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Failure of Mott’s formula for the thermopower in carbon nanotubes
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Well-known Mott’s formula links the thermoelectric power characterized by the Seebeck coefficient to
conductivity. We calculate analytically the thermoelectric current and Seebeck coefficient in one-dimensional
systems and show that, while the prediction of Mott’s formula is valid for Dirac fermions, it is misleading
for the carriers having a parabolic dispersion. We apply the developed formalism to metallic single wall carbon
nanotubes and obtain a nontrivial nonmonotonic dependence of the Seebeck coefficient on the chemical potential.
We emphasize that, in contrast to Mott’s formula, the classical Kelvin’s formula that links thermoelectric power
to the temperature derivative of the chemical potential is perfectly valid in carbon nanotubes in the ballistic
regime. Interestingly, however, the Kelvin’s formula fails in two- and three-dimensional systems in the ballistic
regime.
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I. INTRODUCTION

It is well known that the low-temperature ballistic conduc-
tance in one-dimensional systems is quantized [1]

σ = e2Jmax

h
, (1)

where h is the Planck constant while Jmax is the number of the
quantization subbands situated below the chemical potential
[2–6].

Carbon nanotubes (CNTs) represent an example of a
one-dimensional system, where indeed the quantization of
conductance has been observed [7]. It is important to note
that the conductance takes constant and discrete values in-
dependently of the type of electronic dispersion: linear or
parabolic. Here we show that in contrast to the conductance,
the thermoelectric power in carbon nanotubes is strongly de-
pendent on the chemical potential, electronic concentration,
and temperature. These dependencies are governed by the
derivative of the chemical potential over temperature which
is proportional to the Seebeck coefficient S as it was pointed
out by Lord Kelvin in the middle of the 19th century [8]

SK = 1

e

(
∂μ

∂T

)
N,V

(2)

(here N is the number of particles, and V is the volume of the
system).

The alternative, kinetic approach to the theoretical descrip-
tion of the Seebeck effect was developed by Sir Nevil Mott
in the second half of the 20th century [9,10]. The Mott’s
formula relates the Seebeck coefficient to the conductivity of
the system [11,12]:

SM = π2

3

T

e

d ln σ (μ)

dμ
, (3)

where σ is conductivity, μ is the chemical potential, and T is
temperature. Here and after we assume kB = 1. One can see
that by substituting the above expression for conductance to
Mott’s formula, one obtains SM = 0 for any value of chem-
ical potential except the close vicinity of the bottoms of the
quantization subband. Below we demonstrate that this simple
conclusion fails and Mott’s formula is unable to describe
the thermoelectric phenomena in 1D systems in the ballis-
tic regime. In contrast, the Kelvin’s formula remains valid
in the ballistic regime in any one-dimensional (1D) system.
Interestingly, however, the Kelvin’s formula turns out to be
no more valid in two- and three-dimensional (2D and 3D)
systems in the ballistic regime. It is worth noting that the
Seebeck coefficient can also be introduced through a more
general expression for the conductivity within the relaxation
time approximation [13]. However, we deliberately chose the
original definition of the Mott formula, which can be more
easily extended to the case of the ballistic regime. We re-
strict our consideration to the ballistic, semiclassical, linear
response regime. The thermocurrent and thermoelectricity in
the ballistic regime have been carefully studied theoretically
in 1D, 2D, and 3D systems [14–16]. The difference between
these works and our present work is that we focus on the
broken circuit geometry where no electric current is flowing
through the system. We present an analytical theory of the
Seebeck effect in metallic CNTs in the regime of a ballis-
tic transport. We note that the Seebeck coefficient is also a
direct measure of the entropy per particle, which makes it
one of the most important characteristics of the statistics of
quasiparticles in crystals [17]. We find that, in CNTs, it is
dramatically dependent on the type of electronic dispersion.
In the case of a parabolic dispersion, the Seebeck coefficient
is a nonmonotonic function of the chemical potential. Its mag-
nitude decreases with the increase of the chemical potential,
and its sign changes in the vicinity of the resonances of the
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chemical potentials and bottom energies of the electron and
hole quantization subbands (the effect of Seebeck coefficient
sign change is well established experimental fact often ob-
served in the vicinity of the Fermi surface topology changes
[18–20]; see also reviews [21,22] and references therein). In
contrast, in the case of a linear dispersion that is observed
in the vicinity of Dirac points in conducting CNTs, the See-
beck coefficient is equal to zero. The sharp contrast between
the behaviors of conductivity and the Seebeck coefficient as
functions of the chemical potential that may be efficiently
controlled by an applied bias opens room for a variety of
nontrivial effects governed by an interplay of currents induced
by electric field and temperature gradient.

