCTION

The photonic spin Hall effect (PSHE) [1,2] is the optical
counterpart of the spin Hall effect observed in electronic sys-
tems. The photon spin (helicity) is affected by a refractive
index gradient, while in electronic systems, the analogous
phenomena entail the electronic spin responding to an electric
potential gradient [3,4]. The mechanism lying at the heart
of the PSHE is the effective spin-orbit coupling (SOC) [5].
In the PSHE, when light with a specific polarization state
encounters a surface with characteristic symmetries, the re-
flected light beams undergo a distinctive split into two parts
with opposite spin angular momenta. Although both the PSHE
and the Goos-Hänchen effect [6] are optical phenomena, they
arise from different mechanisms and have different forms. The
PSHE is a universal phenomenon applicable to any photonic
interface, and extensive investigations have been conducted
across various physical systems, including optical interfaces
[4], semiconductors [7], plasmonics [8], metasurfaces [9],
strained Weyl semimetals [10], topological materials [11],
hyperbolic metamaterials [12], and even in the high-energy
physics [13]. Studying spin-dependent splitting of reflected
light provides researchers with valuable insights into the mate-
rial’s electronic properties, offering a unique avenue to probe
and comprehend diverse kinds of materials.

A hexagonal lattice structure, often depicted as an in-
terconnected lattice of hexagons, exhibits symmetry under
time-reversal (T ) and inversion (I) operations. Pristine
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graphene, a well-known example with a honeycomb lattice,
features two touching bands at distinct points known as Dirac
points [14]. Haldane demonstrated that breaking either the T
or I symmetry in hexagonal lattices induces a band gap in
the electronic structure, transforming the material from the
semimetallic phase to the band insulator phase. What emerges
is distinct topological phases in the absence of an external
magnetic field [15]. In two-dimensional (2D) hexagonal ma-
terials like graphene, buckled Xene monolayers (i.e., silicene,
germanene, and stanene), the preserved symmetries T and
I give rise to pseudospin, while in layered transition metal
dichalcogenides (TMDs), and hexagonal boron nitride (hBN)
nanosheets, preserved T symmetry and broken I symmetry,
give rise to valley quantum degrees of freedom. Consequently,
the interplay of spin and valley dynamics in these diverse
range of materials holds substantial promise for applications
in valleytronics and spintronics [16–18].

Over recent years, the PSHE has been extensively studied
in 2D materials. Notably, it has been predicted to be sensitive
to the quantized Hall conductivity, allowing its use in probing
the quantum Hall effect in monolayer graphene subject to an
external magnetic field [19,20]. Furthermore, the PSHE has
also been proposed as a tool for probing topological phase
transitions in monolayer silicene [21,22]. Moreover, it has
been employed to investigate moiré superlattices and twist
angles in 2D systems [23–25]. Similarly, enhancing the PSHE
on the surface of monolayer black phosphorus in the terahertz
region [26–28] has been explored. In short, the versatility of
the PSHE makes it a valuable tool for exploring the optical
properties and topological characteristics of diverse 2D mate-
rials [29–31].
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Recently Chen et al. successfully detected the PSHE in
monolayer MoS2 and employed weak measurement tech-
niques to extract the optical constants [32]. Das et al.
conducted experiments on monolayer MoS2 positioned on a
Si/SiO2 substrate, revealing that the PSHE is predominantly
influenced by the angle of incidence, postselection angles,
and polarization states [33]. In a similar vein, Wang et al.
explored the PSHE in a one-dimensional photonic crystal
composed of ultrathin Au films and transition metal dichalco-
genides (TMDCs) such as MoS2, MoSe2, WS2, and WSe2.
Their findings demonstrated that the photonic crystal featur-
ing monolayer WS2 exhibits highly robust PSHE [33]. Despite
these insightful theoretical and experimental investigations,
there currently exists a gap in our knowledge concerning how
the PSHE behaves in the presence of spin and valley degrees
of freedom exhibited by electrons in TMDCs. Motivated by
the distinctive optoelectronic responses of these 2D hexagonal
materials, we aim to fill this gap within the framework of a
general Haldane low-energy model Hamiltonian [15,34].

We employ a generic Haldane model Hamiltonian within
the Kubo formalism to compute optical conductivities. After
obtaining the complex functions of the optical conductiv-
ities, we proceed to solve Fresnel’s reflection coefficients
using Maxwell equations. Our developed model provides a
comprehensive description of the spin-dependent splitting in
reflection on the surface of 2D Haldane model materials. This
encompasses both transverse and longitudinal spin-dependent
displacements in the PSHE across various 2D hexagonal Hal-
dane model materials. Initially, we meticulously scrutinize
the longitudinal and transverse spin-dependent displacements
within both topological and trivial systems, providing insights
into the sign-switching phenomenon characterizing the PSHE.
Subsequently, we broaden our investigation to encompass
the realm of buckled Xene monolayer material. In the pro-
cess, we emphasize the significance of spin-dependent shifts
as intricate indicators of topological phase transitions, each
unveiling distinct behaviors in various states. Lastly, our ex-
ploration delves into the spin and valley-polarized reflected
spin-dependent displacements within monolayer transition
metal dichalcogenides. Our findings highlight the remark-
able sensitivity of the PSHE to spin and valley indices,
as well as to the effective mass bands inherent in these
materials.

