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Tunneling electron induced luminescence from indium films on Si(111)
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We investigated the growth, electronic states, and tunneling electron induced luminescence of In ultrathin films
on Si(111) using scanning tunneling microscopy (STM). The In films (4–8 monolayers) grew layer by layer by
deposition at ∼100 K. The dI/dVs spectra exhibited the quantum-well states confined in the films. We observed
luminescence originating from the junction plasmon excited via electron tunneling into the quantum-well state.
Thus, by adjusting the thickness of the film at a single-layer level, we were able to modify the photon emission
from the STM junction.
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I. INTRODUCTION

Metallic thin films have attracted fundamental interest
due to their unique electronic properties. Because of elec-
tron confinement in the direction normal to the surface,
discrete electronic states called quantum-well states (QWSs)
are formed, and their energies crucially depend on the film
thickness [1]. As a result, the film thickness affects various
surface properties such as the work function [2,3] and chemi-
cal reactivity [4,5] at a level of atomic layers.

The optical property of metallic thin films has been inves-
tigated by the luminescence spectroscopy from the junction
of scanning tunneling microscopy (STM) [6–11]. The photon
emission occurs via the inelastic electron tunneling (IET)
mechanism, in which tunneling electrons excite the localized
junction plasmon followed by radiative decay [12–16]. In this
process, the electronic properties of metal thin film influence
the luminescence spectra because the probability of the IET
process depends on the density of states involved in the tran-
sition [17–30]. This implies that the QWSs play a crucial
role in the luminescence properties of the films so that the
spectra depend sensitively on the film thickness. The STM
induced luminescence (STML) was reported for the single
and double layers of Na films on Cu(111), where the QWSs
were proposed to be involved in the transition [19]. However,
there has been no study investigating the influence of QWS on
STML across a broad range of film thicknesses.

The (
√

7 × √
3) structure of In on Si(111) is known as a In

double-layer film with free-electronlike metallic states [31].
The In atoms are arranged in a quasirectangular configuration
which is reminiscent of the (001) planes of bulk In with
a body-centered tetragonal (bct) lattice [32,33]. Further de-
position of In at room temperatures induces the growth of
three-dimensional crystals on the double layer [34], while
a triple-layer structure is formed by the deposition below
∼200 K [35–37]. The STM observation of the triple layer
showed an (11 × 11) periodicity and quasi-(5.5 × 5.5) mod-
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ulation, which is attributed to the moiré pattern between the
lattices of Si(111) and In hexagonal packed layers [37]. The
previous study for the thicker films also reported that the
deposited films have the face-centered cubic (fcc) structure
and (111) orientation [38].

In this paper, we report the growth, electronic states, and
STML of the In ultrathin films by using STM. The In films
grow in a layer-by-layer fashion at ∼100 K up to eight layers,
which showed distinct QWSs as a function of the thickness.
We observed photon emission due to IET to the QWSs, thus
manipulating the STML property of the films at a single-layer
level.

II. EXPERIMENTAL METHODS

All the experiments were conducted at 78 K in an ultrahigh
vacuum chamber (USM1200, Unisoku) with base pressure
<1.5 × 10−10 Torr. An electrochemically etched Ag tip and
a mechanically polished PtIr tip were used for STM experi-
ments, and the former was used for recording STML spectra.
The topographic images were acquired in the constant-current
mode with the sample bias voltage Vs and tunneling current
I . The scanning tunneling (dI/dVs) spectra were obtained
by the lock-in technique with a modulation voltage of 20
mVrms at 560.5 Hz. The STML spectra were recorded with
constant current I = 5 nA for 60 s as a function of Vs.
Emitted light was collected by a plano-convex lens mounted
on the STM head and detected outside the chamber [39] by a
charge-coupled device camera (Andor iDus420A) attached to
a spectrograph (Andor KY193i). The tip apex was modified
by voltage pulses and repeatedly contacted to the substrate
to optimize its plasmonic response. The STML spectra were
smoothed and subtracted by the background spectrum taken
with the tip retracted.