II. SEEBECK COEFFICIENT IN THE BALLISTIC REGIME
IN A 1D SYSTEM

A. 1D Kelvin’s formula in the ballistic regime

The definition of the Seebeck coefficient in the case of a
broken electric circuit (J = 0, where J is an electric current)
reads

S = �V

�T
. (4)

Here �T is the difference of temperatures at the edges of a
1D channel and �V is the voltage induced due to the Seebeck
effect. We note that the induction of the voltage �V results in
the appearance of a ballistic current

JV = e
∫ ∞

−∞
ν(E )v(E )

[
f

(
E − e�V − μ

T

)

− f

(
E − μ

T

)]
dE , (5)

with f being the Fermi-Dirac distribution, and E being the
electron energy. In its turn, the temperature difference �T
applied at the edges of the 1D channel also will generate the
current

JT = e
∫ ∞

−∞
ν(E )v(E )

[
f

(
E − μ(T + �T )

T + �T

)

− f

(
E − μ

T

)]
dE . (6)

The density of states of electrons entering a 1D channel can
be written as follows:

ν(E ) = 1

2π

∣∣∣∣∂E

∂k

∣∣∣∣
−1

. (7)

Here and in what follows we assume the degeneracy factor of
quantum states g = 1. The results can be easily generalized
for any other value of g. The electronic velocity is defined by
the general relation

v(E ) = 1

h̄

(
∂E

∂k

)
. (8)

As expected, in every single band their product is constant
ν(E )v(E ) = 1

h .

Note that at negative energies, the Seebeck effect is dom-
inated by holes rather than electrons. Holes are conveniently
described by positive effective masses and, consequently, they

have positive group velocities. The energy dependence of the
hole contribution to the Seebeck effect is symmetric to one
of the electron contribution taken with a negative sign as
we discuss in Appendix B. We show, in particular, that at the
Dirac point, electron and hole contributions to the Seebeck
coefficient exactly compensate each other.

The condition of a broken circuit imposes that the total
current in the channel is zero. This condition implies the
compensation of the currents (5) and (6). Expansion of the
Fermi-Dirac functions in the limit �V ,�T → 0 results in the
equality

∫ ∞

−∞

[
−e�V

∂ f

∂E
− �T

∂ f

∂T
−

(
∂μ

∂T

)
�T

∂ f

∂μ

]
dE = 0. (9)

The second term is an odd function of energy, hence, after
integration it yields zero. In what concerns the partial deriva-
tives of the Fermi-Dirac distribution function over energy and
chemical potential, their absolute values are equal while their
signs are opposite: ∂ f /∂E = −∂ f /∂μ.

The remaining integration in Eq. (9) is trivial and it
leads to

e�V −
(

∂μ

∂T

)
�T = 0. (10)

This, in view of the definition (4), yields the Kelvin’s formula
(2). We conclude that the Kelvin’s formula is perfectly valid
in any 1D system in the ballistic regime.

Here we would like to point out that in 2D and 3D cases
the similar reasoning is also possible, however, the product
of the density of states and the electronic velocity appears to
be energy dependent. Hence, it cannot be simplified as it was
done above. This is why the equivalent of the second term in
Eq. (9) would not be equal to zero. An important implication
of this is the failure of the Kelvin’s formula in 2D and 3D
cases in the ballistic regime.

Coming back to the 1D case, at low enough temperatures
(T � μ) one can rewrite the Kelvin’s formula in terms of the
logarithmic derivative of DOS (See Appendix A):

SK = 1

e

(
∂μ

∂T

)
N,V

= π2

3e
T

d

dμ
ln ν(μ). (11)

B. 1D Mott’s formula in the ballistic regime

It is instructive to compare the exact expression for the
Seebeck coefficient obtained above with an approximation
that follows from Mott’s formula. In order to derive it, we start
from the generic expression for the electric current density in
a one-dimensional channel in the ballistic regime (5).