This article is structured as follows: In Sec. II, we use the
modified Haldane Hamiltonian and derive optical conductivi-
ties. In Sec. III, we discuss Fresnel’s reflection coefficients for
an interface coated with 2D Haldane material and the relation
of the PSHE. In Sec. IV, we present and discuss the PSHE
in various 2D crystalline materials and finally, we summarize
our main results in Sec. V.

II. THE MODIFIED LOW-ENERGY HALDANE MODEL
HAMILTONIAN AND OPTICAL CONDUCTIVITY

We consider a generic model Hamiltonian known as the
modified Haldane model [15,34,35],

Ĥ = −t1
∑
〈i, j〉

a†
i a j + t2

∑
〈〈i, j〉〉

eiνi jφa†
i a j + M

∑
i

χia
†
i ai, (1)

where, a†
i and ai are the fermionic creation and annihilation

operators of the ith atomic site. The tight-binding parameters
are t1 and t2. The first term in Eq. (1) represents nearest-
neighbor (NN) interactions, while the second term captures
next-nearest-neighbor (NNN) interactions. This term intro-
duces a breaking of time-reversal symmetry T for a nonzero
phase angle φ in the exponential factor eiνi jφ . Here, vi j =
+1(−1) represents the clockwise (anticlockwise) NNN hop-
ping direction. The last term denotes the on-site potential
difference for the A and B sublattices, where χi = +1(−1) for
the A(B) sublattice. This term is responsible for breaking the
A and B sublattice inversion symmetry I, resulting in a band
gap of 2M at the K and K ′ valleys inside the Brillouin zone. It
should be noted that our investigations focus on large systems
so that edge effects can be neglected. Taking the Fourier
transform of the Hamiltonian, one can obtain the low-energy
Hamiltonian near the K and K ′ points [36,37],

Ĥ(k) = −λ + h̄vF (τkxσ̂x + kyσ̂y) + �τ σ̂z, (2)

where vF = √
3at1/(2h̄) is the Fermi velocity, τ = +1(−1)

denotes the K (K ′) valley, λ = 3t2 cos φ and �τ = M −
τ3

√
3t2 sin φ. The eigenvalues of the Hamiltonian are given

by Eτ
η (k) = −λ + η

√
(h̄vF k)2 + �2

τ where η = +1(−1) de-
notes the conduction (valance) band index. The corresponding
eigenfunctions can be obtained from Eq. (2) as

∣∣ψτ
η (k)

〉 = 1√
2
[
Eτ

η (k) + λ
]
⎡
⎣

√
Eτ

η (k) + λ + �τ

eiϕ/τ
√
Eτ

η (k) + λ − �τ

⎤
⎦, (3)

where ϕ = tan−1(ky/kx ).
We calculate the optical conductivity by making use of the

Kubo formalism. Therefore, the complex optical conductivity
tensor at the K and K ′ valleys can be obtained as

σi j (�τ , λ, ω) =
∑
τ=±1

(
σ intra

i j (�τ , λ, ω) + σ inter
i j (�τ , λ, ω)

)
,

(4)

where i, j can be x or y. It should be noted that both the
interband σ inter

i j and intraband σ intra
i j conductivities contribute

to the total optical response represented by the complex dy-
namical conductivity σi j of the Haldane model materials. The
intraband conductivity σ intra

i j is given by [22,35,38]

σ intra
i j (�τ , λ, ω) = − ie2h̄

∫
d2k

(2π )2

×
(

df
(
Eτ

v (k)
)

dEτ
v (k)

〈
ψτ

v

∣∣v̂i

∣∣ψτ
v

〉〈
ψτ

v

∣∣v̂ j

∣∣ψτ
v

〉
(ω + i�)

+ df (Eτ
c (k))

dEτ
c (k)

〈
ψτ

c

∣∣v̂i

∣∣ψτ
c

〉〈
ψτ

c

∣∣v̂ j

∣∣ψτ
c

〉
h̄(ω + i�)

)
,

(5)

where v and c denote the valence and conduction bands,
respectively, f (Eτ

η ) is the Fermi-Dirac distribution function,

and v̂i = h̄−1∂Ĥ/h̄∂ki is the velocity operator. Based on sym-
metry consideration, σ intra

xy (�τ , λ, ω) = −σ intra
yx (�τ , λ, ω) =

0. The interband conductivity σ inter
i j , on the other hand, can be
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expressed as

σ inter
i j (�τ , λ, ω) = − ie2h̄

∫
d2k

(2π )2

(
f
(
Eτ

v (k)
) − f

(
Eτ

c (k)
)

Eτ
v (k) − Eτ

c (k)

〈
ψτ

v

∣∣v̂i

∣∣ψτ
c

〉〈
ψτ

c

∣∣v̂ j

∣∣ψτ
v

〉
Eτ

v (k) − Eτ
c (k) + h̄(ω + i�)

+ f (Eτ
c (k)) − f

(
Eτ

v (k)
)

Eτ
c (k) − Eτ

v (k)

