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Due to quantum confinement, excitons in finite-sized crystals behave rather differently than in bulk materials.
We investigate the dependence of energies of Rydberg excitons on the strengths of parabolic as well as rectangu-
lar confinement potentials in finite-sized crystals. The evolution of the energy levels of hydrogenlike excitons in
the crossover region from weak to strong parabolic confinement is analyzed for different quantum numbers
by numerical solution of the two-dimensional Schrödinger equation. The energy spectrum of hydrogenlike
excitons in Cu2O-based rectangular quantum wells is, in turn, obtained numerically from the solution of the
three-dimensional Schrödinger equation as a function of the quantum well width. Various crossings and avoided
crossings of Rydberg energy levels are observed and categorized based on the symmetry properties of the
exciton wave function. Particular attention is paid to the two limiting cases of narrow and wide quantum wells
attributed to strong and weak confinement, respectively. The energies obtained with the pure Coulomb interaction
are compared with the results originating from the Rytova-Keldysh potential, i.e., by taking into account the
dielectric contrast in the quantum well and in the barrier.
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I. INTRODUCTION

Hydrogenlike systems are the bedrock of quantum theory,
atomic physics as well as solid state physics. Rotational SO(3)
symmetry as well as the hidden SO(4) symmetry properties
of the hydrogen atom [1] imply high degeneracy of its energy
levels. An external perturbation breaks the symmetry and lifts
the degeneracy [2]. The nature of the perturbation can widely
differ and can include, for example, external magnetic or elec-
tric fields [3–7], the influence of a third particle [8–10], or an
artificial confining potential [11–13]. The latter is especially
important for quantum optics, where confinement allows one
to trap two-level and many-level systems into spatial lattices
[14,15]. Thus quantum confinement is an essential tool which,
on the one hand, makes it possible to localize quantum sys-
tems and, on the other hand, allows for the interaction of the
localized objects [16].

In semiconductor physics, quantum confinement is a basic
way to specify the properties of radiative quantum systems
[11,17–20]. The strength of the confinement defines the
distribution of energy levels and, thus, frequencies of the emit-
ted light. Artificially grown heterostructures of GaAs, GaN,
CdTe, and other materials provide a convenient framework
for an experimental study of the influence of quantum con-
finement, namely the restriction of motion along one spatial
dimension [13,21,22]. The potential profiles of the grown
structures are usually modeled by simple quantum well (QW)
potentials of rectangular [12], triangular [23,24], parabolic
[25,26] or Pösch-Teller-like shapes [2]. Although the effect of
such confinement on single-particle states is well-understood
[27], the effect of confinement on few-body systems is more
complicated [28]. The main point is that confinement of a

two-body system requires solving a three-body Schrödinger
equation [9,29–31], in which the confining potential plays the
role of the third particle [32].

The confinement regime depends on the interplay between
the size of the Rydberg state and the size of the QW. This
means that, although for a given QW width the ground state
of the size of the Bohr radius can be in a weak confinement
regime (model of wide QW approaching the bulk crystal), a
highly excited Rydberg exciton with a large principal quantum
number can be strongly confined (model of narrow QW). The
point is that if the mean size of the highly excited state is large
enough, the state becomes squeezed in the QW. Even for the
simplest model potentials, the crossover from weak to strong
quantum confinement cannot be treated analytically. However,
there are limiting, exactly solvable cases in the vicinity of
which the perturbative treatment is accurate. For example,
in the case of weak confinement, the Coulomb attraction
dominates: the energy difference between quantum-confined
energy levels is smaller than that between Coulomb bound
states. Here, the quantum confinement can be treated as a
small perturbation. The other limiting case is the strong con-
finement when, in turn, the Coulomb potential is treated as a
small perturbation. In this case, the gaps between quantum-
confined energies are much larger than the Rydberg energy
of the Coulomb interaction. A crossover from strong to weak
confinement and further to the bulk crystal allows one to
follow the evolution of the energy levels, which provides an
important insight for experimentalists to predict the energetic
properties of their grown structures.

Practical examples of the effect of quantum confinement
are cascade lasers. They include the well-known quantum cas-
cade lasers [17] as well as recently realized bosonic cascade
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lasers [26]. GaAs-based heterostructures with a parabolic-like
potential profile can be grown by a gradual change of the
alloy concentration [33,34]. As a result, a series of equidistant
quantum-confinement energy levels appear, which allow the
excitonic transitions to be amplified by the bosonic stimula-
tion of radiative transitions between levels in a cascade. Such
a parabolic structure is a key element of the proposed bosonic
cascade laser designed to generate THz radiation [26]. This
concept has thus far been realized in a variety of different
structures [35–37].

Stronger confinement allows one to obtain more stable
quantum systems, that can operate at higher temperatures.
For example, confining an exciton to a two-dimensional plane
increases its ground state binding energy by a factor of four
[38]. In this regard, cuprous oxide is a promising material
due to large binding energies of quasiparticles already in
the bulk. Indeed, bulk Cu2O crystals have been shown to
possess many sharp exciton resonances including highly ex-
cited Rydberg states [39]. The bulk exciton states, the impact
of the upper subbands as well as external fields on Ryd-
berg excitons in Cu2O, and a variety of many-body effects
have been studied in detail [40–53]. Moreover, artificially
grown high-quality cuprous oxide crystals are currently being
fabricated [54–60]. The grown samples of predefined size
open up the possibility to confine excitons in these structures
similar to QWs. The produced samples already allowed to
experimentally study the radiative decay rates of Rydberg
excitons in thin Cu2O films [19] as well as the crossover
from the excitonic superradiance regime to the polaritonic
long-range propagation [56]. In this context, the system-
atic studies of Rydberg exciton states, their size-dependent
properties in cuprous oxide QW-like structures become ever
more important.

In this paper, we study the two-band (or hydrogenlike)
model of Rydberg excitons in Cu2O-based QWs in differ-
ent regimes ranging from weak to strong confinement. We
analyze the dependence of bound-state energies on a single
parameter characterizing the strength of the confinement. We
begin our investigation by discussing parabolic confinement
along one spatial direction, for example, along the growth
axis. In this case, the Kohn theorem [61,62] allows us to
significantly simplify the treatment of the problem and to fol-
low the evolution of energy levels during the crossover from
weak to strong confinement. The case of weak confinement is
studied numerically using an expansion of the wave function
over the Coulomb-Sturmian basis. We show that in such a
case, the distribution of the energy levels is determined by
the degree of orientation of the corresponding wave functions
over the confining direction. As the Coulomb-Sturmian basis
is appropriate only for weak confinement, the evolution of
the exciton energy levels during the crossover from weak
to strong confinement has to be investigated by alternative
numerical methods such as a finite-difference discretization
[63] or a more precise B-spline expansion [64,65] of the
exciton wave function. One then observes Rydberg energy
levels as well as their crossings and avoided crossings during
the evolution as the confinement becomes gradually stronger.
Moreover, one observes that the energy levels, distributed
over the value of the principal quantum number N in case
of the weak confinement, change their order to a distribution

over the value of the magnetic quantum number m for strong
confinement.

After having understood the general picture of the evolu-
tion of the energy levels for parabolic confinement, we turn to
study a rectangular QW structure. To this end, we use a two-
band model of the Rydberg exciton in QW [38] with cuprous
oxide material parameters [46], thus simulating the Cu2O thin
film sandwiched between vacuum or air. We disregard features
of the band structure, i.e., effects of the spin-orbit split band
and the nonparabolicity [38,66]. The effects of the complex
valence band structure in bulk cuprous oxide have been dis-
cussed in detail before [40–42,46,47] and are thus only briefly
mentioned here. We would like to point out that the overall
structure of the excitonic Rydberg series can be well explained
within a hydrogenlike two-band model, and only the details of
the spectra require the consideration of the complete valence
band structure. We use the pure Coulomb potential to observe
the general structure of energy levels and further compare it
with the results obtained with the Rytova-Keldysh potential
[67,68], taking into account the dielectric contrast in the QW
and in the barriers [69]. Our model leads to the Schrödinger
equation with a Hamiltonian that produces an energy spec-
trum with many quantum-confinement subbands and different
branches of continua. In contrast to a parabolic potential, for a
rectangular confining potential one cannot separate variables,
and one has to numerically solve the full three-dimensional
Schrödinger equation [70]. In this regard, we expand the ex-
citon wave function over a basis of B-splines [64,65]. Due
to the large number of quantum-confined energy levels, we
restrict our attention to states characterized by magnetic quan-
tum numbers m = 0,±1, and calculate ground and several
excited energy levels below the electron-hole (eh) scattering
threshold. The behavior of energy levels for higher magnetic
quantum numbers can then be qualitatively understood from
the above-mentioned model of parabolic confinement. We
observe the evolution of the energy levels of Rydberg ex-
citons during the crossover from a narrow to a wide QW.
Furthermore, we show that in these limiting cases the energies
can be easily calculated by expanding the wave function over
quantum-confined states. The intermediate range of the QW
widths, however, cannot be treated by these techniques, and
one has to resort to numerical B-spline solutions. We compare
our computational results with the peak positions in the photo-
luminescence spectrum of Cu2O QW-like structure presented
in Ref. [19].

