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Mode engineering in reconfigurable fractal topological circuits
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Circuits can provide a versatile platform for exploring new physics, particularly in probing the topological
phases within complex geometries. Fractals, celebrated for their intricate, self-similar duality, and noninteger
dimensions, particularly those embedded in complex manifolds, remain uncharted in this context. In our research,
we implement Sierpiński fractal topological insulators within reconfigurable fractal topological circuits while
expanding the scope to include the cylindrical and toroidal structures. Our approach is grounded in consistency
theory and reinforced through experimental verification, confirming the presence of unconventional higher-order
topological phenomena referring to the abundance of topological edge and corner modes. Intriguingly, the
quantity of these edge and corner modes is proportional to the volume modes relative to the system size, with
an exponent aligning with the Hausdorff fractal dimension of the Sierpiński carpet. This study paves the way
for a deeper exploration of topological modes within fractal geometries, potentially unlocking new avenues in
topological physics.
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I. INTRODUCTION

Topological insulators are a special class of materials that
have a nontrivial topology in the bulk band structure and
exhibit topologically protected edge modes at the boundary
[1–4]. High-order topological insulators (HOTIs) are a new
class of topological insulators with dimensions d > 1 [5–9].
These higher-order topological insulators possess (d − 1)-
dimensional boundaries that, unlike conventional topological
insulators, do not conduct through gapless modes but, instead,
are themselves topological insulators. An increasing number
of systems are being used to model topological phenom-
ena in electronic systems, including ultracold quantum gases
[10–15] and photonic [16–25], acoustic [8,26–33], mechan-
ical [34–38], and electrical circuit systems [39–50]. Among
them, circuit systems composed of inductors and capacitors
are particularly notable for their flexibility in design, ease
of implementation, and integration [39,40]. Circuits facilitate
designs by incorporating various types of components and
enable the realization of nonlinear [47,48], non-Abelian [43],
and non-Hermitian modes [45,50,51], which are challenging
to achieve in alternative systems.

Fractal geometry, rooted in recursive mathematical itera-
tions, manifests diverse physics due to intricate and repeating
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patterns and is emerging as a promising prototype for systems
embodying noninteger dimensions. Fractals, especially those
grounded in higher-order topological insulators, have seen
significant advances in understanding topological physics in
noninteger dimensions in the fields of photonics and acoustics
[17,29]. However, photonic and acoustic systems often lack
the crucial aspect of reconfigurability. In modern electronic
design, reconfigurability empowers a circuit with multifunc-
tional capabilities. This feature is especially pronounced in
reconfigurable fractal topological circuits (RFTCs), allowing
adaptation to various operational modes. The “mode” refers to
a circuit’s specific operational state, influenced by frequency
response, impedance, and current flow. Mode engineering in
RFTCs is a critical process, involving the strategic manipu-
lation of these modes to achieve desired functionalities. Our
work delves into the theoretical and experimental intrica-
cies, demonstrating how RFTCs can yield versatile electronic
behaviors.

To develop RFTCs, we employ a modular approach to
two-dimensional (2D) Su-Schrieffer-Heeger (SSH) circuits,
selectively deactivating specific regions to design Sierpiński
fractal configurations. Compared to conventional 2D SSH
circuits, we observe that square Sierpiński carpets exhibit a
higher count of corner and edge modes. To further enhance
the reconfigurability of these systems, we introduce fully
controllable boundary conditions by selectively tailoring the
circuit connections among different nodes and are able to
embed RFTCs in cylindrical and toroidal geometries. The
aggregate of these modes rivals the number of topological
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FIG. 1. Evolution from the 2D SSH model to the fractal higher-order topological model. (a) Constructing square Sierpiński carpets from the
2D SSH model. The yellow box indicates the unit cell, and the orange box indicates the central square that should be removed. The green box
indicates the first-generation Sierpiński carpet G(1) which is formed by removing the central square. (b) Decomposition of the G(2) Sierpiński
fractal topological tight-binding model with t1 = 0, which is constituted by monomers, dimers, trimers, and tetramers. (c) Monomers at the
outer corner boundaries. Each monomer supports a zero-energy outer corner mode. (d) Dimers at the inner and outer edge boundaries. Each
dimer supports a bonding edge mode and an antibonding edge mode. (e) Tetramers in the bulk. Each tetramer supports a negative-energy, a
positive-energy, and two zero-energy bulk modes. (f) Trimmers in the inner corners and the energy distribution. Each trimer supports three
inner corner modes with negative (type I), zero (type II), and positive (type III) energy states.