〈
ψτ

c

∣∣v̂i

∣∣ψτ
v

〉〈
ψτ

v

∣∣v̂ j

∣∣ψτ
c

〉
Eτ

c (k) − Eτ
v (k) + h̄(ω + i�)

)
. (6)

By solving the matrix elements of velocity operators, the
longitudinal and transverse optical conductivities at zero tem-
perature, are calculated for both K and K ′ valleys and thus we
have

σ intra
xx (�τ , λ, ω) = e2

4h̄

(μF + λ)2 − �τ
2

(μF + λ)

(
δ(h̄ω)

+i
1

π h̄ω

)
�

(
μF − Eτ

co

)
= σ intra

yy (ω), (7)

σ inter
xx (�τ , λ, ω) = e2

16h̄

[
1 + 4�2

τ

(h̄ω)2

](
�[h̄ω − 2(�τ + λ)]

+ i

π
ln

∣∣∣∣2(�τ + λ) − h̄ω

2(�τ + λ) + h̄ω

∣∣∣∣
)

+i
e2

4π h̄2ω

�τ
2

(�τ + λ)

= σ inter
yy (�τ , λ, ω), (8)

and finally the optical Hall conductivity along the xy direction
is computed as

σ inter
xy (�τ , λ, ω) = e2τ�τ

4π h̄2ω

(
ln

∣∣∣∣2(�τ + λ) − h̄ω

2(�τ + λ) + h̄ω

∣∣∣∣
−i�(h̄ω − 2(�τ + λ))

)

= −σ inter
yx (�τ , λ, ω), (9)

where �(x) is the Heaviside function, �τ ≡ max[μF , Eτ
co],

and Eτ
co = −λ + |�τ |. When both the time-reversal T and in-

version I symmetries are conserved, i.e., t2 = 0, φ = 0, and
M = 0, one recover the optical conductivities of monolayer
graphene [39] indicating the soundness of these computations.

III. THE PHOTONIC SPIN HALL EFFECT

Having calculated the optical conductivities, we can
calculate Fresnel’s reflection coefficients and the reflected
longitudinal and transverse spin-dependent spatial shifts. To
do so, we assume that a linearly polarized Gaussian wave
of frequency ω is propagating in air and illuminates the 2D
Haldane model material placed on top of a substrate with
an incident angle θi as displayed in Fig. 1. The Cartesian
coordinate frame (x, y, z) is established, where (xi, yi, zi) and
(xr, yr, zr) present the central wave vectors of the incident and
reflected beams, respectively.

To obtain the reflected and transmitted field amplitudes, we
apply the appropriate boundary conditions at the surface of the
studied system. At the surface, these boundary conditions are
given by [40]

Es
t = Es

i + Es
r , (10)

ktz

kt
E p

t = kiz

ki

(
E p

i − E p
r

)
, (11)(

ktz

kt
σppE p

t + σpsE
s
t

)
+ 1

Zt
E p

t = 1

Zi

(
E p

i + E p
r

)
, (12)(

ktz

kt
σspE p

t + σssE
s
t

)
+ 1

Zt

ktz

kt
Es

t = 1

Zi

kiz

ki

(
E p

i + E p
r

)
, (13)

where, Z0 and Zt = 1/
√

εt are the impedance of the air and
the medium. The terms σss, and σps are the longitudinal and
transverse parts of the complex optical conductivities of the
system, and Es

i (E p
i ), Es

r (E p
r ), and Es

t (E p
t ) are the complex

function of the s− (p−) polarized electric fields, respectively.
Fresnel’s reflection coefficients of the system are [22,41,42]

rpp(k, iω) = α−β+ + σpsσsp

α+β+ + σpsσsp
, (14)

rss(k, iω) = α+β− − σpsσsp

α+β+ + σpsσsp
, (15)

rps(k, iω) = −rsp(k, iω) = 2

Zi

σsp

α+β+ + σpsσsp
, (16)

FIG. 1. Representation of the photonic spin Hall effect of re-
flected Gaussian light wave from the surface of the Haldane model
materials. �xH/V

r± and �yH/v
r± are the LHCP/RHCP longitudinal and

transverse spin-dependent shifts for the vertical/horizontal polarized
optical waves. The horizontal and vertical polarization Gaussian
states are denoted by |H〉 and |V 〉, respectively, while the positive |+〉
and negative |−〉 states represent the LHCP and RHCP components.
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where

α± = σppkiz

ki
+ kizkt

Zt kiktz
± 1

Zi
, (17)

β± = ∓σsski

kiz
+ kikt

Zt kizkt
− 1

Zi
· (18)

The angular spectrum of the incident Gaussian wave in the
momentum space with beam waist w0 can be expressed as

Ẽi = w0√
2π

exp[
−w2

0 (κ2
ix+κ2

iy )
4 ] where the wave vectors of the in-

cident light are denoted by κix and κiy, respectively [42]. The
horizontal and vertical incident field components in the spin
basis can be expressed as ẼH

i = (Ẽi+ + Ẽi− )/
√

2 and ẼV
i =

i(Ẽi− − Ẽi+)/
√

2. The amplitudes of the reflected angular
spectra with the horizontal (H) and vertical (V ) polarization
Gaussian states are linked to those of the incident wave by the
transfer matrix as follows [10,22]:[