We assume that the applied voltage is small, so that eV �
T . For simplicity, in DOS we shall only account for the contri-
butions of two energy subbands of the CNT. We shall assume
that the chemical potential is close to the bottom of the second
subband from either the positive or negative side. In this case,
DOS may be written as

ν(E ) = 1

2π

∣∣∣∣∂E

∂k

∣∣∣∣
−1

[1 + θ (E − Ep)], (12)
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where Ep is the bottom of the second subband. Now one can
find the conductance as

σ = J
V

= e2

2h

[
3 − tanh

Ep − μ

2T

]
. (13)

This expression can be now substituted to Mott’s formula
(3). As a result we obtain

SM (μ) = π2

6e

1

cosh2 Ep−μ

2T

1(
3 − tanh Ep−μ

2T

) . (14)

One can see that in the limit of |Ep − μ| � T the Seebeck
coefficient calculated in this way appears to be exponen-
tially small. Below we will show that this prediction of the
Mott’s formula strongly deviates from one of the Kelvin’s
formula confirmed by the exact microscopic consideration
[Eqs. (5)–(10)].

III. THE SPECIFIC CASE OF A METALLIC CNT

A. Energy spectra of single-walled carbon nanotubes

Basic electronic properties of single-walled (dubbed orig-
inally as single-shell [23]) carbon nanotubes (CNTs) have
been well understood for over three decades [24], and de-
pend entirely on their chirality (m, n), where (as explained
in detail in Ref. [25]) the numbers (m, n) express the wrap-
ping “chiral” vector connecting two carbon sites along the
nanotube circumference via the two unit vectors of the under-
lying hexagonal graphene lattice [see Fig. 1(a)]. A CNT with
n − m �= 3p, where p is an integer, is a quasi-one-dimensional
semiconductor with the band gap Eg inversely propor-
tional to the nanotube radius R = a

√
n2 + m2 + nm/(2π ) ≈

0.39
√

n2 + m2 + nm Å, where the graphene lattice constant
is a = √

3aC−C with aC−C = 1.42 Å being a distance between
neighboring carbon atoms in graphene. Only armchair (n, n)
nanotubes are truly metallic (gapless) with the low-energy part
of dispersion well described by E = ±h̄vF |k − k0|, where
vF ≈ 9.8 × 105 m/s is the Fermi velocity in graphene and
k0 = ±2π/(3a). The remaining CNTs with n − m = 3p and
n �= m, which are gapless within the frame of a simple zone-
folding approximation [24,25] of the π -electron graphene
spectrum, are in fact narrow-gap semiconductors due to the
curvature effects [26]. For illustration of our main results
we use in this work parameters of a (9,0) zigzag nanotube
sketched in Fig. 1(a) assuming it to be metallic with the
curvature-induced band gap neglected. The energy spectrum
of such a “model” CNT is shown in Fig. 1(b).

The low-lying branches of CNT spectra, which are relevant
for this work, are well described by cross sections of the
famous graphene cone for the quantized values of the wave
number along the CNT rolling direction (chiral vector). Thus,
in the vicinity of the Dirac point the energy spectrum of an
electron in the jth subband is given by

E (k) = ±
√

h̄2v2
F k2 + E2

j . (15)

For the two branches closest to the Dirac point ( j = 0), for
the metallic CNTs E0 = 0 [see Fig. 1(b)]. The bottoms of
their higher subbands are given by Ej = jh̄vF /R. Notably, the
subbands with | j| � 1 are reasonably well described by the
effective mass approximation with mj = Ej/v

2
F .
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FIG. 1. (a) A sketch of a zigzag CNT with chirality (9,0). (b) The
energy band structure of a metallic CNT according to the dispersion
relation given by Eq. (15) in the limit of zero gap: E0 = 0. Blue lines
correspond to the energy levels with a quantum number j = −1 and
j = 1, green lines are for the energy levels with j = 0.

B. A vanishing contribution to the Seebeck coefficient
from linear dispersion subbands

For the linear dispersion subband, DOS is constant and
given by ν0(μ) = 2

π h̄vF
. As a result, the temperature derivative

of the concentration of charge carriers turns zero. Hence, the
Dirac mode does not contribute to the Seebeck coefficient in
agreement with both the Kelvin’s and Mott’s formulas. This
statement remains valid also in the vicinity of the Dirac point
due to the compensation of electron and hole contributions to
the Seebeck effect (see Appendix B).