In this paper, we focus on the bound states of eh pairs in
a QW. In fact, a confinement along one dimension produces
many quantum-confined subbands. For strong confinement,
the confinement energies are large. Below each value of the
sum of electron and hole confinement energies, a proper
Rydberg series of eh energies appears. In QW systems, the eh
bound states are located below the lowest scattering threshold,
i.e., below the sum of the lowest quantum-confined ener-
gies of the disjoint electron and hole in the QW [70]. The
higher-lying Rydberg series lie in the Coulomb continuum
of the lower subbands, and are thus resonance states. They
are characterized by additional linewidth broadening due to
their finite lifetime, as the electron can scatter off the hole
in the QW plane even in case of infinite QW barriers [71].
As the resonant states require a yet more elaborate treatment
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[72,73], in this paper, we focus solely on the bound eh states,
characterized by their square-integrable wave function.

The paper is organized as follows. We begin in Sec. II by
setting the scene for describing Rydberg excitons in structures
that provide a spatial confinement in one dimension. We then
elaborate on two illustrative examples, a parabolic confine-
ment (Sec. III) and a rectangular confinement (Sec. IV). We
specify the particular Cu2O-based QW structure and describe
numerical methods used to compute the exciton spectrum
there. A detailed discussion of the obtained results is pro-
vided in Secs. III C and IV C for parabolic and rectangular
confinement, respectively. Section V describes the results ob-
tained with different dielectric constants in the QW and in
the barriers. A brief discussion of the effects of the crystal
environment on Rydberg excitons in QWs is presented in
Sec. VI. Numerical details are given in the Appendix.

II. RYDBERG EXCITONS CONFINED IN ONE
SPATIAL DIMENSION

In the two-band (or hydrogenlike) approximation [18,38],
electron and hole dispersions are assumed to be parabolic,
and the bound eh states appear solely due to the Coulomb
attraction. However, the quantum confinement along one axis
significantly complicates the well-known Rydberg-like series
[43,46] of energy levels.

The quantum states of the eh pair confined in the z direction
are defined by the eigenstates of the Hamiltonian

H = p2
e

2me
+ p2

h

2mh
− e2

ε|re − rh| + Ve(ze) + Vh(zh), (1)

where me and mh are the effective masses of the electron and
the hole in the semiconductor, respectively. The variables ze

and zh are the coordinates along the confinement direction,
whereas ρ is the distance between electron and hole in the
QW plane. The confining potentials Ve(ze) and Vh(zh) break
the spherical symmetry of the problem, reducing it to mere
translational invariance in the QW plane. Note that we use a
simple two-band model for the kinetic energy of the electron
and hole in Eq. (1), which means that the effects of the com-
plex valence band structure on Rydberg excitons in QWs are
neglected. Brief remarks on these effects are given in Sec. VI.

In terms of the center-of-mass coordinate R = (mere +
mhrh)/(me + mh), and momentum P = pe + ph, as well as the
relative coordinate r = re − rh and momentum p = (mhpe −
meph)/(me + mh), the eh Hamiltonian reads

H = P2

2M
+ p2

2μ
− e2

ε|r| + Ve(Z + βz) + Vh(Z − αz). (2)

Here M = me + mh is the total exciton mass, μ = (m−1
e +

m−1
h )−1 is the reduced mass, and α = me/(me + mh) and

β = mh/(me + mh) are normalized electron and hole masses,
respectively.

Due to translational invariance in the QW plane, the
center-of-mass motion in this plane can be separated. Fur-
thermore, due to rotational symmetry the angular momentum
component along the z direction is conserved. This im-
plies that the unknown wave function can be written as
ψ (Z, z, ρ) eimφ/

√
2π where m ∈ Z is the magnetic quantum

number and φ is the polar angle in the QW plane. For instance,

the value m = 0 defines cylindrically symmetrical solutions.
As a result, the Hamiltonian of the nontrivial eh motion is
given by

H (Z, z, ρ) = P2
Z

2M
+ p2

z

2μ
− h̄2

2μ

(
∂2

∂ρ2
+ 1

ρ

∂

∂ρ
− m2

ρ2

)

− e2

ε
√

ρ2 + z2
+ Ve(Z + βz) + Vh(Z − αz).

(3)

Returning to absolute z coordinates of the electron and the
hole instead of the center-of-mass and relative ones (Z, z), the
last equation can be written as [70]

H (ze, zh, ρ) = − h̄2

2me

∂2

∂z2
e

− h̄2

2mh

∂2

∂z2
h

− h̄2

2μ

(
∂2

∂ρ2
+ 1

ρ

∂

∂ρ
− m2

ρ2

)

− e2

ε
√

ρ2 + (ze − zh)2
+ Ve(ze) + Vh(zh). (4)

The energies E of the electron-hole pairs are thus the solutions
of the Schrödinger equation

H (ze, zh, ρ)ψ (ze, zh, ρ) = Eψ (ze, zh, ρ). (5)

The energies of the Rydberg exciton states can be de-
fined with respect to the sum of the lowest quantum-confined
energies Ee1 + Eh1 of electron and hole in the confinement
potentials Ve(ze) and Vh(zh), respectively. This sum specifies
the lower boundary of the continuum, i.e., the lowest scatter-
ing threshold. Below Ee1 + Eh1 there are only bound states,
and above this threshold the resonant states (of the particular
parity) appear. Thus the exciton binding energy is defined as

Eb = Ee1 + Eh1 − E . (6)

III. PARABOLIC CONFINEMENT

We begin with an illustrative example of parabolic con-
finement over one axis that is, to a certain extent, analytically
tractable in different confinement regimes and which has been
realized in various semiconductor heterostructures [74–78].
We assume the confining potential to be of the form Ve,h(z) =
me,h


2z2/2, i.e., it restricts the motion of the exciton in the z
direction. With this form of the confining potential, the center-
of-mass and relative motions can still be exactly separated
[61,62]. That is, the wave function for the Hamiltonian (3)
can be written as ψ (Z, z, ρ) = �(Z )�(z, ρ). Here, �(Z ) is
the solution of the one-dimensional Schrödinger equation for
the exciton as a whole, trapped in the harmonic potential [2]

[
− h̄2

2M

d2

dZ2
+ M
2

2
Z2

]
�(Z ) = EZ�(Z ). (7)
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The function �(z, ρ) is, in turn, the solution of the two-dimensional equation for the relative eh motion,[
− h̄2

2μ

(
∂2

∂ρ2
+ 1

ρ

∂

∂ρ
− m2

ρ2

)
− e2

ε
√

ρ2 + z2
− h̄2

2μ

∂2

∂z2
+ μ
2

2
z2

]
�(z, ρ) = Ez�(z, ρ). (8)

The eh bound states are located below the lowest quantum
confinement energy of the parabolic potential, that is, below
Eμ1 = h̄
/2. Thus the binding energies (6) are defined as

Eb = Eμ1 − Ez. (9)

Hence, the separation of variables due to parabolic confine-
ment reduces the dimensionality of the equation of motion for
the relative coordinate when compared to Eq. (5), which sig-
nificantly simplifies the theoretical investigation. Numerical
solution of Eq. (8) allows one to study the evolution of the
energy spectrum during the crossover from the exciton in a
bulk crystal (weak confinement, 3D exciton) to the exciton
confined in a thin film (strong confinement, 2D exciton).

A. Weak parabolic confinement

In the case of weak parabolic confinement, the solution
of Eq. (8) can be obtained by taking the weak confinement
as a perturbation. In this case, the unperturbed equation is a
hydrogenlike problem, and thus the expansion of the wave
function is conveniently performed over hydrogenlike basis
functions. To be precise, the Schrödinger equation for the
hydrogenlike problem with parabolic confinement along the
z axis reads[

− h̄2

2μ

 − e2

ε

1

r
+ μ
2

2
z2

]
ψ (r) = Ezψ (r). (10)

The parabolic potential can be expressed in terms of the radial
variable and a linear combination of spherical harmonics [79]
Y m

l (θ, φ) as

μ
2

2
(r cos θ )2 = μ
2r2

2

(√
4π

9
Y 0

0 (θ, φ) +
√

16π

45
Y 0

2 (θ, φ)

)
.