ẼH
r

ẼV
r

]
=

[
rpp − κry ρ cot(θin )

k0
rps + κry ϕ cot(θin )

k0

rps + κry ϕ cot(θin )
k0

rss − κry ρ cot(θin )
k0

][
ẼH

i

ẼV
i

]
,

(19)

where, ϕ = (rpp + rss), ρ = (rps − rsp) and k0 = ω
√

ε0/c.
Here, for the angular spectrum, the boundary conditions κrx =
−κix and κry = κiy are introduced. By transforming the hor-
izontal and vertical electric field amplitudes of light beams
from the wave vector space into the coordinate space, one may
obtain the reflected longitudinal and transverse spatial shifts
as [10,22,42]

�xH
r± = ∓ 1

k0
Re

(
rpp

�

∂rsp

∂θin
− rsp

�

∂rpp

∂θin

)
, (20)

�xV
r± = ∓ 1

k0
Re

(
rps

�

∂rss

∂θin
− rss

�

∂rps

∂θin

)
, (21)

�yH
r± = ∓cot θi

k0
Re

(
ϕ rpp

�
− ρ rsp

�

)
, (22)

�yV
r± = ∓cot θi

k0
Re

(
ϕ rss

�
+ ρ rps

�

)
, (23)

where, � = (r2
pp + r2

sp). In the following, for the sake of sim-
plicity, we restrict our discussion to the H polarized incident
light wave only for the calculation of the PSHE.

IV. THE PHOTONIC SPIN HALL EFFECT IN VARIOUS 2D
MATERIALS

A. Topological and trivial insulator

First, we discuss the phase diagram expressed in φ and
M/t2 plane as shown in Fig. 2. The blue (red) curve indicates
the specific case that the K (K ′) valley does not have an energy
gap while the K ′(K ) valley has an energy gap. It must be noted
that the topological phase transition occurs when the sign of
M/t2 changes. When |M/t2| is smaller than 3

√
3| sin φ|, the

phase of the material is topological. On the other hand, if
|M/t2| is greater than 3

√
3| sin φ|, then it is a band insulator

(trivial). We specify the normal and (topological) insulator
phase with the associated Chern number in regions A and
B (C and D) as shown in the phase diagram (see Fig. 2).
Although the phase diagram for the Haldane model is well
studied, it is worth mentioning that the topological phases of

FIG. 2. Phase diagram of the general model. The normal and
(topological) insulator regime is denoted by A and B (C and D).
The blue (red) curves correspond to M = τ3

√
3t2 sin φ (M =

−τ3
√

3t2 sin φ), where both the valleys K and K ′ have zero energy
gap. The topological and normal electronic phases and the associated
Chern numbers are also indicated.

all the materials examined here are determined by essential
parameters such as t2 and φ. Consequently, the topological
phases also vary with these parameters. The PSHE observed
in these materials is attributed to topology, highlighting the
manipulation through spin-orbit coupling and external electric
fields. The information on optical conductivities of 2D Hal-
dane model materials is inherited in their energy dispersions.
The parameters for the topological and trivial cases are also
given in Table I.

By examining the energy dispersion of the topological
and trivial cases, we can delve into the discussion of opti-
cal conductivities, the properties of which are rooted in the
specified regimes of the phase diagram. In Figs. 3(a)–3(d),
we depict the optical conductivities for the topological and
trivial cases as a function of photon energy in the K valley. In
Fig. 3(a), the real and imaginary components of σxx and σxy

are plotted against h̄ω for the topological case. The parameter
values are detailed in Table I. We consider the undoped case,
where the Fermi energy μF = 0, resulting in pure interband
optical transitions. Logarithmic singularities in σxx and σxy

conductivities are evident at Eg = h̄ω, occurring when the
incident photon energy h̄ω matches Eg. Additionally, the real
component of σxx and the imaginary part of σxy monotonically
decrease for photon energies higher than Eg. However, loga-
rithmic singularities are observed in the imaginary part of σxx

and the real component of σxx due to interband transitions. It
is noteworthy that for a finite electron doping μF =0.5 eV, the
peaks in optical conductivities are blue-shifted, as illustrated
in Fig. 3(b). For the trivial case, we set t2 = 0.05 eV, φ = 0,
and M = 0.5 eV, corresponding to the A and B regions. Fig-
ures 3(c) and 3(d) present the real and imaginary components
of the optical conductivities concerning photon energy for the
K valley, considering μF = 0 eV and μF =0.5 eV, respectively.
Due to the finite value of the band gap M, the excitation
energies of intraband transitions are shifted to higher photon
energies. As a first step, we focus our attention on investi-
gating the dependence of Fresnel reflection coefficients on
the complex optical conductivity of Haldane materials. Our
numerical results show that |rpp| attains a minimum value at a
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TABLE I. Optical transitions in different Haldane materials in the K valley. The × sign represents no transition. The spin-orbit coupling
in silicene and MoS2 are �so= 3.9 meV and �TMD= 75 meV, respectively.