C. Conflicting predictions of the Kelvin’s and Mott’s
approaches for the contributions of parabolic subbands

to the Seebeck coefficient

Figure 2(a) shows the conductance calculated using
Eq. (13) and the density of states (DOS) calculated with
Eq. (7) for a metallic CNT characterized with the dispersion
of electronic bands shown in Fig. 1(b). The comparison of
these curves helps understanding of the qualitative difference
between the Seebeck coefficients obtained with the Kelvin’s
and the Mott’s formula governed by the derivatives of the
DOS and conductivity logarithms over the chemical potential,
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FIG. 2. (a) The conductance (blue line) for T = 2.4 K given by
Eq. (13) and the DOS of a metallic CNT without the smearing effect
(inset) given by Eq. (7). Here ν0 is a density of states in the central
linear subband and σ0 is its contribution to the conductance. (b) DOS
of a metallic CNT without the smearing effect (black line) and with
smearing one for τ/h̄ = 483.09 eV−1 (blue line), τ/h̄ = 38.65 eV−1

(green line) and τ/h̄ = 3.86 eV−1 (red line). The vertical black arrow
at the top of (b) specifies the energy corresponding to the bottom of
the first subband with j = 1. Other parameters of a metallic CNT are
vF = 9.8 · 105 m/s, ac = 0.142 nm, and chirality (9,0), which gives
R = 0.3522 nm.

respectively. Indeed, while DOS in a one-dimensional system
is a nonmonotonic function of energy, the conductivity is a
monotonic staircaselike function. This is why, according to
the Kelvin’s formula, the Seebeck coefficient changes its sign
at each size quantization subband bottom, while according to
the Mott’s formula, it remains always positive.

It is also important to note that in all numerical calculations
presented in this work we refer to a metallic CNT whose
energy spectrum is presented in Fig. 1(b). It contains the
first, linear, band shown by a green line in Fig. 1(b) and the
second, parabolic, band shown by the blue line in Fig. 1(b). As
we demonstrate analytically, the contribution to the Seebeck

coefficient from the linear band is negligibly small at low
temperatures. Only the second, parabolic band (and upper
bands that are not considered here) gives a sizable contribution
to the Seebeck coefficient. In this context, while one always
needs to sum over subbands as it is done in Eq. (17), for the
specific considered case of a metallic CNT, the single band
contribution in Eq. (14) is dominant.

DOS in parabolic subbands can be found as

ν(μ) =
Jmax∑
j=1

√
2mj

π h̄

1√
μ − Ej

, (16)

where Jmax is the maximum possible value of j such as μ −
EJmax still remains positive.

Using the expressions for DOS and its derivative one easily
finds

SK (μ) = π2T

3eJmax

d ln ν(μ)

dμ
= − π2T

6eJmax

∑Jmax
j=1

√
mj

(μ−Ej )3/2∑Jmax
j=1

√
mj

(μ−Ej )1/2

.

(17)
The dependence of the Seebeck coefficient on the chemi-
cal potential calculated at different temperatures is shown
in Fig. 3. One can notice the strong difference in the re-
sults obtained following the Kelvin’s approach (red lines) and
Mott’s approach (blue lines). The Kelvin’s approach predicts
the hyperbolic decay of the Seebeck coefficient away from
the resonance between the chemical potential and the bottom
of the subband. At the resonance point, the singularity and
the change of sign of the Seebeck coefficient are observed. In
contrast, Mott’s formula predicts a finite value of the Seebeck
coefficient at the bottom of the subband, no sign change and
a fast exponential decay away from the resonance. We note at
this point that long ago the change of the sign of the Seebeck
coefficient was identified as a signature of the topological
phase transition which indeed takes place once the chemical
potential crosses the bottom of the next quantization subband
[18,19,21,27–30]. The divergence of the Seebeck coefficient
in the absence of scattering is caused by the singularity in
DOS. It disappears once the smearing of the density of states
is taken into account as we show in the next section.

IV. EFFECT OF SMEARING OF DOS
IN PARABOLIC SUBBANDS

A. A parabolic subband: the Kelvin’s formula

In any realistic 1D system including CNTs, singularities
of DOS are smeared due to a variety of factors from finite
size effects to fluctuations and nonlinearities. Therefore, it
is important to consider an effect of smearing of DOS on
the Seebeck coefficient in the ballistic regime. The Green’s
function of an electron in a single-wall CNT is

GR
j (E , p) = 1

E − p2
z/2mj − Ej + ih̄/2τ

, (18)

where τ is the positive parameter responsible for the smear-
ing effect and pz is the continuous momentum along the
z direction. This smearing is the result of electron-phonon
interaction.