In spherical coordinates (r, θ, ϕ), the three-dimensional
Coulomb-Sturmian basis is convenient for expansion of the
wave function as the matrix elements of the kinetic and
Coulomb potential terms are known [80,81]. With radial nr ,
orbital l , and magnetic m quantum numbers, the basis func-
tions are naturally defined as

�nr lm(r, θ, ϕ; λ) = 1

r
ψnr ,l (r; λ)Y m

l (θ, ϕ), (11)

where the Coulomb-Sturmian functions read

ψnr ,l (r; λ) =
(

nr!

(2l + nr + 1)!

)1/2

e−λr/2(λr)l+1L2l+1
nr

(λr).

(12)

Here, L2l+1
nr

(λr) are the generalized Laguerre polynomials
[82] and λ is a variational parameter. Alternatively, one can
redefine the functions in terms of the principal quantum num-
ber via a substitution N = nr + l + 1.

In this basis, the Coulomb potential is diagonal, viz.∫
�m′

n′
r ,l

′ (r, θ, ϕ; λ)
1

r
�m

nr ,l (r, θ, ϕ; λ)dr = δnr n′
r
δll ′δmm′ .

The Laplace operator in the Coulomb-Sturmian basis is, in
turn, tridiagonal. Correcting the typos in Ref. [80], the matrix
elements of the Laplace operator are∫

�m′
n′

r ,l
′ (r, θ, ϕ; λ) 
 �m

nr ,l (r, θ, ϕ; λ) dr

= (−1)nr+n′
r+1 λ2

4

∫
�m′

n′
r ,l

′ (r, θ, ϕ; λ) I �m
nr ,l (r, θ, ϕ; λ)dr.

The matrix elements of the identity operator I are∫
�m′

n′
r .l

′ (r, θ, ϕ; λ) I �m
nr ,l (r, θ, ϕ; λ) dr

= δll ′δmm′
1

λ

{
2(nr + l + 1), nr = n′

r

−√
(nr + 1)(nr + 2l + 2), nr = n′

r + 1
.

In order to calculate the matrix elements of the parabolic
potential, the angular and radial dependencies are evaluated
separately. The angular part gives exact expressions including
the Wigner-3j symbols [79],〈

Y m′
l ′

∣∣ cos2 θ
∣∣Y m

l

〉
= (−1)m′

√
(2l ′ + 1)(2l + 1)

4π

√
4π

9

(
l ′ 0 l

0 0 0

)

×
(

l ′ 0 l

−m′ 0 m

)

+ (−1)m′
√

5(2l ′ + 1)(2l + 1)

4π

√
16π

45

(
l ′ 2 l

0 0 0

)

×
(

l ′ 2 l

−m′ 0 m

)
. (13)

The radial part can also be computed analytically as∫ ∞

0
φn′

r ,l
′ (r, λ)r4φnr ,l (r, λ) dr

= λ2

8

√
nr!n′

r!

(nr + 2l + 1)!(n′
r + 2l ′ + 1)!

×
nr∑

i=0

n′
r∑

j=0

(−1)i+ j

(
nr + 2l + 1

nr − i

)(
n′

r + 2l ′ + 1
n′

r − j

)

× (i + j + l + l ′ + 4)!

i! j!
. (14)

Moreover, the sums on the rhs of Eq. (14) can be evaluated
exactly as shown in Appendix of Ref. [81].
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In practical calculations, when the parabolic confinement
is weak (small 
), one has to take into account basis func-
tions with only a few quantum numbers to obtain accurate
energies. For stronger confinement (larger 
), many more
basis functions are needed to achieve the same precision. As
a result, despite the sparse block structure of the Hamiltonian
in the Coulomb-Sturmian basis, the number of blocks is given
by the maximal value of the included quantum numbers and
increases as O(l2

maxNmax). This limits the applicability of the
proposed scheme and makes the solution unpractical for the
strength of the confinement A = μ
2/2 � 0.1 Ry/a2

B.

B. Strong confinement

In general, Eq. (10) determines the energies for arbitrary
strength A = μ
2/2 Ry/a2

B of the parabolic confinement.
However, in case of the strong confinement (large 
), the pro-
cedure described in the previous section is impractical. In such
a case, a straightforward numerical solution of Eq. (8) is more
convenient. For a wide range of 
, it can be solved directly
by the finite-difference method [71] or by an expansion of the
wave function over a basis of Hermite functions [83,84] or
B-splines [64]. Moreover, particularly for large 
, one can use
the adiabatic approximation, taking into account the stronger
confinement along the z direction than in the QW plane (along
ρ). This approximation requires, first, a determination of the
one-dimensional wave functions φi(z) and the corresponding
energy levels of the parabolically confined exciton along the
z direction and, second, a solution of the coupled system
of equations with the effective potential defined by the so
obtained wave functions φi(z),

V eff
i j (ρ) = −e2

ε

∫ ∞

−∞

φi(z)φ j (z)√
ρ2 + z2

dz. (15)

The adiabatic approach is accurate enough for large values
of 
, when the nondiagonal terms of the effective potential
(15) are relatively small and, thus, can be treated as perturba-
tions. This means that the motion of the exciton is, to a good
approximation, two-dimensional and the energies are close to
those of the 2D Coulomb series.

C. Results for parabolic confinement

In this section, we present the calculation of the
Rydberg series of energy levels of excitons in parabolic quan-
tum wells for different strengths of the confinement. The
effective masses for the electron and hole in cuprous oxide,
me = 0.99 m0 and mh = 0.69 m0, and a dielectric constant ε =
7.5 have been used. The variational parameter λ in Eq. (12)
is taken to be 1. In our calculations, we studied only the eh
bound states. Their energy levels are below the scattering
threshold Eμ1 = h̄
/2 of the lowest quantum confinement
energy of a particle of the mass μ, see Eq. (8), in a parabolic
QW along the z axis. As a result, it is convenient to character-
ize the calculated energy levels by their binding energies (9).
Depending on the strength A = μ
2/2 Ry/a2

B of the parabolic
confinement, different methods to evaluate the energies of the
exciton states have been employed.

For weak confinement, that is, for small A (and thus small

), the Coulomb-Sturmian basis (12), together with the ex-

FIG. 1. Splitting of the energy levels as function of the strength
of the parabolic confinement A = μ
2/2 Ry/a2

B using Coulomb-
Sturmian basis expansion. (a) Energies corresponding to principal
quantum number N = 2 and (b) N = 3. The energy levels are charac-
terized by three quantum numbers (N, l, m), where N is the principal
quantum number, l is the orbital one, and m is the magnetic one. The
energy levels with same |m| � 1 are degenerate and correspond to
two different states.

pansion over spherical harmonics allowed us to precisely
calculate the dependence of the Rydberg energies on the con-
finement strength as an external perturbation. In the absence
of the perturbation, the Coulomb energy levels are highly de-
generate. If a weak perturbation is introduced, this degeneracy
is lifted. In Fig. 1, we show the gradual increase in the splitting
of the energy levels with an increase in the strength, A, of the
weak perturbation. Their shifts to lower or higher energies are
determined mainly by the order of the alignment of the wave
functions over the confining direction.

The quantum states can be characterized by three quantum
numbers (N, l, m), where N is the principal quantum number,
l is the orbital quantum number, and m is the magnetic one.
For example, in Fig. 1, the states corresponding to principal
quantum numbers N = 2 and 3 are shown as function of
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FIG. 2. The Rydberg series of exciton states depicted at the
crossover from the weak to strong parabolic confinement along z.
The parameter A = μ
2/2 Ry/a2

B defines the strength of the con-
finement. (a) Finite-difference calculations of several of the lowest
energy levels. The solid lines correspond to the bound states which
remain bound for both weak and strong confinement. The dashed
lines show the states whose energies diverge during the crossover to
the strong confinement. (b) Results of B-spline expansion computa-
tions of the excited states. The energy levels with |m| � 1 are only
shown for better visibility.

the confinement strength A. For N = 2, taking into account
the degeneracy of the states (2, 1,±1), there are just three
energy levels for four bound states, see Fig. 1(a). Thus the
interpretation of the results is rather straightforward [85].
One observes that the energy of the state (2,1,0) dramati-
cally increases with growing A. The reason for this behavior
is that the wave function of this state is essentially aligned
along the z axis. The squeezing of the wave function induces
the rapid energy increase. The wave functions of the other
three states are not aligned along z, so their energies do not
change drastically. This is also seen in Fig. 2(a), where the
dependence of several of the lowest energy levels on a wide
range of strengths A is shown. Moreover, one observes that
the wave function of the state (2,0,0) is spherically symmetric,
whereas the wave functions of the states (2, 1,±1) are more

aligned in the QW (xy) plane. As a result, the energy of the
spherically symmetric state (2,0,0) is above those of the states
(2, 1,±1).