modes, suggesting that the corners, edges, and bulk within
these fractals possess different properties for different geome-
tries, leading to specific design rules for mode engineering.
Such an approach not only broadens the scope of recon-
figurability but also provides a versatile framework for ex-
ploring novel topological phenomena in complex geometrical
settings.

II. RESULTS

We undertake the theoretical analysis by implementing the
fractal higher-order topological modes based on the 2D SSH
model. The conventional 2D SSH model has four sites and
fourfold rotation symmetry in each unit cell, with intercell
couplings t2 being stronger than intracell couplings t1. To
realize fractal higher-order topological modes, we tailor the
structure to construct square Sierpiński carpets, as shown
in Fig. 1(a). The first-generation Sierpiński carpet G(1) is
formed by removing the central square of the green region,
and the second-generation Sierpiński carpet G(2) is formed
by dividing a square into nine smaller squares and removing
the central square. Thus, to generalize, the N th-generation
Sierpiński carpet G(n) is achieved by recursively applying
this process to the remaining squares for each subsequent
generation. Different iterations of Sierpiński carpets all have
the same Hausdorff fractal dimension,

df = ln(8)/ln(3) ≈ 1.893. (1)

To further analyze the scaling characteristics of the num-
ber of corner, edge, and bulk modes, we tune the weak
coupling coefficient t1 to zero. In this case, the Sierpiński
carpet consists of four types of structural elements, namely,
monomers, dimers, trimers, and tetramers [Fig. 1(b)], each
supporting different local orbits. This adiabatic process en-
sures the preservation of topological invariants and provides a
way to directly compute the corner, edge, and bulk modes.
Among these structural elements, monomers appear at the
outer corner boundary and support a zero-energy outer cor-
ner mode [Fig. 1(c)]. Dimers appear at the inner and outer
edge boundaries, facilitating edge modes on the boundaries

and supporting bonding and antibonding modes, thus forming
two edge spectral continua above and below zero energy,
respectively [Fig. 1(d)]. The tetramers come from the bulk
position and have four eigenstates with positive, negative,
and zero energies [Fig. 1(e)], forming a three-bulk spectral
continuum. Trimers stem from the inner corner boundary
and support three local orbitals. They have a negative-energy
orbital (type I), a zero-energy orbital (type II), and a positive-
energy orbital [type III; Fig. 1(f)]. The inner corner modes
of types I and III are symmetric eigenstates, while the inner
corner modes of type II are antisymmetric. The emergence
of inner corner modes can be considered a distinctive fea-
ture of fractal HOTIs. Based on the analysis, the numbers of
monomers, dimers, trimers, and tetramers are determined as
follows:

N1(n) = 4, N2(n) = 16

5
× 3n + 1

35
× 8n+1 − 24

7
, (2)

N3(n) = 4 × (8n − 1)

7
,

N4(n) = 8

7
− 8

5
× 3n + 16

35
× 8n (3)

for the G(n) (n = 1, 2, 3, . . . ) Sierpiński carpet, and the num-
ber of outer corner modes, edge modes, inner corner modes,
and bulk modes are Noc = N1, Ned = 2N2, Nic = 3N3, and
Nbk = 4N4. The total numbers satisfy the sum rule:

Noc + Ned + Nic + Nbk = 4 × 8n. (4)

For instance, for G(2) in Fig. 1(a), 256 eigenmodes exist;
among them, there are 64 bulk modes, 80 edge modes, and
112 corner modes.