235405-4



FAILURE OF MOTT’S FORMULA FOR THE THERMOPOWER … PHYSICAL REVIEW B 109, 235405 (2024)

FIG. 3. The Seebeck coefficient for a metallic CNT as a function of chemical potential μ calculated for three temperatures T = 2.4 K (a),
T = 77 K (b), and T = 300 K (c) according to Kelvin’s formula Eq. (17) (red lines) and Mott’s formula Eq. (14) (blue lines). The vertical black
arrows at the top of the figures specify the energy corresponding to the bottom of the first subband with j = 1.

For the calculation of DOS one can use the standard expression [31]

ν (sm)(E ) = − 2

π h̄

Jmax∑
j=1

	
∫

d p

2π
GR

j (E , p). (19)

Performing the momentum integration and making the correct choice of the branch of the logarithm, one finds

ν (sm)(E ) =
Jmax∑
j=1

√
mj

π h̄

√√
(E − Ej )2 + h̄2

4τ 2 + (E − Ej )√
(E − Ej )2 + h̄2

4τ 2

, (20)

where the square root is taken in the arithmetic sense (positive value). The calculated smeared DOS is presented in Fig. 2.
Now one can derive the contribution to the Seebeck coefficient of a CNT coming from parabolic energy subbands:

S(sm)
K (μ) = π2T

3eJmax

d ln ν (sm)(μ)

dμ
= π2T

6eJmax

∑Jmax
j=1

√
mj

√√
(μ−Ej )2+ h̄2

4τ2 +(μ−Ej )

(μ−Ej )2+ h̄2

4τ2

(
1 − 2(μ−Ej )√

(μ−Ej )2+ h̄2

4τ2

)

∑Jmax
j=1

√
mj

√√
(μ−Ej )2+ h̄2

4τ2 +(μ−Ej )√
(μ−Ej )2+ h̄2

4τ2

. (21)

The dependence of the Seebeck coefficient on the chemical
potential calculated at different values of smearing is pre-
sented in Fig. 3.

B. A parabolic subband: Mott’s formula

The smearing of the density of states jump in Eq. (12) will
also affect Mott’s formula for the Seebeck coefficient. Below
we consider a relatively clean system and the range of not too
low temperatures: T � h̄/τ. Within the Lorentz approxima-
tion for delta function δ(E ) = 1

π
limτ→∞ h̄τ−1/(E2 + h̄2τ−2)

and using the relation δ(E ) = θ ′(E ), one can present the θ

function in Eq. (12) in the form

θ (E ) = 1

2
+ 1

π
arctan

(
Eh̄−1τ

)
. (22)

This allows to account in Eq. (14) for the smearing of DOS. At
the same time, temperatures are supposed to be low enough to
exclude mixing of electrons belonging to different subbands.

The conductance is no more given by Eq. (13). Instead, it
acquires the form

σ (sm)

= e2

4h

1

4T

∫ ∞

−∞

[
3 + 2

π
arctan

((
E − Ep

)
τ

h̄

)]
dE

cosh2 E−μ

2T

.

Integration of the second term by parts followed by the appli-
cation of the Cauchy’s theorem (see Appendix C) yields the
conductance explicitly:

σ (sm) = e2

4h

[
3 − 2

π
Imψ

(
1

2
+ h̄

2πT τ
+ i

Ep − μ

2πT

)]
. (23)

Substituting it to the Mott’s formula Eq. (3), one obtains the
Seebeck coefficient:

S(sm)
M (μ) = 1

3e

Reψ ′( 1
2 + h̄

2πT τ
+ i Ep−μ

2πT

)
3 − 2

π
Imψ

(
1
2 + h̄

2πT τ
+ i Ep−μ

2πT

) . (24)

Here ψ (x) is the digamma function (logarithmic derivative of
the Euler gamma function) [32].
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FIG. 4. The Seebeck coefficient according to Kelvin’s formula
(a) and Mott’s formula (b) as a function of the chemical potential
for the parabolic band with the quantum number j = 1 for τ/h̄ =
483.09 eV−1 (blue line), τ/h̄ = 38.65 eV−1 (green line) and τ/h̄ =
3.86 eV−1 (red line).