Si(111) substrates were cut from an n-type Si(111) wafer
(ρ < 0.02 � cm) and cleaned by repeated flash annealing. In
was deposited on the Si(111)-(7 × 7) surface from an evapora-
tor made with an alumina crucible heated by a tungsten wire
loop. First, the double-layer film [In/Si(111)-

√
7 × √

3-rect
structure] was prepared by depositing an excess amount of
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In at 300 K and postannealing at 650 K [31,40]. The triple
layer of the (11 × 11) superstructure, hereafter referred to as
the 3 ML film, was produced by additional deposition of In
<120 K [37]. Thicker films were produced by further deposi-
tion on the 3 ML film under similar temperature conditions to
suppress the formation of three-dimensional In crystals rather
than two-dimensional films. Although the sample had to be
removed from a cold stage at 78 K for the deposition, we
achieved the formation of multilayer films by minimizing the
total time the sample left the stage. The temperature during the
deposition was estimated to be ∼100 K from the low-energy
electron diffraction (LEED) experiment.

III. RESULT

Figure 1(a) shows that the In atomic film was grown on the
3 ML film. For the 3 ML film [3 in Fig. 1(a)], the corrugation
of the (5.5 × 5.5) moiré pattern is seen [37]. The upper right
region of the STM image is covered with a smooth film [4 in
Fig. 1(a)]. The apparent height from the 3 ML film surface
is 2.5 Å, which is evidently smaller than the Si(111) step
height (3.13 Å). We therefore refer to the smooth film as
the 4 ML film. The low-bias STM image of the 4 ML film
[Fig. 1(b)] showed an array of protrusions with the periodic-
ity of (

√
3 × √

3)R30◦ with respect to the Si(111) substrate.
Further growth of the In films in a layer-by-layer fashion was
observed up to 8 ML [Figs. 1(c)–1(e)] with the (

√
3 × √

3)
superstructure retained. It was confirmed by LEED that the
(
√

3 × √
3) multilayer structure was stable at <120 K. On

the other hand, the (
√

3 × √
3) LEED pattern disappeared

>140 K, and then the (
√

7 × √
3) LEED pattern of the double-

layer film was restored at ∼170 K, probably accompanied
with the growth of three-dimensional In crystals.

We suggest that the multilayer films consist of the hexag-
onal monoatomic layers of In as depicted in Fig. 1(f). In this
model, the atomic density of each layer is only ∼0.5% higher
than that of the (101) surface of bulk bct In. Considering
the atomic distances of neighboring atoms in bct (3.25 and
3.38 Å), we estimate the distance between the close-packed
layers to be 2.7 Å. This distance is roughly consistent with the
observed height of the layers. A similar multilayer structure
has been reported for the (In, Mg)/Si(111) (

√
3 × √

3) struc-
ture consisting of two (In, Mg)-alloy and one In layers [41].
It is noted that our close-packed model also resembles the
fcc (111) model proposed for the In thin film prepared on
Si(111)-(7 × 7) [42]. However, the (

√
3 × √

3) periodicity for
the multilayer In films has never been reported.

Figure 2(a) shows dI/dVs spectra recorded for films with
thickness from 4 to 8 ML. The 4 ML film exhibited a sharp
peak at 1.1 V with a satellite at ∼1.5 V. For the 5 and 6
ML films, two close peaks were observed at 0.4 and −0.4 V,
respectively. In addition, similar double peaks and peaks with
satellite features were observed for thicker films and at higher
Vs, although there were some exceptions that could not be
resolved. The peak energies (marks) were determined by
fitting with Gaussian functions [39] and were displayed as
a function of thickness in Fig. 2(b). It is easy to see that
the observed states are divided into three sequences, each of
which has lower energy as the layer number increases. The
thickness-dependent behavior of states strongly suggests the
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FIG. 1. (a) A scanning tunneling microscopy (STM) image of 3
and 4 ML In films on Si(111). The orange dashed line indicates the
substrate step descending to the bottom right. (b) Enclosed image
of the 4 ML film exhibiting

√
3 × √

3 superstructure. (c)–(e) STM
images of 4–8 ML In films on Si(111). The orange dashed lines
indicate the substrate steps ascending to the bottom right. The images
were acquired at (a) I = 0.5 nA, Vs = −0.8 V, (b) I = 0.5 nA, Vs =
−0.3 V, (c) I = 0.1 nA, Vs = −1.0 V, (d) I = 50 pA, Vs = 0.5 V, and
(e) I = 40 pA, Vs = 2.0 V. The image sizes are (a) 80 × 80 nm,
(b) 5.0 × 5.0 nm, (c) 80 × 80 nm, (d) 63 × 63 nm, and (e) 90 ×
90 nm. (f) A model of the In films. The blue circles represent In
atoms in the top layer. The dotted and solid lines represent (1 × 1)
and (

√
3 × √

3) lattices with respect to Si(111), respectively.