We further transform the planar Sierpiński carpet into
cylindrical and toroidal topological models by selectively con-
figuring the boundaries of the circuits. When the sites along
the x or y boundaries are connected, the cylindrical topological
model can be realized as in Fig. 2(b), while the toroidal topo-
logical model can be achieved by simultaneously connecting
the x and y boundaries, as shown in Fig. 2(c). For the cylindri-
cal topological model, using the same analysis method as that
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FIG. 2. Geometric topology and eigenstate spectra of the Sierpiński fractal higher-order topological model, cylindrical topological model,
and toroidal topological model. (a) Second-order Sierpiński fractal topological model G(2). (b) Cylindrical topological model. (c) Toroidal
topological model. (d) Eigenstate spectrum of the G(2) Sierpiński fractal topological model. (e) Eigenstate spectrum of the cylindrical
topological model. (f) Eigenstate spectrum of the toroidal topological model.

for the Sierpiński carpet, the numbers of monomers, dimers,
trimers, and tetramers are derived as follows:

N1 = 0, N2 = 6

5
× 3n + 1

35
× 8n+1 + 4

7
, (5)

N3 = 4 × (8n − 1)

7
,

N4 = −3

5
× 3n + 2

35
× 8n+1 + 1

7
. (6)

For the toroidal topological geometry, the quantities of
monomers, dimers, trimers, and tetramers are calculated as
follows:

N1 = 0, N2 = −4

5
× 3n + 1

35
× 8n+1 + 4

7
, (7)

N3 = 4 × (8n − 1)

7
,

N4 = 2

5
× 3n + 2

35
× 8n+1 + 1

7
. (8)

With the formulas above, the numbers of outer corner
modes, edge modes, inner corner modes, and bulk modes can
be calculated like those in the planar scenario. Specifically,
we analyze the detailed eigenstates, for instance, G(2) with
t1 = −0.22 and t2 = −1. The eigenstate spectra for the

G(2) Sierpiński fractal higher-order topological model, the

cylindrical model, and the toroidal topological model are
shown in Figs. 2(d), 2(e), and 2(f), respectively.

It can be observed that the total number of eigenstates
remains constant in the three cases, which is decided by
Eq. (4). For instance, Sierpiński carpet G(2) is 256. However,
the number of bulk, edge, and corner modes in the cylindrical
and toroidal topological models is engineered. As shown in
Fig. 2(d), there are 64 bulk modes, 80 edge modes, and 112
corner modes in the planar Sierpiński carpet. There is a high
number of edge and corner modes, which is a major feature of
the topological mode of fractals due to the abundance of edge
and corner boundaries in fractal geometries. From the eigen-
state spectrum [Figs. 2(e) and 2(f)], there are 96 bulk modes,
52 edge modes, and 108 corner modes in the cylindrical model
and 132 bulk modes, 16 edge modes, and 108 corner modes
in the toroidal model. Compared to those of planar Sierpiński
carpets, the eigenstates are significantly modulated. There is
no outer corner mode in either the cylindrical and or toroidal
model. The outer corner mode and partial edge mode in the
cylindrical model are transformed into the bulk mode, but the
number of inner corner modes remains constant. Compared to
the cylindrical model, the remaining number of edge modes
decreases further, and the vanishing ones are turned into bulk
modes. During this procedure, the number of inner corner
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modes remains unchanged:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

iω(2C1 + 2C2) + 1
iωL −iωC1 0 · · · 0 −iωC1 · · ·

−iωC1 iω(2C1 + 2C2) + 1
iωL −iωC1 · · · 0 0 · · ·

0 −iωC2 iω(2C1 + 2C2) + 1
iωL · · · 0 0 · · ·

...
...

. . .
...

...

0 0 0 · · · iω(2C1 + 2C2) + 1
iωL 0 · · ·

−iωC1 0 0 · · · 0 iω(2C1 + 2C2) + 1
iωL · · ·

...
...

...
...