For a principal quantum number N = 3, see Fig. 1(b), the
number of bound states is increased up to nine, so the in-
terpretation of the results becomes somewhat more involved.
Moreover, in this case, the distribution of states is additionally
complicated by the coupling of states with the same m and
with the values of l that differ by 2 [m − m′ = 0 and l − l ′ =
±2 in Eq. (13)]. Thus the corresponding energy levels exhibit
the avoided crossings. If this coupling were absent, then again
the distribution of energy levels would be mainly defined by
the measure of alignment of the wave function along the z
axis. The more the wave function is aligned along the confin-
ing direction, the higher the energy (lower binding energy) of
the state. Therefore the state (3,1,0) would have the highest
energy (lowest |Eb|) due to the largest z component. All other
states would be located below that in energy until the lowest
state (3, 2,±2) whose wave function lies predominantly in
the QW plane. However, due to their coupling, the energy
levels of states with the same m and l − l ′ = ±2 show avoided
crossings. For N = 3, there is a coupling of the angular de-
pendencies of the states (3,0,0) and (3,2,0). This results in a
state repulsion, making the state (3,0,0) to be energetically
highest. Furthermore, the states (3,2,0) and (3, 1,±1) cross
at A ≈ 0.0025 Ry/a2

B.
The energies of the states (2, 1,±1), (3, 1,±1) and

(3, 2,±2) decrease with growing strength A due to their
dominant alignment along the QW plane. In fact, the ener-
gies of these states transit from weak to strong confinement.
For very weak confinement (3D exciton, 3D Coulomb po-
tential), the states are degenerate and their binding energies
are −1/2N2 Hartree, whereas for the limiting case of strong
confinement (2D exciton, 2D Coulomb potential), their en-
ergies are −1/2(N − 1/2)2 Hartree. Hence, the bound states
aligned along the QW plane generally become more strongly
bound as the strength A increases [38]. This is depicted in
Fig. 2 where the energy levels as functions of the strength
of the confinement are shown. One can see, for example,
that the energy of the state (2, 1,±1) decreases from −1/8
Hartree to −2/9 Hartree. The multiplicity of the 3D Coulomb
energy level is N2, whereas for the 2D Coulomb potential it is
2N − 1. Therefore, for N = 2, we see that one of four states
drastically increases its energy as the confinement growths
and other three fill in the three empty vacancies in case of
the strong confinement.

The Coulomb-Sturmian basis is not appropriate for a pre-
cise determination of the energies across the entire range
of confinement strengths, covering both weak and strong
regimes. For Nmax ∼ 100 and lmax ∼ 20, the energy levels
obtained using the Coulomb-Sturmian basis start to diverge at
around A ∼ 0.1 Ry/a2

B. Therefore, for larger A, we employed
the finite-difference method [63,70] to accurately calculate
the lowest energy levels, see Fig. 2(a). Details are given in
Appendix 1. The finite-difference approximation allowed us
to precisely calculate the energy levels up to A ∼ 106 Ry/a2

B.
For even stronger confinement, these results can also be ob-
tained using the adiabatic approach, see Sec. III B, because
the confinement along z dominates and the system is, to a large
extent, two-dimensional.
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Solving Eq. (8) by the finite-difference method allows one
both to determine several of the lowest energy levels for a
large range of confinement strengths, A = 10−6–106 Ry/a2

B,
as well as their ordering. Although the distribution for the ex-
cited Rydberg states is rather complicated, we can draw some
important conclusions from the calculated spectra. States with
the same quantum numbers, that differ only by the sign of m,
are degenerate. For a given principal quantum number N , the
two lowest degenerate energy levels have |m| = l = N − 1.
They remain there irrespective of the strength of the confine-
ment, as they are mainly aligned along the QW plane and,
moreover, have a minimal extent along the z axis. For weak
confinement, one of the states with largest energy in a bundle
is the state with l = 1 and m = 0. As it is mainly aligned along
z, its energy rapidly diverges as A increases. Furthermore, for
arbitrary N , the energies of states with |m| = l − 1 diverge.
The spherical harmonics of these states are proportional to z/r
and thus the corresponding matrix element of the parabolic
potential is positive and grows drastically with increasing A.

Generally, the quantum confinement leads to an increase
of the binding energy [38]. However, one can see that in-
stead some states increase their energies (diminish Eb) by
crossing over higher-lying states with growing confinement,
see Fig. 2(b). During the crossover from weak to strong con-
finement, the energy levels for fixed N are stacked above the
lowest states (N, N − 1,±(N − 1)) with decreasing magnetic
quantum number m. This can be seen in Fig. 2(a) where for
N = 4, the energy levels of the bound states are ordered from
bottom to top of the bundle as |m| = 3, 2, 1, 0.

Although the finite-difference method allows for a precise
determination of lower-lying energy levels, it is less appropri-
ate for the calculation of high-lying Rydberg exciton energy
levels. The wave functions of the Rydberg states are signifi-
cantly spatially extended and require using fine grids over a
broad calculation domain. The B-spline basis expansion [65]
of the wave function in Eq. (8) makes it possible to overcome
these technical issues and to accurately estimate many excited
energy levels for a wide range of confinement strengths. We
used B-splines of fifth order to represent the wave function,
that led to the generalized eigenvalue problem which was
solved by the QR algorithm [86]. The details on the B-spline
calculations are given in Appendix 2.

In Fig. 2(b), we show the results of the B-spline calcu-
lations of the energy levels for magnetic quantum numbers
|m| = 0, 1. One observes a crossover from weak to strong
confinement as well as crossings and avoided crossings of
different excited energy levels. As already mentioned, for
weak confinement the energy levels are ordered according to
the energies of the 3D Coulomb potential, −1/2N2, whereas
for strong confinement they are governed by the 2D Coulomb
potential −1/2(N − 1/2)2. In the intermediate region, for a
given N, the splitting of energy levels into bundles with dif-
ferent values of |m| occurs.

The comparison of the exciton energies obtained by the
B-spline expansion method and by the limiting expansions in
weak and strong confinement regimes is shown in Fig. 3. The
accurate B-spline solution is represented by the solid curves,
whereas the energies calculated using the Coulomb-Sturmian
and the adiabatic expansion methods are shown by dashed
curves. One can see that, although the limiting expansions are

FIG. 3. Exciton energies calculated by the B-spline expansion
method (solid curves) in comparison with the ones obtained using
the Coulomb-Sturmian (fine-dashed curves) and the adiabatic expan-
sions (coarse-dashed curves).

appropriate in the domain close to the corresponding limits,
they are inaccurate for the whole studied range of confinement
strengths. Interestingly, deviations produced by the limiting
models for energy levels with m > 0 are noticeably smaller
than for ones with m = 0. They originate from different prop-
erties of the solutions of Eq. (8) as ρ → 0. Along the ρ

direction, the eigenfunctions of Eq. (8) with m > 0 vanish
as ρ → 0, whereas the solution for m = 0 converges to a
maximal constant value as ρ → 0. The latter leads to a sig-
nificant contribution to the potential term in Eq. (15) in the
interaction domain near ρ = 0. For m > 0, as the solutions
vanish as ρ → 0, such contributions are much smaller and the
deviations produced by the adiabatic and Coulomb-Sturmian
expansions are reduced.

IV. RECTANGULAR CONFINEMENT

In this section, we consider a rectangular confining
potential

Ve,h(ze,h) =
{

0 if |ze,h| < L/2

∞ if |ze,h| � L/2
, (16)

where L is the QW width. In the case of a rectangular QW con-
finement, the center-of-mass and relative coordinates along
the confinement direction (z axis) in Eq. (5) can no longer be
separated. Therefore, in contrast to the previous section where
the two-dimensional Schrödinger equation has been studied,
here the complete three-dimensional Eq. (3) needs to be
solved. Nonetheless, we can adopt some of the approaches
from the previous section. We will treat the weak confine-
ment as perturbation, with the three-dimensional Coulomb
wave functions being the eigenfunctions of the unperturbed
problem. Vice versa, the 3D Coulomb interaction will be
considered as a perturbation in the case of strong confinement.
For both approaches, we solve the problem by expanding
the three-dimensional wave function into the respective tai-
lored basis functions. As a benchmark for comparison of the
weak and strong confinement approaches, we will compare
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the results with those using the B-spline basis expansion.
The B-spline basis is appropriate for computing the Rydberg
energy levels for the whole range of studied QW widths,
covering both weak and strong confinement regimes as well
as the intermediate region, where the perturbative approaches
are inaccurate.