In the limiting cases where the chemical potential is either
close to the bottom of the parabolic subband or sufficiently far
from it, one finds

S(sm)
M = 1

3e

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
3 ψ ′( 1

2 + h̄
2πT τ

) + [
ψ ′( 1

2 + h̄
2πT τ

)]2 · Ep−μ

72π2T

when |Ep − μ| � T,

32π h̄
11·T τ

T 2

(Ep−μ)2 when |Ep − μ| � T .

.

One can verify that in the limit of τ → ∞, this expression
reproduces Eq. (14) [33].

Figures 4(a) and 4(b) show the results of the calculation of
the Seebeck coefficient as a function of the chemical potential
in the vicinity of the bottom of the second electronic subband
(j=2) performed accounting for the smearing of DOS. The
curves in panels (a) and (b) are calculated with use of the
Kelvin’s and Mott’s approaches, respectively. One can see that
even in the case of a strong smearing, Kelvin’s and Mott’s
approaches yield qualitatively different results, especially in
what concerns the change of sign of the Seebeck coefficient
in the vicinity of the topological phase transition point.

V. CONCLUSIONS

The ballistic regime offers peculiar modifications of some
well-known thermoelectric relations. In particular, it turns out
that Mott’s formula for the Seebeck effect is incorrect for
one-dimensional parabolic bands, while the Kelvin’s formula
remains fully accurate in this case. This is important also
because the application of Kelvin’s formula is less challenging
numerically than the application of the Mott’s formula in
many cases. The differences between two approaches become
apparent in the vicinity of resonances between the electronic
chemical potential and the bottoms of energy subbands char-
acterized by parabolic dispersion. Mott’s formula predicts a
finite value of the Seebeck coefficient at the resonance and
no change of sign. In contrast, the Kelvin’s formula predicts
divergence and the change of sign of the Seebeck coefficient
at the resonance between the chemical potential and the bot-
tom of a parabolic subband. The latter result is characteristic
of most topological phase transitions that occur once a new
energy subband comes into play. Our analysis shows that both
Kelvin’s and Mott’s expressions predict zero contributions to
the Seebeck coefficient from the linear dispersion band in
metallic CNTs in the ballistic regime. In contrast, the con-
tribution of parabolic bands is not zero even far from the
resonance points, according to Kelvin’s (but not Mott’s) for-
mula. This conclusion can be easily verified experimentally.
Any deviation of the Seebeck coefficient of CNTs from zero
in the ballistic regime would characterize the inaccuracy of
Mott’s formula. Finally, we note that in 2D and 3D cases, the
Kelvin formula also fails in the ballistic regime. This is be-
cause counterpropagating nondissipative currents of “hot” and
“cold” electrons are formed due to the combined actions of the
temperature and voltage drops in these cases. The total electric
current remains zero, but the system cannot be described by a
single electrochemical potential. We are looking forward to
the experimental manifestations of these theoretical results.
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APPENDIX A: THE LINK BETWEEN THE TEMPERATURE
DERIVATIVE OF THE CHEMICAL POTENTIAL AND THE

DENSITY OF STATES

We consider the electronic contribution to the Seebeck
effect. More general relations accounting for the hole contri-
bution are also given in Appendix B. To start with, with no
loss of generality, the temperature derivative of the chemical
potential can be expressed as follows:(

∂μ

∂T

)
n

=
(

∂n

∂T

)
μ

(
∂n

∂μ

)−1

T

. (A1)

The relationship between the electronic concentration n, the
chemical potential μ, and the temperature T can be found
by integrating the density of electron states multiplied by the
Fermi-Dirac distribution over energy:

n(μ, T ) =
∫ +∞

0

ν(E )dE

exp
(E−μ

T

) + 1
. (A2)
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Required derivatives can be performed assuming T � μ,(
∂n

∂T

)
μ

= π2T

3

dν(μ)

dμ
+ 7π4T 3

90

d3ν(μ)

dμ3
+ O

(
T 5

μ5

)
, (A3)

and (
∂n

∂μ

)
T

= ν(μ) + π2T 2

6

d2ν(μ)

dμ2
+ O

(
T 4

μ4

)
. (A4)

Hence, in the low temperature limit,

SK = 1

e

(
∂μ

∂T

)
N,V

= π2

3e
T

d ln ν(μ)

dμ
. (A5)