QWSs of electrons confined along the normal direction of the
film [Fig. 2(c)]. On the other hand, the doublet features are
attributed to the in-plane band structure of the QWSs [43].
The QWS around the �̄ point is mainly composed of the In
5pz orbital and exhibits upward dispersion. As the wave vector
approaches the zone boundary, the hybridization of the 5pz

and 5pxy orbitals alter the dispersion downward. The change
in dispersion leads to two maxima in the density of states of
the QWS. Therefore, the lower and higher energy peaks in
close proximity correspond to the QWSs at the �̄ and near the
zone boundary, respectively. Similar double-peak features in
STS were reported for the QWS of Pb thin films [44].
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FIG. 2. (a) dI/dVs spectra recorded for the In films as a function
of the thickness (raw data). The spectra, except for the 4 ML, are
offset vertically. The marks indicate peak positions determined by the
decomposition. The tip height was fixed at the set point of I = 0.5 nA
and Vs = 1.0 V. (b) The energies of the quantum-well state (QWS) as
a function of the thickness. The marks and blue dotted curves indicate
the experimental data and the calculated results, respectively. (c) A
schematic illustration of the QWS in the In films on Si(111). (d) The
calculated band structure of bulk In along the �-L direction.

The QWS are argued by using the phase accumulation (PA)
model [45–47]. In the PA model, confined electrons produce
standing-wave eigenstates in the condition:

2k⊥d + ΦC + ΦB = 2mπ, (1)

where k⊥ and d represent the wave number in the direc-
tion perpendicular to the surface and the film thickness,

respectively [47,48]. Here, ΦC and ΦB are the phase shifts
at the In/Si(111) and In/vacuum interfaces, respectively.

We simulated the energies of the QWSs as a function
of the film thickness by using the PA model as follows.
We assumed that the films consist of fcc-stacked In layers
and electrons are confined in the �-L direction. The �-L
dispersion was calculated with the generalized gradient ap-
proximation [49] to density functional theory, and we used
the projector-augmented wave method implemented in QUAN-
TUM ESPRESSO [50]. A plane-wave cutoff of 60 Ry was used.
The fcc structure of In was relaxed with the lattice constant
before the band calculation. As a result, we obtained a nearly
free-electronlike band shown in Fig. 2(d) and the Fermi wave
number of 1.54 Å−1. We used the wave number k⊥ with
respect to that at L point [51,52] and assumed the linear disper-
sion relation at the Fermi level (EF) [53]. The film thickness
d is expressed as d = Na + d0, where N is number of layers
(ML), a is the interlayer distance of 2.7 Å, and d0 is an offset
spacing used as a fitting parameter. The substrate-side phase
shift ΦC was tentatively fixed at π . The vacuum-side phase
shift ΦB is associated with the image potential barrier and is
described as ΦB = π

√
3.4/(Ev − E ) − π [47,54,55], where

Ev denotes the vacuum level (Ev = EF + 4.5 eV [56,57]), and
the energies are represented in units of eV.

Accordingly, we obtained the energies of the QWS from
Eq. (1) and fitted them to the experimental results by using
d0 as a parameter [Fig. 2(b)]. The results are shown by blue
dotted curves (d0 = −0.67 Å). The marks correspond to the
dI/dVs peaks in Fig. 2(a). As a result, the PA model repro-
duced the dI/dVs peak positions well at the energy >1 eV.
The deviation around EF may be ascribed to the neglect of
energy dependence of ΦC.

Figure 3(a) shows STML spectra measured on the 7 ML
film as a function of Vs from +2.0 to +5.0 V. The spectra be-
tween 2.8 and 4.2 V show a peak which shifts to higher energy
with Vs. A second peak appears in the spectra for Vs � 4.6 V.
The STML spectra were obtained as a function of the film
thickness and presented as intensity maps in Fig. 3(b). The
white solid lines represent the quantum cutoff (h̄ω = |eVs|)
which corresponds to a maximum photon energy supplied by
a tunneling electron [13]. We did not observe photon emission
via the two-electron process in which photon energy exceeds
the quantum cutoff because this process requires tunnel cur-
rent >1 µA [58–60]. Each map has an emission band whose
photon energy increases linearly with Vs. The second peaks
appear as relatively weak bands at Vs = 4–5 V in the maps for
7 and 8 ML.