Haldane material t2 M φ T1 T2

Topological 0.05 eV 0 eV π/2 6
√

3t2 ×
Trivial 0.05 eV 0.5 eV 0 2M ×
Buckled Xene (QSHI phase) �so/3

√
3 meV �so/2 meV π/2(−π/2) �so(↑) 3�so(↓)

Buckled Xene (VSPM phase) �so/3
√

3 meV �so meV π/2(−π/2) ×(↑) 4�so(↓)
Buckled Xene (BI phase) �so/3

√
3 meV 2�so meV π/2(−π/2) 2�so(↑) 6�so(↓)

TMDC (MoS2) �TMD/3
√

3 eV �/2 eV 5π/6(−π/6) (� − �TMD)(↑) (� + �TMD)(↓)

specific angle of incidence referred to as the pseudo-Brewster
angle θB and then rises to the maximum value. In Fig. 4(a),
we provide comparisons between |rpp| and the real part of
σxy for three different angles of incidence. We observe that
|rpp| and the real part of σxy exhibit a similar trend with h̄ω

for θi � θB, but they show different behavior for θi � θB, as
shown in Fig. 4(a). On the other hand, |rss| and the imagi-
nary component of σxy (or real part of σxx) display a similar
tendency for three different angles of incidence as shown in
Fig. 4(b). The step-like nature of |rss| is inherited from the
imaginary component of σxy (or real part of σxx). Similarly,
|rsp| and the imaginary part of σxy exhibit the a similar pattern
for θi � θB and in the vicinity of θB, while at a larger angle
of incidence (θi = 70◦), a slightly different pattern can be
observed, as depicted in Fig. 4(c). From this visualization, it

is evident that the reflection coefficients are highly sensitive
to changes in the optical conductivity of Haldane materials.

In the next step, we delve into the longitudinal and trans-
verse spin-splitting displacements of Haldane model materials
for both topological and trivial cases. Previous studies [10]
have highlighted the sensitivity of these displacements to the
minimum values of |rpp| with significant splitting occurring
around θB. To illustrate this, color maps of �xH

r+ and �yH
r+

versus θi and h̄ω are presented in Figs. 5(a) and 5(b) for
the topological case. It must be noted that for all cases, the
in-plane and transverse displacements give extreme values
around θB = 54.6◦. For this purpose, the incident angles for
�xH

r+ and �yH
r+ in rest of the figures are restricted to 52–58◦

range. For better clarity, the color map of LHCP longitudinal
PSHE displays extreme displacement at h̄ω = 0.5 eV in the

FIG. 3. The real and imaginary parts of σ/σ0 for topological case (a) and (b) are given for μF = 0 while (c) and (d) are given for μF =
0.5 eV, respectively. We set a topological (t2 = 50 meV, M = 0 and φ = π/2) and (b) a trivial (t2 = 50 meV, M = 0.5 eV and φ = 0) cases.
The topological cases are shown in (a) and (b); however, the trivial cases are shown in (c) and (d).
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(a)

(b)

(c)

FIG. 4. Comparisons between Fresnel reflection coefficients
|rpp|, |rss|, and |rsp| and the optical conductivities σxy and σxx . The
|rpp|, |rss| and |rsp| spectra in (a), (b), and (c) are calculated at three
different angles of incidence.

vicinity of θB, where |rpp| exhibits local minima as shown
in Fig. 5(a). The positive LHCP longitudinal spin-dependent
shift �xH

r+ aligns with the positive peak in the real part of
σxy and the Fresnel reflection coefficient rpp near θB, compare
with Fig. 4(a). Moving to Fig. 5(b), the transverse displace-
ment �yH

r+ for the topological case is presented. The step-like
behavior of the reflected spin-dependent transverse shift is
attributed to |rss|, exhibiting a similar trend with angles of
incidence [see Fig. 4(b)]. Notably, �yH

r+ is positive when
the angle of incidence is less than θB and becomes negative
otherwise. Similarly, Figs. 5(c) and 5(d) present the color
maps of �xH

r+ and �yH
r+ for the trivial case, respectively. Both

displacements exhibit similar characteristics, with �xH
r+ being

negative due to the negative real part of σxy. In the vicinity
of θB, �xH

r+ displays large values at h̄ω = 1 eV, as shown in
Fig. 4(a). These shifts in both topological and trivial cases are
incident energy dependent, illustrating the energy-dependent
optical longitudinal and Hall conductivities of Haldane
materials.

B. Buckled Xene monolayer materials

Buckled Xene (X refers to group-IV elements) monolayer
materials are silicon (silicene), germanium (germanene), tin
(stanene), and lead (plumbene) analogs of graphene. The
major difference is that these materials have out-of-plane
structures leading to a large spin-orbit coupling (SOC). The
strength of the SOC �so in silicene [43], germanene [44],
and tinene [45] are 1.55–7.9 meV, 24–93 meV, and 100 meV,
respectively. An external electric field Ez vertical to the buck-
led Xene plane breaks the inversion symmetry and results
in a staggered potential �z = elEz between sublattices A
and B. Subsequently, the interaction of the Ez with buckled
Xene monolayer materials makes the surface Dirac fermions
mass controllable at both valleys, which leads to multiple
topological phase transitions. If we substitute M = �z, t2 =
�so/3

√
3, and φ = ±π/2, in the dispersion relation of the

generic Hamiltonian, we can reproduce the dispersion relation
of the buckled Xene monolayer materials as [43] Eτ,s

η (k) =
η
√

(h̄vF k)2 + (�s
τ )2 where, �s

τ = �z − τ s�so is the energy
gap in the buckled Xene monolayer materials, which can be
tuned by variation in Ez. The terms φ = π/2 and φ = −π/2
denote real spin degrees of freedom for spin-up and spin-down
electrons, respectively.