A. Weak confinement

It has been suggested [38] to treat the weak confinement
of excitons by confining the motion of the exciton as a whole
in terms of the center-of-mass coordinate Z , while the relative
motion of electron and hole is not influenced by the confine-
ment. Then, the nontrivial radial part of the wave function can
be represented as an infinite sum [70]

ψ (Z, z, ρ) =
∑
k,Nl

ckNl φk (Z ) ψNl (
√

ρ2 + z2; λ), (17)

where

φk (Z ) =
√

2

L

{
cos(πkZ/L) if k = 1, 3, 5, . . .

sin(πkZ/L) if k = 2, 4, 6, . . .

are the confinement states of a QW with infinite barriers. The
relative motion of electron and hole is governed by the 3D
Coulomb potential. As a result, ψNl (r; λ) are the Coulomb-
Sturmian functions (12), which have been introduced for weak
parabolic confinement.

We use the terms of the expansion (17) to calculate the
matrix elements of the exciton Hamiltonian H (Z, z, ρ), see
Eq. (3), i.e., including both the confinement of center-of-mass
and the relative motion:∫

ψN ′l ′ (ρ, z; λ) φk′ (Z ) H (Z, z, ρ) ψNl (ρ, z; λ) φk (Z ) dZ dz dρ.

(18)
The zero boundary conditions are defined by the barriers
of the confinement potentials Ve,h(ze,h). As the confinement
potentials depend both on z and Z , the boundary conditions
cannot be fulfilled by the basis wave functions (17), which are
separable in z and Z . In analogy to the strong parabolic con-
finement, we make use of the adiabatic approach to obtain an
effective Z-dependent potential by integrating over the relative
coordinates (ρ, z). Hereby, for each value of Z the domain of
integration over the z coordinate is defined by the confinement
potentials. As a result, the full integration domain in the (Z, z)
plane is reduced to a rhombic-like region [70]. Because of
such an integration domain, one can no longer employ the
recurrence relations of the Coulomb-Sturmian functions, but
instead one has to numerically integrate them over z and ρ.

B. Strong confinement

For strong confinement, one can assume a separate quan-
tization of the electron and the hole motion along the
confinement axis, leading to the confinement states φi, j (ze,h)
[38]. Moreover, the in-plane properties of the wave function
are, in turn, mainly determined by the 2D Coulomb potential.
As a result, the exciton wave function can be expanded as

ψ (ρ, ϕ, ze, zh; λ) =
∑
i jNm

ci jNm φi(ze) φ j (zh) �Nm(ρ, ϕ; λ).

(19)

We introduce the 2D Coulomb-Sturmian functions as [87]

�Nm(ρ, ϕ; λ) = 1√
ρ

φNm(ρ; λ)
eimϕ

√
2π

, (20)

where N and m are the principal and magnetic quantum num-
bers, respectively, and

φNm(ρ; λ) =
√

(N − |m| − 1)!

(N + |m| − 1)!
e−ρ/λ

(
2ρ

λ

)|m|+1/2

× L2|m|
N−|m|−1

(
2ρ

λ

)
.

Similar to the case of weak parabolic confinement, we expand
the exciton wave function in the basis (19) and find the tridi-
agonal matrix of the (in-plane) Laplace operator as∫∫

�N ′m′ (ρ; λ) �ρ �Nm(ρ; λ)dρ

= δm′m

λ

[
−

(
N− 1

2

)
δN ′N − 1

2
(
√

(N − m)(N + m)δN ′(N+1)

+
√

(N + m − 1)(N − m − 1)δN ′(N−1))

]
,

as well as of the identity operator∫∫
�N ′m′ (ρ; λ)�Nm(ρ; λ)dρ

= δm′m λ

[(
N − 1

2

)
δN ′N

− 1

2

(√
(N − m)(N + m)δN ′(N+1)

+
√

(N + m − 1)(N − m − 1)δN ′(N−1)

)]
.

The basis is diagonal with respect to the 2D Coulomb
potential∫∫

�N ′m′ (ρ; λ)
1

ρ
�Nm(ρ; λ)dρ = δN ′N δm′m. (21)

This allows us to treat the difference to the 3D Coulomb
potential as a perturbation

∫∫
�N ′m′ (ρ; λ)

(
1√

ρ2 + (ze − zh)2
− 1

ρ

)
�Nm(ρ; λ)dρ

= V N ′N
perturb(ze, zh). (22)

Further integration of the QW confinement functions φi, j (ze,h)
over ze and zh is straightforward, however, for the perturbation
potential (22) this can only be done numerically.

C. Results for rectangular confinement

Using the material parameters for the electron and the hole
in cuprous oxide from Sec. III C, the Rydberg energy and the
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FIG. 4. Exciton energy levels as a function of the QW width
for m = 0. The solid curves show the energy levels obtained
using the expansion over 2D Coulomb-Sturmian basis (strong-
confinement expansion), for the dashed ones, we use the 3D basis
(weak-confinement expansion). For clarity, higher confinement states
(kX, Ns) are only partly shown. Selected classified energy levels are
denoted.

Bohr radius of the lowest hydrogenlike exciton state in a bulk
crystal are

Ry = μe4

2ε2h̄2 = 98.35 meV, aB = ε h̄2

μe2
= 0.976 nm.

The latter value means that the Bohr radius of the exciton
ground state is around 1 nm. Thus, for this state QW thick-
nesses L (or sizes of the crystal) of the order of 10 nm
and wider can be considered as a model of wide QWs.
Such a model assumes that the Coulomb potential dominates,
whereas quantization due to QW barriers can be treated as
a small perturbation. As a result, for such QW widths the
representation (17) is justified.

In our study, we have computed the binding energies of
the exciton states in the weak and strong confinement regimes
using the expansions (17) and (19), respectively. The calcu-
lated binding energies are presented in Fig. 4 in the respective
limits of wide and narrow quantum wells. In these limits,
both numerical methods show good convergence: the cal-
culated Rydberg energy series correspond to the models of
3D Coulomb and 2D Coulomb confinement. However, the
convergence becomes worse if one moves away from the
limiting regimes. For example, if one considers the model
of a narrow QW (strong-confinement expansion), and starts
to gradually increase L, then the calculated results start to
gradually diverge. One can see in the figure that the energies
of the strong-confinement expansion do not asymptotically
converge to the Rydberg energies as L → ∞. Instead of ap-
proaching the constant value, the ground and excited state
energies diverge. By contrast, the weak-confinement basis
expansion (17) allows one to precisely calculate the exciton
energies over a broad range of QW widths, when L 	 aB. The
calculated energies are shown in Fig. 4 by dashed curves. One
can see the precisely obtained several lowest energies of the

Rydberg series N = 1, 2, and 3. For smaller L, this expansion
gives inaccurate results.

The strong-confinement expansion (19) makes it possible
to directly assign quantum numbers to the calculated energy
levels. In the simplest case, our calculations are restricted to
cylindrically symmetric solutions, m = 0. Therefore we can
use three quantum numbers (ei, h j, Ns) that refer to the ith
electron quantum-confinement state, the jth hole quantum-
confinement state and the 2D Coulomb principal quantum
number N . Similarly, for the weak-confinement expansion
(17) it is convenient to introduce two quantum numbers: k is
for the kth quantized state of the exciton as a whole over the z
axis, and N is for the 3D Coulomb principal quantum number.
They are collected in the doublet (kX, Ns), where X stands for
the exciton. It is worth noting that, as resulting from Eq. (17),
in general different orbital quantum numbers are allowed, al-
though here we restrict ourselves to the simplest case of l = 0.
The assignments are exact in the corresponding limiting cases
of strong and weak confinement. However, when leaving the
respective limits, they become approximate due to a mixing
of the basis states.

The assignment of the curves is illustrated in Fig. 4. As a
function of the QW width, the curves can be roughly divided
into two groups: those which are approximately constant in
energy over the whole range of QW widths, and those with
strongly decreasing energies. The first group comprise states
corresponding to the lowest Rydberg series, i.e., the exciton
states below the lowest scattering threshold Ee1 + Eh1 [70].
They are best seen by the dashed curves and the horizontal
solid ones. These states, from bottom to top, are charac-
terized by a triplet of quantum numbers (e1, h1, Ns) with
increasing N = 1, 2, . . . characterizing the energies in the
Rydberg series. They accumulate around zero binding energy,
which corresponds to the above-mentioned lowest scattering
threshold.