The STML can originate from the IET process with the
excitation of the localized junction plasmon and the subse-
quent radiative decay of the plasmon. For the In films, the IET
process predominantly occurs to the QWSs due to the large
density of states. Therefore, the photon energy is given by a
difference between EF of the tip and the energy of the QWS
as

h̄ω = eVs − EQWS, (2)

where EQWS represents the QWS energy with respect to EF.
Here, h̄ω and e are the photon energy and the elementary
charge, respectively. With the EQWS determined in Fig. 2(a),
we plot Eq. (2) with blue dotted lines in Fig. 3(b). The marks
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FIG. 3. (a) Scanning tunnel microscopy induced luminescence (STML) spectra of the 7 ML film as a function of Vs from 2.0 to 5.0 V at an
interval of 0.1 V. They were recorded at I = 5 nA for 60 s. The spectra except the bottom one are offset vertically. (b) STML intensity maps
for the film thickness from 4 to 8 ML as a function of Vs (2.0–5.0 V at a 0.1 V interval) and photon energy (I = 5 nA for 60 s). The maximum
values of the scale are 550 counts for 4 ML, 650 counts for 5 ML, 3100 counts for 6 ML, 2000 counts for 7 ML, and 450 counts for 8 ML.
The intensity depends on the condition of the tip apex. The white solid lines represent the relation of the quantum cutoff (h̄ω = |eVs|). The
blue dotted lines indicate the relation between Vs and photon energy given by the Eq. (2). (c) A schematic illustration of the inelastic electron
tunneling (IET) process to quantum-well state (QWS) and excitation of the junction plasmon at positive Vs. (d) An STML intensity map of the
7 ML film recorded at negative Vs with the same condition as (b). The maximum value of the scale is 1600 counts. The white line indicates the
relation of the quantum cutoff. (e) A schematic illustration of the excitation of the junction plasmon at negative Vs.

correspond to those in Fig. 2(a). Thus, the IET mechanism
reproduces the observed photon energies. The intensities of
the emission bands are strong ∼2–3 eV and decrease away
from this range. This is consistent with the junction mode
of Ag tips [25]. It is noted that the doublet feature in the
density of states does not necessarily cause the photon emis-
sion of equal intensity. For example, for the 5 ML film, the
doublet [� and � in Fig. 2(a)] results in the predominant
photon emission for the former [Fig. 3(b)]. This implies that
the probability of plasmon excitation via the IET process
is not simply correlated with the local density of states but
depends on the in-plane wave number of the QWS to which
electrons tunnel. The underlying mechanism requires further
elucidation through theoretical investigation. At negative Vs

[Fig. 3(d)], the emission appears according to the quantum
cutoff condition (h̄ω � |eVs|), and no emission caused by the
QWS was observed. This is illustrated in Fig. 3(e), and the
absence of the QWS-related emission is consistent with that
the QWS exists predominantly above EF. The emission due to
quantum cutoff appears weakly for positive Vs at 6 and 7 ML
[Fig. 3(b)].

The STML induced by the interband transition be-
tween the QWSs was previously observed for Na layers on
Cu(111) [19]. The interband emission is characterized by the
constant photon energy as a function of Vs, which was not
observed for the In films on Si(111) [Fig. 3(b)]. We suggest
that the emission through the interband transition competes
with the decay of tunneling electrons into the conduction band
of Si(111), leading to its suppression. The projected band gap
of Si(111) (2.4 eV at �̄ [61]) is smaller than that of Cu(111)
(>4 eV [62]), and thus, the QWS energy is out of the band gap
for Si(111). Therefore, the energy position of the QWS with
respect to the substrate electronic states may be crucial for the
photon emission via interband transitions.

IV. SUMMARY

We have studied the growth, electronic properties, and
STML of the In ultrathin films on Si(111) using STM. The
films showed layer-by-layer growth and are suggested to con-
sist of hexagonal packed layers. We observed the QWS and
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related photon emission from the In layers as a function of
thickness up to 8 ML. Consequently, the STML property of
the ultrathin films was controlled by the number of the atomic
layers.
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