...
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(9)

In the following, we validate the theoretical analysis by
constructing a proof of concept on a topological circuit plat-
form. With the elaborately designed RFTCs, we can observe
the different characteristics on identical printed circuit boards
(PCBs). The coupling coefficients t1 and t2 in the fundamental
2D SSH model are built from capacitors C1 and C2 with
capacitance values of 0.22 and 1 nF, so the hopping ratio
t := t1/t2 = C1/C2 = 0.22 < 1. Identical inductors L with an
inductance value of 440μH are connected between each site
and a common isolated grounding plate. The Laplacian J for
the circuit is given by Eq. (9).

At the center frequency, we have

iω(2C1 + 2C2) + 1

iωL
= 0, (10)

so the relationship between J and the H is

J = iωM0H, (11)

where H is the Hamiltonian of the topological system,
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 t1 0 · · · 0 t1 0 · · ·
t1 0 t2 · · · 0 0 t1 · · ·
0 t2 0 · · · 0 0 0 · · ·
...

...
. . .

...
...

0 0 0 · · · 0 0 0 · · ·
t1 0 0 · · · 0 0 t1 · · ·
0 t1 0 · · · 0 t1 0 · · ·
...

...
...

...
...

...
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (12)

and M0 = −Ci/ti, (i = 1, 2) is the multiplication coefficient
that shows the ratio of the circuit capacitance and coupling
coefficient. The whole circuit contains 324 sites and is con-
structed on an 18 × 18 matrix, which corresponds to the
arrangement in Fig. 1(a). Figure 3(a) illustrates the whole
electric connection, and the representative site locations that
are used to characterize the outer corner, edge, and bulk
modes are marked with red, green, and blue rectangles. At the
boundaries of the nine smaller squares, single-pole double-
throw (SPDT) switches are set up to toggle the connections
between the next-neighbor site and grounding plate with com-
pensating boundary conditions. In this way, the circuits in
nine squares can be selectively removed from the system;
thus, the remaining number of sites is 256, and the circuit

topology evolves into Sierpiński carpet G(2). The correspond-
ing circuit is illustrated in Fig. 3(b). To facilitate the analysis,
we also classify all positions of sites in the circuit into four
different types, those located in the bulk region (tetramers),
the edge region (dimers), the inner corner region (trimers),
and the outer corner region (monomers). The representative
site locations that are used to characterize the outer corner,
edge, inner corner A, inner corner B, and bulk modes are
marked with green, orange, blue, purple, and gray rectangles.
To realize the cylindrical and toroidal models, we set up
one-by-one pin headers that connect each site located along
the x and y boundaries. When the pin headers in one or two
directions are connected, the corresponding geometries are
achieved.

We use LTSPICE to simulate and analyze the circuits
with the central frequency at f0 = [2π

√
LC]−1 ≈ 153 kHz.