The electronic band structures of materials in the graphene
family can be understood by the aforementioned equation for
the spin-up and spin-down in the K valley. Notice that
spin-dependent electron significantly influences the band
structure of buckled Xene and transition metal dichalco-
genides materials by generating pseudospin-polarized bands
and spin-polarized valleys near the Dirac points. Subse-
quently, the PSHE depends on the electron spin degree of
freedom. For the case �z = 0, the spin-up and spin-down
energy bands are degenerate and separated by a gap of 2�so.
For the �z = 0.5�so case, the buckled Xene monolayer mate-
rial behaves as a quantum spin Hall insulator (QSHI) [43].
For �z = �so, the spin-up electron band gap closes and
the buckled Xene monolayer material (which is silicene in
this case) undergoes a topological phase transition from the
QSHI phase to the valley-spin polarized metal (VSPM) phase.
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FIG. 5. Color maps of (a) �xH
r+ and (b) �yH

r+ vs photonic energy and angle of incidence in the K valley in the topological case. Color maps
of the (c) �xH

r+ and (d) �yH
r+ vs h̄ω and θi in the K valley in the trivial case.

Further increasing the strength of the staggered potential (i.e.,
�z > �so) results in reopening the spin-up and down gaps and
the material reaches the band insulator (BI) phase. As a result,
the buckled Xene monolayer materials present an extreme rich
phase diagram.

In Figs. 6(a)–6(d), σxx and σxy for spin-up and spin-down
electrons in the K valley in the aforementioned topological
phases are shown. In the QSHI phase, there are two steps
(jumps) in the longitudinal conductivity at two different pho-
ton energies (h̄ω = �so and h̄ω = 3�so) as shown in Fig. 6(a).
The optical transitions in distinct phases are shown in Table I.
When �z = �so, the gap of one of the spin-split bands closes.
In the VSPM phase, we can see only one singular peak or step
of σxx and σxy, which originates from the interband transitions
of the spin-down electron in the K valley at photon energy
h̄ω = 4�so. It must be noted that the VSPM instance divides
into two topological phases. In the BI phase, two resonant
peaks emerge in the conductivity spectra at h̄ω = �so and
h̄ω = 6�so.

To probe the topological phase transitions in the PSHE due
to the interaction of a Gaussian beam with the buckled Xene

monolayer materials, Figs. 7(a)–7(f) depict the color maps
of the LHCP longitudinal and transverse shifts versus photon
energy and incident angles in the three distinct phases, QSHI,
VSPM, and BI. Figures 7(a) and 7(b) demonstrate the PSHE
of the buckled Xene monolayer material in the QSHI phase,
illustrating selective excitation of spin-up and spin-down elec-
trons in the K valley. The spin-valley coupled longitudinal
spatial shift �xH

r+ exhibits extreme values at h̄ω = �so and
h̄ω = 3�so in the vicinity of Brewster’s angles, θB = 54.6◦.
At h̄ω = �so, �xH

r+ is positive and becomes negative at sec-
ond excitation photonic energy h̄ω = 3�so because the real
part of the Hall conductivity switch sign from positive to
negative. Figure 7(b) depicts the behavior of the spin and
valley polarized transverse shifts �yH

r+ versus the incidence
angle and photon energy in the QSHI phase. We observe pos-
itive and negative spatial spin-dependent shifts at the optical
transition frequencies in the proximity of Brewster’s angle.
The �yH

r+ is positive (negative) when θi < θB (θi > θB). The
jump-like behavior is shown on the first and second optical
transitions. The color maps of the spin-valley coupled LHCP
�xH

r+ and �yH
r+ in the VSPM state are shown in Figs. 7(c)
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FIG. 6. The real and imaginary components of the optical conductivities versus photon energy for the spin-up and spin-down electrons in
the K valley in distinct topological phases. (a) Real parts of σxx (ω)/σo. (b) Imaginary components of σxx (ω)/σo. (c) Real parts of σxy(ω)/σo.
(d) Imaginary components of σxy(ω)/σo. For these simulations, we used t2 = �so/3

√
3, �so = 3.9 meV, M = �z and φ = ±π/2 for spin-

up(spin-down).

and 7(d). In this phase, as mentioned above, we have only one
optical transition at h̄ω = 4�so. Therefore, we can observe
negative �xH

r+ shift and step-like reflected �yH
r+ at the optical

transition energy. Figures 7(e) and 7(f), display the color maps
of the longitudinal and transverse displacements in the BI
phase, respectively. We observe significantly large negative
shifts in this phase. The giant shifts can be seen at h̄ω = �so

and h̄ω = 6�so near the Brewster’s angle, respectively. In this
phase, the width of the steps in �yH

r+ increases compared to
the QSHI phase as the conductivity jumps originated by the
spin-up electron are red-shifted, and the spin-down electron
are blue-shifted.