APPENDIX B: THE VICINITY OF THE DIRAC POINT

In the vicinity of the Dirac point, both electron and hole
concentrations are different from zero at nonzero temperature.
Below we will take into account the dependence of chemical
potential on temperature in order to evaluate both electron and
hole contributions to the Seebeck coefficient:

ne,h(μ, T ) = 2

π h̄vF

∫ +∞

0

dE

exp
(E−μe,h

T

) + 1
, (B1)

where we introduced the chemical potential for holes μh =
−μe = −μ. Due to the possible nonzero charge of the system,

ne − nh = n0. (B2)

Here −|e|n0 is the overall charge density. Substituting
Eq. (B1) in Eq. (B2) and performing integration, one finds

μ = μe = π h̄vF n0

2
. (B3)

Thus, one can see that the chemical potential for the lin-
ear dispersion branch depends on the total charge density
only and it does not depend on temperature. This means that
(∂n0/∂T )μ = 0 and the corresponding Seebeck coefficient is
zero for the whole linear branch including the vicinity of the
Dirac point:

SK = 1

e

(
∂μ

∂T

)
n

= 1

e

(
∂n0

∂T

)
μ

(
∂n0

∂μ

)−1

T

= 0. (B4)

1. The special point μ = 0

Here we address the special case of the chemical potential
resonant with the Dirac point. We already saw that μe =
−μh = μ and ne − nh = n0. Let us substitute these relations
to the above derivatives to the general thermodynamic ex-
pression relating the entropy per particle (∂S/∂n0)T with the
partial temperature derivative of the chemical potential(

∂S
∂n0

)
T

=
(

∂μ

∂T

)
n0

=
(

∂n0

∂T

)
μ

(
∂n0

∂μ

)−1

T

=
[(

∂ne

∂T

)
μe

−
(

∂nh

∂T

)
μh

][(
∂ne

∂μe

)
T

+
(

∂nh

∂μh

)
T

]−1

. (B5)

One can see that at the point μ = 0 the number of electrons
coincides with the number of holes (ne = nh), i.e., the first
multiplier in Eq. (B5) turns zero, while with use of Eq. (B1)
it is easy to find that the second multiplier is equal to πvF /2.
Hence, the entropy per particle and Seebeck coefficient in the
Dirac point turn out to be equal to zero:(

∂S
∂n0

)
T,μ=0

= eSK = 0.

APPENDIX C: DERIVATION OF THE EXPRESSION
FOR CONDUCTANCE

Here we provide the detailed calculation of the integral for
conductance:

σ = e2

8hT

∫ +∞

−∞

[
3 + 2

π
arctan((E − Ep)h̄−1τ )

]
dE

cosh2 E−μ

2T

.

(C1)

We split integral Eq. (C1) into parts σ = σ1 + σ2, where

σ1 = 3e2

8hT

∫ +∞

−∞

dE

cosh2 E−μ

2T

= 3e2

2h
, (C2)

and

σ2 = e2

4πhT

∫ +∞

−∞

arctan((E − Ep)h̄−1τ )dE

cosh2 E−μ

2T

. (C3)

Applying integration by parts to Eq. (C3), one can rewrite
the integral as

σ2 = −e2T τ

πh

∫ +∞

−∞

tanh zdz

1 + (2T h̄−1τ )
2(

z − (Ep−μ)
2T

)2 ,

where we introduced new variable z = (E−Ep)h̄−1τ+δ

2T τ
with the

parameter δ = (Ep − μ)h̄−1τ . The latter integral can be eval-
uated using the Cauchy’s theorem by means of residues.
The appearing summation over the poles of tanh z can be
performed in terms of digamma function, and after straight-
forward calculations, one finds

σ2 = − e2

πh
Imψ

(
1

2
+ h̄

2πT τ
+ i

Ep − μ

2πT

)
, (C4)

where the symmetry property of the digamma function
ψ (z̄) = ψ (z) was applied [32]. The similar structure of the
expression for conductance in terms of the polygamma func-
tion was also obtained in Refs. [34–37].

Therefore, the final result for conductance is expressed as

σ = σ (sm) = e2

2h

[
3 − 2

π
Imψ

(
1

2
+ h̄

2πT τ
+ i

Ep − μ

2πT

)]
.

In the case of τ → ∞, using the relation between the
imaginary part of the digamma function and the hyperbolic
tangent [32], one can reduce Eq. (C4) to the expression

σ2 = − e2

πh
Imψ

(
1

2
+ i

Ep − μ

2πT

)
= − e2

2h
tanh

(
Ep − μ

2T

)
and reproduce Eq. (13).
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