The second group of levels comprise of those with de-
creasing energies as L grows and which, moreover, converge
to the energies of the first group as L → ∞. The energies
of the second group originate from the excited electron and
hole quantum-confinement states Eei,h j , where either i > 1
or j > 1. These one-particle states form the subbands in the
energy spectrum [70]. Each subband has a scattering thresh-
old, Eei + Eh j , producing a certain branch of the continuum.
Below each scattering threshold there is a proper Rydberg
series of energy levels. For small QW widths, the quantum
confinement is strong, and the energy separation between
one-particle states is large. Therefore, for small L, the upper
subbands lie high in the continuum, far above the lowest
scattering threshold Ee1 + Eh1 [70]. These eh states are re-
sonant (or quasibound) ones. As a result, there is only one,
namely the lowest, Rydberg series of 2D Coulomb-like eh
bound states in the spectrum for small QW widths. As L
increases, the strength of the confinement is gradually reduced
and the energy distance between quantum-confinement states
decreases. The upper subbands gradually decrease in energy
causing a penetration of the electron-hole resonant states be-
low the threshold Ee1 + Eh1, making them bound. As a result,
with increasing L, more eh bound states, exciton states, appear
in the spectrum. For cuprous oxide me > mh, hence the lowest
states which appear in the discrete part of the spectrum are
those with the excited electron eigenmodes ei, i = 2, 3, . . .
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In analogy to the parabolic confinement, we also see in
Fig. 4 that the alignment of the exciton states, obtained from
the expansion for the weak confinement, along the z axis de-
termines their order with respect to energy. This can be seen,
for example, by tracing the lowest states which converge to the
N = 1 or N = 2 Rydberg energy levels. As L decreases, the
lowest state (1X, 1s) turns into the (e1, h1, 1s) state. Similar
to the one-particle states in the QW, the second lowest state,
(2X, 1s) is above (1X, 1s) due to its more spread-out wave
function over the confinement direction.

The assignment becomes particularly complicated for the
higher-lying states due to the coupling with a large number
of confinement states. Moreover, even for the lower energy
levels, the strong- and weak-confinement expansion calcula-
tions poorly match in the intermediate region of QW widths.
To reliably calculate the energies in the intermediate region
between the strong and weak confinement, as well as in order
to correctly identify the energy levels of the higher states, a
precise numerical method is required.

Similar to the previous sections of parabolic confinement,
the energy levels of the exciton in the rectangular QW can be
calculated using the finite-difference approach [63,70]. How-
ever, an accurate solution of the three-dimensional Eq. (4) by
finite differences is feasible only for a few low eigenstates.
For a precise determination of many Rydberg energies we
applied the more powerful B-spline expansion method [64].
The numerical details of this method are given in Appendix 2.

We calculated the energy levels of the exciton in Cu2O-
based QWs of various widths ranging from 0.2 nm until
50 nm, which includes the crossover from the limits of narrow
QWs, when L 
 aB, to that of wide QWs, when L 	 aB. For
better visibility, in Fig. 5, we show the obtained binding ener-
gies of different exciton states as function of the QW width for
L < 30 nm. The binding energies are presented with respect
to the lower boundary of the continuum, Ee1 + Eh1, which is
conventionally denoted by the zero energy level. In Fig. 5,
panel (a) shows all calculated energy levels, whereas panel
(b) presents the enlarged domain of the Rydberg energy lev-
els (Ns, N = 2, . . . , 9) and the excited quantum-confinement
states to highlight the crossings and avoided crossings.

The calculated eh bound states in Fig. 5 were subject to the
same classification, (ei, h j, Ns), based on the types of their in-
plane relative and quantum-confinement motions as in Fig. 4.
Such a classification is exact for narrow QWs. For wider QWs,
it is only approximate. It represents the dominant pure state
|ei, h j, Ns〉 of the exciton in a very narrow QW, inherent in
the calculated state for a given L.

Figure 5(b) shows the exciton Rydberg energy levels
(2s–9s-like states), their evolution with increase of the QW
width and the crossings/avoided crossings with other iden-
tified quantum-confinement energy levels. If there are two
states of the same symmetry of the quantum-confinement
eigenmodes, for example (e3, h1, 1s) and (e1, h1, 2s), then
the corresponding energy levels show an avoided crossing.
If there are states of different symmetry, then their energies
cross, see for example the states (e1, h1, 2s) and (e2, h1, 1s).

A comparison of the B-spline numerical results with lim-
iting model data is shown in Fig. 6. Panel (a) demonstrates
the data obtained using the B-spline expansion together with
the results of the strong-confinement expansion calculation.

FIG. 5. (a) All calculated energy levels of the exciton in a Cu2O
QW as a function of the QW width for m = 0. The method of the
B-spline expansion of the wave function is applied. The energy levels
are labeled as (ei, h j, Ns), where i and j are the indices of the
electron and hole quantum-confinement states, and N is the principal
quantum number of the s-like Coulomb state. (b) Close-up of se-
lected Rydberg energy levels. At this scale, the energy levels of states
(e2, h1, 1s) and (e3, h1, 1s) as well as other quantum-confinement
ones at panel (a) look like almost vertical series lines.

Panel (b), in turn, shows the numerical data compared to
the energies from the weak-confinement approximation of the
exciton wave function. One can see that the strong- and weak-
confinement approximations work well in the corresponding
limits of narrow and wide QWs, respectively. The strong-
confinement approximation allows one to precisely determine
the series of Rydberg energy levels for narrow QWs, i.e., for
the 2D Coulomb potential −ρ−1. For wider QWs, when the
eh motion is no longer two-dimensional, this approximation
is inaccurate. Instead, the weak-confinement approximation is
precise. One can see the improving agreement between lowest
quantum-confinement states as L grows. The upper quantum-
confinement energy levels show less precise correspondence
due to inaccuracy in the B-spline approximation of highly
oscillating wave functions of the upper QW confined states.
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FIG. 6. Comparison of (a) the strong-confinement and (b) the
weak-confinement expansion calculations with the data obtained
from B-spline expansion. For simplicity, only s-like states are shown.

Increase of the size of the B-spline basis gives an improve-
ment in the accuracy.

In order to compare our two-band model and the energies
it produces with the experimental measurements [19,56], we
calculated energy levels of the exciton states with |m| = 1
as a function of the QW width, see Fig. 7. In contrast to
the case of cylindrically symmetrical states, with m = 0,
which we call s-like states, those with |m| = 1 can be
attributed to p-like states. The numerical method allowed
us to obtained the energies up to at least the 10p Rydberg
level. Similar to the s-like energies, among p-like states
there are many quantum-confinement energy levels as
well as their crossings and avoided crossings. However,
despite the general similarity of the dependencies of s-like
and p-like energy levels on the QW width, the detailed
comparison reveals noticeable discrepancies of the states
of two different kinds. These differences are especially
pronounced for energy levels of the lowest quantum-
confinement subband, (e1, h1, Ns) and (e1, h1, N p),
with N = 2, . . . , 5 for the QW width L < 15 nm.

FIG. 7. Calculated p-like (m = 1) energy levels of the exciton in
a Cu2O QW compared to the s-like ones (m = 0). The method of
the B-spline expansion of the wave function is applied. The energy
levels are labeled as (ei, h j, N p), where i and j are the indices of the
electron and hole quantum-confinement states, and N is the principal
quantum number.

In complete analogy to the parabolic confinement, the s-
and p-like states degenerate only in the limiting cases of
strong and weak confinement. For the intermediate region of
0 < L < ∞ the energies of p-like states are lower than the
corresponding s-like ones. These discrepancies originate from
the QW barriers, which break the exact spherical symmetry
of the hydrogenlike exciton, leaving behind only a cylindrical
symmetry. This leads to different energies of the states with
different absolute values of the magnetic quantum numbers
(and also with different values of orbital ones) for the same
principal quantum numbers.

Our energy levels of the p-like exciton states can be com-
pared to the photoluminescence spectra measured for different
QW widths, see Ref. [19]. The peak positions of 2p-, 3p-,
and 4p-like exciton states of the measured spectra well agree
with the corresponding calculated energy levels. In particular,
one can see in Ref. [19], Fig. 2(a), that the energy differ-
ences between 3p- and 2p-like as well as between 4p- and
3p-like states are 14 and 5 meV, respectively. Very simi-
lar energy differences are observed in Fig. 7 for QW width
L ∼ 50 nm, which means a good agreement between experi-
ment and theory.

V. ELECTROSTATIC EFFECT OF THE BARRIER
MATERIAL ON THE ELECTRON-HOLE INTERACTION

The quantum confinement is the main effect determining
the energy levels. However, it is not the only effect. Facets
of the heterojunction of the cuprous oxide crystal embedded
into air or in a substrate (sapphire or quartz) are characterized
by different dielectric constants. In order to describe an ex-
perimental setup as in Ref. [19] in which a thin film of Cu2O
is sandwiched by a substrate material, we consider an effect
of the dielectric contrast in the film and in the substrate to
the energy levels of the Rydberg exciton. The heterostructure
with different dielectric permittivities leads to different rates
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of charge screening and thus to a distortion of the Coulomb in-
teraction between charge carriers. This is especially important
for narrow structures in which the electrostatic field is mainly
concentrated in the substrate, but not in the film [88,89].
The electron-hole interactions in a heterostructure with
dielectric contrast are rigorously described by the Rytova-
Keldysh potential [67,68]. It defines the infinite series of the
Coulomb-like interaction potentials between the given charge
and the fictional image charges.