C. Transition metal dichalcogenide monolayers

Monolayer and few-layer transition metal dichalcogenides
(e.g., MX 2, M = Mo, W; X = S, Se) have attracted huge
attention for spintronic, valleytronic, and optoelectronic ap-
plications [46–48]. Clearly, the monolayer MX 2 has a larger
band gap in the near-infrared to the visible region. MX 2 ma-
terials are of particular interest because they have a valley
degree of freedom. Additionally, it has opposite spins at the
two in-equivalent K and K ′ valleys. By adjusting M = �/2,
t2 = �TMD/3

√
3, and φ = +5π/6(−π/6), we can reproduce

the dispersion relation of monolayer MX 2 materials at the
K and K ′ valleys for both spins as Eτ,s

η (k) = τ s�TMD/2 +
η
√

(h̄vF k)2 + (�s
τ )2 where, �s

τ = 0.5� − 0.5τ s�TMD is the

energy gap in the monolayer MX 2 materials. The splitting
of the spin-up and spin-down electrons at the valence bands
occurs in each valley. At the K valley, the upper (lower)
valence band is occupied by spin-up (spin-down) electrons.
Interestingly, due to the time-reversal symmetry, the spin split-
ting has opposite signs at K and K ′ valleys. Figures 8(a) and
8(b) present the real and imaginary parts of σxx and σxy of
monolayer MoS2, for spin-up and spin-down electrons in the
K valleys, respectively. As shown, two jumps can be seen in
the conductivity spectra at the optical excitation frequencies
of the spin-up and spin-down electrons of the K valley [49].
Similarly, the optical conductivities σxx and σxy of monolayer
MoS2 in the K ′ valley in Figs. 8(c) and 8(d).

Figures 9(a) and 9(b) give the color maps of the spin
and valley polarized �xH

r+ and �yH
r+ shifts for the H polar-

ized wave versus energy and incident angle for the K valley.
Previously, the reflected spin-dependent displacement in the
air-glass interface has been experimentally demonstrated to
happen around the Brewster angle of 56.3◦, with the enhance-
ment of the original displacement by nearly four orders of
magnitude [50]. From Figs. 9(a) and (b), we can see that there
are some similar features in the monolayer MoS2 and the insu-
lating silicene systems [see Figs. 7(e) and 7(f)]. The prominent
reflected spin-dependent displacements occur around θB as
usual. It is seen that �xH

r+ gives extreme values in the vicinity
of θB at which the rpp exhibits local minimums. The large
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FIG. 7. Color maps of the �xH
r+ and �yH

r+ vs h̄ω and θi for the spin-up and spin-down electrons at the K valley in distinct topological
phases. (a) �xH

r+ and (b) �yH
r+ in the QSHI phase. (c) �xH

r+ and (d) �yH
r+ in the VSPM instant. (e) �xH

r+ and (f) �yH
r+ in the BI phase. We use

t2 = �so/3
√

3, �so = 3.9 meV, μF =0 eV, M = �z and φ = +π/2 (φ = −π/2) for the spin-up (spin-down).

negative in-plane shift �xH
r+ for the K valley can be seen in

Fig. 9(a). The negative shift can be attributed to the negative
Hall conductivity as shown in Fig. 8(b). Figure 9(b) shows
variations of �yH

r+ with respect to the θi and h̄ω. We find
that a step-like reflected spin-dependent shift is observed in
MoS2 in the K valley for the spin-up and spin-down electrons.
Such a step-like behavior is inherited from the σxx and σxy

parts of the optical conductivity as shown Figs. 8(a) and 8(b).
The transverse spin-dependent shift is positive for θi < θB and
becomes negative for θi > θB. The reflected spin-dependent
shifts in the K ′ valley can be treated similarly. Figures 9(c)
and 9(d) show color maps of the reflected spin-dependent shift

spectra as a function of photon energy and incident angle for
H polarized wave in the K ′ valley, respectively. Interestingly,
for the K ′ valley, the longitudinal shift �xH

r+ is positive in the
vicinity of θB. The sign switching of the longitudinal shifts
is closely associated with the transverse Hall conductivity as
shown in Figs. 8(c) and 8(d). For the K and K ′ valleys, σxy

switch signs from negative to positive, respectively. Therefore,
both σxx and σxy collectively determine the behaviors of the
reflected spin-dependent shifts in the Haldane materials in
different valleys. It is seen that large in-plane photonic spin
Hall shifts appear in monolayer MoS2, when compared with
other 2D Haldane materials.
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FIG. 8. (a) The real and imaginary parts of σxx (ω)/σo and (b) σxy(ω)/σo as a function of photon energy for the K valley. (c) Real and
imaginary parts of σxx (ω)/σo and (d) σxy(ω)/σo as a functions of photon energy for the K ′ valley. For these simulations, we use t2 = �TMD/3

√
3,

�TMD = 75 meV, μF = 0 eV, �=1.66 eV, M = �/2, and φ = +5π/6 for spin-up and φ = −π/6 for spin-down.