The impedance spectra at representative sites are scanned
from 100 to 250 kHz (i.e., 0.65ω0–1.63ω0), as illustrated in
Figs. 3(c) and 3(d). When the impedance spectra are carefully
examined, we can find the frequency related to the corre-
sponding eigenmodes. It can be observed that the impedance
spectrum of the outer corner mode (the green curve) has
one peak at a frequency of 153.49 kHz, and the impedance
spectrum of the edge mode (the orange curve) has two peaks
at frequencies of 127.91 and 204.98 kHz. The bulk mode
spectrum (the gray line) has three peaks at frequencies of
110.51, 153.2, and 228.02 kHz. We select the frequency
peak corresponding to each impedance spectrum and get
the impedance distribution of whole circuit sites in the 2D
SSH model and Sierpiński carpet G(2). The intensities of the
spectra are normalized to their relative values and plotted in
Figs. 3(c) and 3(d) with frame colors identical to the related
curves for the impedance spectra. It should be noted that the
inner corner modes can be classified into three types: types
I and III are symmetric, and type II is antisymmetric. The
impedance spectrum of inner corner mode A (blue line) has
three peaks located at frequencies of 119.16, 154.91, and
249.77 kHz, while the impedance curve of inner corner mode
B (purple line) has two peaks at frequencies of 121.35 and
237.95 kHz; the peak corresponding to the type II trimer van-
ishes due to location symmetry. The impedance distributions
for inner corner mode A and inner corner mode B represent
two different states of the energy distribution, as shown on the
right in Fig. 3(d). By comparing the experimentally measured
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FIG. 3. Circuit realization and simulation results for the 2D SSH model and the Sierpiński carpet G(2) model. (a) The circuit implementa-
tion of the 2D SSH model. C1 = 0.22 nF,C2 = 1 nF, and L = 440 μH. Red, green, and gray rectangles in the magnified local areas indicate
the representative sites in the outer corner, edge, and bulk region. For clarity, the grounded inductors are not shown in the circuit. (b) The
circuit implementation of the Sierpiński carpet circuit G(2) model. Green, blue, purple, gray, and brown rectangles in the magnified local areas
indicate representative sites in the outer corner, edge, inner corner A, inner corner B, and bulk region. (c) Simulated impedance spectrum for
three representative sites, the eigenstate spectrum, and the entire impedance distribution of the outer corner mode (red frame), the edge mode
(green frame), and the bulk mode (gray frame) for the 2D SSH model. (d) Simulated impedance spectrum for five representative sites and the
impedance distribution of the edge modes (brown frame), outer corner modes (green frame), type II inner corner modes (blue frame), type III
inner corner modes (purple frame), and bulk modes (gray frame) for the Sierpiński carpet G(2) model.

impedance distribution in Fig. 3(d) with the localized distri-
bution shown in Fig. 1(f), we can clearly distinguish that the
type II inner corner A is symmetric and type III inner corner
B is antisymmetric. Overall, compared to the 2D SSH model,
due to the presence of the inner corner and inner edges, the
impedance distribution of the Sierpiński carpet G(2) presents
several unique characteristics: the bulk mode is no longer
uniform, but the inner edge is also presented as the edge mode.
For the 2D SSH model, the corner modes are all bound state
in the continuum (BIC) modes [52]. However, there are two
different types of corner modes in the Sierpiński fractal lattice.
According to the eigenstate spectrum of the G(2) Sierpiński

fractal model, the outer corner modes and the inner corner
modes corresponding to the black dots are also BIC modes,
and they have the same characteristics as those in the 2D
SSH model [53]. The inner corner modes corresponding to
the pink squares are in-gap topological modes; they are stable
and exhibit much higher robustness due to the topological
protection.

Based on the simulation results, we perform the exper-
imental verification. The circuit layout is implemented on
an FR-4 PCB. Capacitors C1 and C2 are multilayer ceramic
capacitors with capacitances of 0.21 and 1 nF. The induc-
tors are chosen with an inductance value of 0.44 mH. The
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FIG. 4. Circuit experimental realization of the 2D SSH model and Sierpiński carpet G(2). (a) Experimentally measured impedance spectra
of the outer corner, edge, bulk modes, and the impedance distributions corresponding to the outer corner mode (red frame), edge mode (green
frame), and bulk mode (blue frame) for the 2D SSH model. (b) PCB layout of the RFTC and designed switches for reconfiguration functionality
in magnified areas. The yellow rectangles indicate the single-pole double-throw (SPDT) switch, and the black rectangles indicate the pin header
connectors. (c) Experimentally measured impedance spectra of the edge, outer corner, inner corner A, inner corner B, and bulk modes and the
impedance distribution corresponding to the edge mode (brown frame), outer corner mode (green frame), inner corner mode A (blue frame),
inner corner mode B (purple frame), and bulk mode (gray frame).

fabricated test board is illustrated in Fig. 4(b). SPDT switches
are located at the boundary of the subsquare that should
be reconfigured in the Sierpiński carpet and indicated by
the yellow rectangle. We use the switch manipulation de-
scriptions “turned on” and “turned off” to indicate whether
the components in subsquares are connected to the circuit
system or not. Female pin headers, indicated by the black
box, are connected to all the sites located in the x and y
boundaries. When they are grounded (default connection),
we have the normal planar Sierpiński carpet. If we connect
the pin headers along one boundary direction (either hori-
zontal or vertical), it evolves into the cylinder. By connecting
the pin headers along both orthogonal directions, it becomes
a torus.