For an electron and a hole in a structure with the dielectric
constant εQW in the QW and εb in the barrier, the Rytova-
Keldysh potential is given by

V (�ρ, ze, zh)

= −4πe2

εQW

∫
d2k

(2π )2
eik�ρ

× cosh [k(L/2 − ze) + η] cosh [k(L/2 + zh) + η]

k sinh [kL + 2η]
,

(23)

where η = 1
2 ln εQW+εb

εQW−εb
. When using a series expansion for the

denominator, i.e.,

1

sinh x
= 2

∞∑
n=0

e−(2n+1)x (24)

for x > 0, the Fourier integrals can be solved analytically
resulting in the potential

V (ρ, ze, zh) = − e2

εQW

+∞∑
n=−∞

γ |n|√
ρ2 + (ze − z(n)

h )2
, (25)

with γ = εQW−εb

εQW+εb
. Here, z(n)

h = (−1)nL − z(n−1)
h with z(0)

h = zh

are the z positions of introduced image charges of the hole
after |n| alternating mirror reflections at the two barrier sur-
faces at z = ±L/2 in complementary order for n ≷ 0. Note
that the image charges are located on a line perpendicular to
the barrier planes of the QW and decrease exponentially with
the number |n| of the reflections.

In the 2D limit, the potential (23) is reduced to the effective
potential, given by the difference of the Struve function S(x)
and the Bessel function of the second kind Y0(x) as

Veff(ρ) = − πe2

LεQW
[S(ρ/ρ0) − Y0(ρ/ρ0)].

Here ρ0 = LεQW/(2εb) is the parameter defining the scale
of the interactions. This potential has a singular behavior
Veff(ρ) ∼ − ln ρ as ρ → 0 and the Coulomb-like asymptotic
form Veff(ρ) ∼ −ρ−1 as ρ → ∞ [90,91].

It is worth noting that the dimensional reduction also in-
troduces a similar logarithmic divergence of the effective 2D
potential of the pure Coulomb interaction [92]. The point is
that the averaging of the Coulomb potential over the quan-
tum confinement wave functions results in the effective 2D
interactions in such a way that it behaves as ∼ − ln ρ as the
2D radius ρ → 0. The direct B-spline-expansion solution of
the 3D Schrödinger equation is equivalent to the method of
the solution by averaging of the problem over the z direction
and then solving the effective equation for the in-plane motion

(over ρ) with the potential (15). Thus, during a crossover
to the 2D geometry, our effective 2D potential simulates a
logarithmic divergence as ρ → 0.

As a result, the effect of the dielectric contrast at the
heterojunction does not introduce new singularities of the
potential. Therefore the general structure of the Rydberg and
quantum-confinement energy levels should still hold and only
the details change. The strongest effect of the Rytova-Keldysh
potential occurs for narrow QWs. As the strength of the con-
finement depends on the quantum number of a given state,
the Rytova-Keldysh potential can also noticeably change the
Rydberg states of the confined exciton for L 	 aB.

To study this issue, we calculated the energy spectrum of
the eh bound states with the interactions described by the
Rytova-Keldysh potential. We used the dielectric constant
εQW = 7.5 in QW and εb = 3 in the barrier. The latter is a
typical value for a sapphire or quartz substrate [93]. With these
values the image charge eγ |n| in Eq. (25) is reduced by about
three orders of magnitude after eight mirror reflections, which
guarantees the fast convergence of the potential. A compari-
son of the results with the Rytova-Keldysh and the Coulomb
potential is shown in Fig. 8. One can see that, generally,
up to an additive constant, the structure of energy levels is
similar for both potentials. Nevertheless, one observes that the
dielectric contrast with εb < εQW shifts the energies down-
ward, hence the ground and excited states become more
localized, and eventually more bound states appear in the
spectrum. This means that, due to the lower εb in the substrate,
the eh interaction becomes stronger. The penetration of the
electrostatic field in the barrier material is increased due to the
factor 1/εb, compared to 1/εQW in the QW. This also leads
to larger avoided crossings. Moreover, the region where the
avoided crossings take place is naturally a transition region
from weak to strong confinement. For the Rytova-Keldysh
potential, this region, as a whole, is shifted to the lower QW
widths. This is again the result of the increased eh interac-
tion in the barrier material, compared to the case when εb =
εQW. The upper states with, for example, quantum numbers
(e1, h1, 4s) and Rydberg exciton states with higher principal
quantum number in Fig. 8(b) are clearly in the transition
region or in the strong confinement region for L up to 30 nm.

One can also see from the figure that some states de-
generate more rapidly as L → ∞ with the Rytova-Keldysh
interactions than with the Coulomb potential. This takes place,
for example, for the (e1, h1, 1s) and (e2, h1, 1s) states. This
is a direct consequence of the shifted transition region. The
degenerate energy levels at smaller QW widths mean that, for
the Rytova-Keldysh potential, the relatively weaker confine-
ment appears at smaller L, due to the relative increase of the
eh interactions (when εb < εQW), than in the case of the pure
Coulomb potential.

A comparison of the Rytova-Keldysh results with the pho-
toluminescence data given in Ref. [19] shows reproducing
the same energy differences as the Coulomb interactions do.
The point is that both the calculated p-like energy levels
for the weak confinement asymptotically as L → ∞ con-
verge to the same values. The measurements were done for
a thickness L ∼ 100 nm and larger for which our calcu-
lations with both the potentials produce the same energy
differences.
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FIG. 8. (a) The comparison of energy levels of the exciton in a
Cu2O QW as a function of the QW width for m = 0. The energy lev-
els are obtained with the Coulomb potential and the Rytova-Keldysh
potential (with the dielectric constant in the substrate εb = 3). The
energy levels are labeled as (ei, h j, Ns), where i and j are the indices
of the electron and hole quantum-confinement states, and N is the
principal quantum number of the s-like Coulomb state. (b) Close-up
of selected Rydberg energy levels.

VI. EFFECTS OF THE CRYSTAL ENVIRONMENT

So far, we used the hydrogenlike two-band model to
describe the kinetic energies of the electron and hole.
This model adequately reproduces the general structure of
Rydberg energy levels, but does not show all the features
of the spectrum such as the fine-structure splitting. If a
sufficient accuracy to allow for a quantitative comparison
with experiment is desired, the complex valence-band struc-
ture and other central-cell corrections for small electron-hole
separations [47] have to be considered. In this section, we
briefly discuss how these improvements affect the presented
spectra.

A more sophisticated model for the energy dispersions of
the electron and hole, that is able to properly describe the
nonparabolicity of the valence bands, is given by the Suzuki-

Hensel Hamiltonian, based on the Luttinger-Kohn model
[40–42,46]. In this description, the treatment of the kinetic
energy of the electron and hole requires the introduction of
additional spin degrees of freedom, viz., the quasispin and
the hole spin. With these quantities, all symmetry-compatible
terms up to quadratic order in the hole momentum are in-
cluded, leading to a much more complicated total Hamiltonian
and an increase of the dimension of the Hilbert space by a
factor of six. As a result, the computation of the fine-structure
splitting due to the nonparabolic dispersion of the hole is
nontrivial for highly excited Rydberg states in the transition
region from weak to strong confinement.

Further complication of the model includes the central-cell
corrections. They mainly affect the exciton states with princi-
pal quantum number N = 1, marked as 1s in Figs. 4–6 and 8.
These states have the smallest spatial extension, and there-
fore most quickly reach the weak confinement region with
increasing QW width. Most corrections will result in a simple
shift of the energy, except for the exchange interaction, which
causes a splitting of s-like states into the threefold degenerate
�+

5 orthoexcitons and a �+
2 paraexciton [47,48,94]. The bulk

1s exciton is, in particular, split by about 12 meV [47]. A
similar fine structure splitting is expected for the different
1s-like states originating from the quantization in QW, i.e.,
there are two sequences of 1s-like states with symmetries �+

2
and �+

5 , respectively. For each symmetry, the spectra should
be very similar (up to an energy offset) to the Rydberg series
obtained with the two-band model, but for symmetry reasons
in the QW, an additional splitting of the �+

5 excitons into a
one-dimensional and two-dimensional subspaces is expected
[94].

Additionally, in the QW the translational symmetry is bro-
ken along the z direction, i.e., perpendicular to the QW plane.
As a result, the associated center-of-mass momentum is no
longer a conserved quantity. Thus the relative and center-of-
mass coordinates cannot be introduced for all three spatial
directions as in the bulk, but only in the QW plane. The
rotational symmetry around the z axis is also broken by the
crystal. Therefore the computation of the fine-structure split-
ting requires the solution of the Schrödinger equation with
four degrees of freedom in coordinate space, in addition to the
spin degrees of freedom related to the quasispin and hole spin.
The derivation and implementation of the full Hamiltonian by
using a complete basis set with, e.g., Sturmian or B-spline
functions, is a highly nontrivial task. Furthermore, due to the
increased size of the Hilbert space, the numerical effort for
diagonalizing the Hamiltonian will grow drastically compared
to the hydrogenlike two-band model for excitons in QWs.