V. CONCLUSIONS

The current study systematically discusses the photonic
spin Hall effect arising from the interaction of a linearly
polarized Gaussian beam with diverse 2D hexagonal mate-
rials exhibiting broken T and I symmetries. Notably, we
emphasize the strong dependence of the photonic spin Hall
effect on the nontrivial and trivial topologies inherent in these
materials. In the first scenario, we meticulously examined
the longitudinal and transverse displacements within both
topological and trivial systems, elucidating the sign-switching
phenomenon in the photonic spin Hall effect. Subsequently,
we extended our exploration to the buckled Xene monolayer
materials, underscoring the spin-dependent shifts as intricate
indicators of topological phase transitions, each manifest-
ing distinct behaviors in various states. Finally, the spin and
valley-polarized reflected spin-dependent displacements in
monolayer transition metal dichalcogenides were addressed.
Our findings highlight the sensitivity of the photonic spin Hall
effect to spin and valley indices, as well as to the effective
mass bands within these materials.

Since several studies on the photonic spin Hall effect in
2D systems are available, a proper comparison with those
results seems to be in order (see Table II). Zhou et al. [53]
have found that the spin-dependent splitting in the photonic
spin Hall effect in graphene sheets is sensitive to the refrac-
tive index change of the sensing medium by considering the

surface plasmon resonance effect and found that the maximum
absolute of �xr+ is about 140 λ. Zhang et al. [27] have studied
the photonic spin Hall effect on the surface of anisotropic
2D atomic crystals with a parabolic dispersion relation. The
band masses along the x and y directions were 0.2 m0 and m0,
respectively, where m0 is the free-electron mass. The peak of
the photonic spin Hall effect was around 1.5 λ. Cheng et al.
[52] studied theoretically PHSE shifts in bilayer borophene
by making use of semiclassical optical conductivity shown a
giant PSHE of the transmitted beams around 300 λ. In their
study, they used the electronic relaxation time to be 65 fs,
the band masses are mx = 1.4 m0, and my = 3.4 m0 where
m0 denotes the static electron mass. The band gap in the
system is about 1 eV. Jia et al. [11] have investigated the
photonic spin Hall effect of the transmitted light through thin
films of α − Li3N-type topological semimetals and found the
maximum peak of the photonic spin Hall effect around 2λ.
In their system, the band gap is 1.04 and the band mass is
0.044 m0.

As summarized in Table II, our results indicate a significant
increase in the photonic spin Hall effect �xH/V

r+ or �yH/V
r+

around 30 µm at given average electron densities. These com-
parisons indicate that our results align with previous studies
where applicable. Moreover, our results also extend to several
relevant cases that were not previously discussed, for example,
the spin and valley-dependent PSHE in TMDCs. We have
shown that the magnitude of the photonic spin Hall effect,
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FIG. 9. Color maps of the �xH
r+ and �yH

r+ vs h̄ω and θi for the spin-up and spin-down electrons. (a) �xH
r+ and (b) �yH

r+ in the K valley.
(c) �xH

r+ and (d) �yH
r+ in the K ′ valley.

apart from the spin and valley indices, depends on material
parameters, namely, the effective band masses in the con-
duction band, the Fermi velocity as well as the topology of

the band structure. Furthermore, the maximum photonic spin
Hall effect in a 2D system seemingly occurs when the effec-
tive band masses are relatively large. Moreover, we propose

TABLE II. Comparison of the PSHE in various 2D materials. The PSHE shifts are presented in µm, with the photon wavelength in units
of µm, the effective band mass normalized by the bare electron mass m0, and the effective band gap in eV at the average electron density
n = 2 × 1012 nm−2. In gapped Dirac materials, we simplify the dispersion relation as E ≈ � + h̄2k2/2m∗ for small k values to extract the
effective band masses.

2D materials �xH/V
r+ / �yH/V

r+ (µm) Wavelength (µm) Band mass (m0) Band gap (eV)

Graphene [51] 6λ = 9.3 1.550 0
Silicine [42] 2λ = 1.62 0.810 0.0033 0.012
Anisotropic 2D crystals [27] 1.5λ = 18.6 12.4 mx=0.2, my=0 Large
Twisted few-layer anisotropic 2D crystals [24] 6λ = 18.6 3.1 mx=0.2, my=0 Large
Bilayer borophene metasurfaces [52] −300λ = −292.8 0.974 mx=1.4, my=3.4 0
α-Li3N-type semimetals [11] 0.17λ = 0.105 0.62 0.044 1.04
Topological (this paper) 3λ = 30 10 0.182 0.52
Normal insulator (this paper) −5λ = −50 10 0.351 1.0
Buckled Xene QSHI (this paper) −2.5λ = 25 10 0.0033 0.012
Buckled Xene VSPM (this paper) −3λ = −30 10 0.0045 0.0156
Buckled Xene BI (this paper) −3λ = −30 10 0.0068 0.0234
2D MoS2 (this paper) ±3.5λ = ±35 10 0.53 1.74
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that employing weak measurement approaches facilitates the
experimental probing of the valley and spin-polarized Hall
conductivity via the photonic spin Hall effect in Haldane
materials. This opens up avenues for further exploration and
application of these intriguing phenomena in the realm of
optical and electronic studies.
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