First, we configure the pin headers so that the circuits are
planar. By toggling the state of the SPDT switches between
turned on and turned off, we use the impedance analyzer to
inspect the impedance spectra and impedance distributions in
both the 2D SSH model and Sierpiński carpet G(2); the results
are shown in Figs. 4(a) and 4(c), respectively. According to
the simulation results, the center frequency of the circuit is
approximately 154 kHz, so the frequency sweep range is
selected to be from 100 to 250 kHz. To facilitate a compar-
ison, the impedance spectra are measured from representative
sites identical to those used in the simulation. For the 2D
SSH model, the measured impedance peaks are located in the
outer corner mode (148.043 kHz), edge mode (200.426 kHz),
and bulk mode (106.696 kHz). For the Sierpiński carpet, the
measured impedance peaks are distributed in the outer cor-
ner mode (148.043 kHz), inner corner modes (149.445 and
244.702 kHz), edge mode (191.696 kHz), and bulk mode
(106.686 kHz). The experimental impedance spectra and
impedance distributions strongly match the simulation results,
elucidating the effectiveness of our analysis and experiment.
The small frequency peak drift between the simulation and
experimental results mainly comes from the peak expansion
in spectra due to the parasitic parameters of the capacitors

and inductors and the impedance value fluctuation among
different elements.

In the following, we keep the state of the SPDT switches
in the turned off state and configure the connection of pin
headers, so that the circuits are transformed to cylindri-
cal and toroidal geometries. To provide a more intuitive
vision for comparison, we demonstrate the simulation and
experimental results for representative impedance distribution
simultaneously in Figs. 5(a) and 5(b). The geometry changes
in topology cause the mode of mutual transformation. The
outer corner modes vanish, and the distribution states of the
edge and bulk modes are influenced. According to Fig. 5(a),
the outer corner modes are transformed to the edge modes in
the cylindrical geometry. At the frequency of the original edge
mode, it can be observed that the edge modes appear along
only one direction and the edge modes along the orthogonal
direction do not exist, which matches the geometry char-
acteristics well. Similarly, according to Fig. 5(b), the outer
corner modes turn into bulk modes. Moreover, some of the
original edge modes are transformed into bulk modes, as the
original edges in two directions are combined. However, the
geometry transformation does not influence the environment
of the inner corner mode and inner edge modes, so their
distribution remains constant. As a result, the number of edge
modes decreases, and the bulk modes increase further. The
experimental results are consistent with the simulation results,
which shows the precision of this method. The observed re-
sults also match Fig. 2(e) well, indicating the capability of
engineering the number of topological modes through RFTCs.

III. CONCLUSION

In conclusion, we presented RFTCs for the exploration of
fractal geometry. By selectively deactivating specific regions
or connecting certain boundaries within the 2D SSH circuit,
we successfully manifested the planar square Sierpiński car-
pet and the corresponding cylindrical and toroidal models.
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FIG. 5. The simulation and experimental result for the cylindrical and toroidal Sierpiński fractal circuit G(2). (a) Impedance distribution
of the cylindrical Sierpiński fractal circuit. (b) Impedance distribution of the toroidal Sierpiński fractal circuit.

Our theoretical analysis, simulations, and experimental results
demonstrate a high degree of consistency. In comparison to
conventional HOTIs, fractal HOTIs exhibit enhanced richness
in edge and corner modes. The cylindrical and toroidal ge-
ometries further transform the outer corner and edge modes
into bulk modes, suggesting that the corners, edges, and bulk
within these fractals can be engendered by different geome-
tries. Our work establishes promising design principles for
mode engineering. This innovative approach not only ex-
pands the realm of reconfigurability but also offers a versatile

framework for investigating emerging topological phenomena
in complex geometric scenarios in the future.
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