VII. CONCLUSIONS

In this work, we have computed the energy levels of Ryd-
berg excitons in cuprous oxide QWs of various thicknesses,
ranging from weak confinement, where the effect of QW
barriers can be treated as a small perturbation, to strong
confinement, where the Coulomb potential degenerates into
its two-dimensional counterpart. The limiting cases of weak
and strong confinement can be treated by Coulomb-Sturmian
and adiabatic expansion methods, respectively. However,
the crossover from weak to strong confinement across ten
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orders of magnitude of the confinement strength can only
be accurately studied by numerical methods, in our case us-
ing a finite-difference approximation or B-spline expansion
methods.

We obtained the Rydberg series of energy levels in case
of parabolic confinement, observed their dependence on the
strength of the confinement, the crossings and avoided cross-
ings of energies. The parabolic confinement has the distinct
advantage that the variables in the Schrödinger equation are
separable, and the motion of the exciton as a whole in the
QW is independent of the relative eh motion. We observed
the evolution of the energy spectrum during a crossover from
weak to strong confinement, i.e., from a wide QW to a very
narrow one. We observed that, due to confinement, the states
that are mainly aligned along the QW plane, remain in the
spectrum of bound states.

For rectangular confinement, we calculated the energy lev-
els of excitons in Cu2O-based quantum wells as a function
of the QW width. In this case, the center-of-mass motion
along the confining direction cannot be separated and one
has to solve the full three-dimensional problem. The B-spline
expansion of the exciton wavefunction allowed us to calculate
the quantum-confinement and the Rydberg energy levels for
a whole range of QW widths, including the crossover from
strong to weak confinement regimes. We observed crossings
and avoided crossings of energy levels and reproduced their
well-known behavior in the limiting cases. We showed that
the limiting models are precise in the corresponding confine-
ment regimes, however they are unable to adequately describe
the energy levels in the intermediate range of QW widths.
Nonetheless, these models provide us with an insight as to
how to classify the numerically obtained energy levels. We
properly identified and classified several energy levels as
well as explained their crossings and avoided crossings based
on the symmetry properties of their quantum-confinement
eigenmodes.

We additionally considered the effect of the dielectric con-
trast between the QW and the barrier. The smaller dielectric
permittivity in the substrate causes an increase of the eh
interaction and thus leads to larger binding energies of the
states. Although our investigations using the Rytova-Keldysh
potential are more related to the real experimental setup, other
issues raised by the dielectric contrast, for example, a breakup
of the exact parity due to the dielectric asymmetry, have to be
studied in the future.

In this paper, we have used a simple two-band model to
describe the kinetic energy of the electron and hole. This
means that effects of the complex valence band structure on
Rydberg excitons in QWs have been neglected. The accu-
rate consideration of these effects, as outlined in Sec. VI,
will be important for future detailed line-by-line comparisons
between experiment and theory. Nonetheless, our results can
be compared to the available experimental photoluminescence
and reflectance spectra of excitons in Cu2O-based thin films
of different thicknesses. For example, a good agreement was
obtained between the calculated results and the photolumines-
cence spectra from Ref. [19]. We believe that our data will
facilitate further experimental studies and interpretation of the
reflectance and photoluminescence spectra of excitons in thin
films of cuprous oxide.
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APPENDIX

In Appendix, we briefly outline the numerical methods
which are used to calculate the energy levels for arbitrary
strength of the confinement (i.e., for arbitrary QW width).

1. Finite-difference approximation

On an equidistant grid with step size h = ρi+1 − ρi, the
finite-difference approximation of the second-order deriva-
tives of Eq. (8) is given as

∂2�(z, ρ)

∂ρ2
= �(z, ρi−1) − 2�(z, ρi ) + �(z, ρi+1)

h2
+ O(h2).

The first-order derivative is approximated by

∂�(z, ρ)

∂ρ
= �(z, ρi+1) − �(z, ρi−1)

2h
+ O(h2).

Using these formulas in Eq. (8) leads to the eigenvalue
problem with a five-diagonal matrix [95]. Several lowest
eigenvalues of this matrix are calculated using ARPACK pack-
age [96]. As a result, the energies of the eh bound states for
different strengths of the parabolic confinement are obtained.

2. B-spline basis expansion

The B-splines of higher orders are a more effective tool for
discretizing and solving the partial differential equations than
the finite-difference approximation. The unknown function
is expanded over a basis of B-splines Bk

i (x), i = 1, . . . , n,
which are piecewise polynomials of degree k − 1. Given the
predefined series of the service nodes ti, each B-spline Bk

i (x)
of order k is defined on the interval [ti, ti+k]. Values of the
B-splines Bk

i (x) and their derivatives at a given point x can be
calculated by recursion formulas [65]

Bk
i (x) = x − ti

ti+k−1 − ti
Bk−1

i (x) + ti+k − x

ti+k − ti+1
Bk−1

i+1 (x),

dBk
i (x)

dx
= k − 1

ti+k−1 − ti
Bk−1

i (x) − k − 1

ti+k − ti+1
Bk−1

i+1 (x).

The expression for the second derivative can be derived from
the above two equations.

Three important characteristics of B-splines should be
highlighted. First, a B-spline of order k on an equidistant
grid approximates an analytical function with accuracy of
about hk , where h is the step size of the grid. Thus higher-
order B-splines give an accurate solution even for a relatively
small number of nodes, which is particularly important for
multidimensional problems. Second, one can choose nodes
nonequidistantly and add service nodes at the boundaries in
such a way as to have some B-splines equal to 1 at the
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boundaries, while all other B-splines are exactly zero there.
Then, for example, zero boundary conditions can be easily
implemented by removing the B-splines which are nonzero at
the boundaries. Third, the B-splines are nonorthogonal func-
tions, and thus the problem turns into a generalized eigenvalue
problem. However, the B-spline functions have minimal sup-
port, i.e., each B-spline vanishes, Bk

i (x) = 0, for x /∈ [ti, ti+k],
which significantly reduces the number of integrations to
calculate matrix elements. This leads to a sparse structure of
the matrices of the generalized eigenvalue problem.

When applying B-splines to represent the Hamiltonian (4)
of the exciton in a QW, the following should be noted: al-
though one applies Dirichlet boundary conditions as ρ →
∞, and one can restrict the calculation domain by setting a
large cutoff ρ = ρmax, the boundary conditions at ρ = 0 are
less obvious. The wave function ψ should be finite, but not
necessarily be zero at ρ = 0. To construct a zero boundary
condition at ρ = 0, we use the substitution ψ = χ/

√
ρ. As

a result, the B-spline expansion of χ is employed to the
Hamiltonian

H = − h̄2

2μ

(
∂2

∂ρ2
− m2 − 1/4

ρ2

)
− h̄2

2me

∂2

∂z2
e

− h̄2

2mh

∂2

∂z2
h

− e2

ε
√

ρ2 + (ze − zh)2
. (A1)

The Coulomb interaction in this equation can be easily
replaced by the Rytova-Keldysh potential (25). The zero
boundary conditions over z are defined at ze,h = ±L/2. The
constructed boundary value problem with zero boundary
conditions allows one to accurately approximate the spectrum
of bound states below the scattering threshold.

It is also worth noting that the fundamental solution of the
in-plane radial part of Eq. (A1) is a linear combination of
Bessel functions. One of these functions diverges as ρ → 0.
To avoid the divergence for magnetic quantum number m = 0,
the zero boundary condition at ρ → 0 was shifted to ρ =
−ε < 0, where ε is by three orders of magnitude smaller than
the smallest step of the grid. For |m| > 0, the divergence was
not observed and no shifts were applied.

The B-spline basis expansion reads as

χ (ρ, ze, zh) =
∑
i jk

ci jk Bk
i (ρ)Bk

j (ze)Bk
k (zh),

where the coefficients ci jk form the eigenvectors of the gen-
eralized eigenvalue problem. In our calculations, we used
B-splines of order k = 5 with equidistant nodes along the
z direction and nonequidistant nodes along the ρ axis. For
the nonequidistant grid, the interval between nodes scales
cubically with its number. We used 30 nodes for the ρ direc-
tion and 22 nodes for each of two z coordinates. The matrix
elements were calculated numerically by application of a 15
point Gauss-Kronrod formula [97]. The resulted generalized
eigenvalue problem was solved by ARPACK routines [96].
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