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Predicting edge-localized monovacancy defects in zigzag graphene nanoribbons
from Floquet quasienergy spectrum
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In this work we prescribe a theoretical framework aiming at predicting the position of monovacancy defects
at the edges of zigzag graphene nanoribbons (ZGNRs) using Floquet-Bloch formalism, which can be experi-
mentally observed through time- and angle-resolved photoemission spectroscopy (tr-ARPES). Our methodology
involves an in-depth investigation of the Floquet quasienergy band spectrum influenced by light with varying
polarization across a range of frequencies. Particularly under the influence of circularly polarized light with a
frequency comparable to the bandwidth of the system, our findings suggest a promising approach for locating
monovacancy defects at either edge, a challenge that proves intricate to predict from the ARPES spectrum of
ZGNRs with monovacancy defects. This has been achieved by analyzing the orientation of the Floquet edge state
and the appearance of new Dirac points in the vicinity of the Fermi level. The real-world applications of these
captivating characteristics underscore the importance and pertinence of our theoretical framework, paving the
way for additional exploration and practical use. Our approach, employing the Floquet formalism, is not limited
to monovacancy-type defects; rather, it can be expanded to encompass various types of vacancy defects.
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I. INTRODUCTION

Graphene, known for its structural flexibility and excep-
tional strength, can be transformed into a diverse array of
derivative structures, including carbon nanotubes, fullerenes,
quantum dots, and ribbons, each possessing remarkable phys-
ical and electrical attributes [1,2]. However, among these
derivative structures, graphene nanoribbons (GNRs), specif-
ically the two types known as zigzag graphene nanoribbons
(ZGNRs) and armchair graphene nanoribbons (AGNRs), re-
ceive the most extensive research attention [3–7].

The study was expanded to encompass GNRs featuring
various types of defects, which exert an influence on their
physical characteristics. These defects specifically impact the
transport properties [8], electronic properties [9], mechani-
cal properties [10], and magnetism [11] of the GNRs under
investigation. During the fabrication of graphene nanorib-
bons, vacancy defects may arise naturally, but they can
also be intentionally introduced or controlled to suit specific
objectives in nanoribbon design and functionality [12–19].
Various methodologies can be utilized for this purpose, en-
compassing top-down techniques such as focused ion beams
or electron beam lithography [20–22], along with chemical
processes like oxygen plasma treatment or chemical vapor
deposition, to intentionally introduce vacancy defects into
ZGNRs [23,24]. Moreover, Schmidt et al. emphasized he-
lium ion beam milling as a promising technique for creating
smaller pores with reduced inter-defect distances. Their suc-
cessful fabrication of 3 nm to 4 nm pores with a pitch
of 10 nm showcased the effectiveness of this method [25].
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Employing lithography techniques, a tailored nanoscale su-
perstructure of variable design and dimensions, reaching
down to tens of nanometers, can be fabricated. Recently,
Jones et al. conducted experimental work showcasing the
controlled periodic patterning of nanoscale pores in graphene
[26]. They demonstrated precise control over the induc-
tion of massive Dirac fermions by manipulating the size of
nanoscale apertures in graphene. In their density functional
theory (DFT) investigation, they focused on a pore size of
0.7 nm. However, top-down approaches encounter challenges
in achieving precise periodicity for a few atomic vacancy de-
fects in crystal structures with the current experimental setups
available.

To bridge this limitation, one can utilize bottom-up
methodologies, including on-surface and in-solution tech-
niques, to craft atomically precise ZGNRs by employing tai-
lored precursor monomers [27]. Similar approaches have been
employed in synthesizing edge-extended ZGNRs and creat-
ing graphene nanoribbon heterojunctions and heterostructures
[28,29], particularly focusing on ZGNRs with modified edges
featuring periodic cove-cape units [30]. Liu et al. success-
fully demonstrated the precise formation of cove-type edges
in ZGNRs both on substrates and in solution, utilizing chry-
sene as a crucial monomer [31]. Wang et al. illustrated the
tunability of the band gap in cove-edge ZGNRs through a
balance between the length of the zigzag segment and the
distance between adjacent cove units [32]. Notably, they high-
lighted that graphene nanoribbons with cove edges can be
viewed as periodically removing a carbon atom at the edge
of corresponding fully formed ZGNRs. The availability of
experimentally developed periodic structures has inspired us
to select our system, which features monovacancy defects at
the edges of ZGNRs.
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To detect different defects in 2D-structured materials,
there are various experimental techniques, such as trans-
mission electron microscopy (TEM) and scanning tunneling
microscopy (STM) [33–39]. Mayers et al. employ TEM to
detect single-vacancy defects and edge defects [34], whereas
Yan et al. utilize TEM and STM imagery to investigate
structural anomalies [38]. Furthermore, AFM and Raman
spectroscopy find application in the examination of the surface
morphology of defective graphene [40,41].

It has been demonstrated that the geometric structure and
electronic properties are significantly influenced by the type
and location of defects [8,42]. The size of the defect also plays
an important role in the band structure, as demonstrated by
Nourie et al. and Pedersen et al., who theoretically showed
the size effect of antidots in silicene [43] and graphene [12],
respectively. With an increase in the size of antidots, the band
gap will increase at the Fermi level. Jones et al. verified
this experimentally using angle-resolved photoemission spec-
troscopy with nanoscale spatial resolution (n-ARPES) [26] for
different diameters of vacancies in 2D graphene. They have
studied the effect of nanoscale holes in the graphene sheet by
measuring the effective mass of carriers and band gaps using
n-ARPES. It is very hard to observe the effect of nanoholes
in the n-ARPES spectrum. However, electrostatic doping en-
hances the effective mass and leads to the direct observation
of an electronic band gap in their n-ARPES spectrum. Thus,
with (without) doping, it is really challenging to observe any
effect of a hole of very small size (for example, a single-atom
vacancy defect) in the ARPES spectrum of graphene.

To overcome the challenge of observing the effect and,
hence, the presence of monovacancy in the ARPES spec-
trum, we introduce an application of the Floquet theory to
identify the locations of monovacancy defects situated at
the edges of zigzag graphene nanoribbons from the Floquet
quasienergy spectrum. We note that Floquet quasienergy spec-
tra have already been observed experimentally using time- and
angle-resolved photoemission spectroscopy (tr-ARPES) for a
few other systems [44–46]. Additionally, for the 1D ribbon,
edges play a crucial role in the formation of the band struc-
ture. Therefore, understanding the position of vacancy defects
within the crystal is crucial for comprehending the properties
of the system. We investigate the monovacancy defects situ-
ated at the edges of ZGNRs, while considering the influence
of light with different polarization and adjustable parameters.
Building on our observations, our goal is to develop a method-
ology that predicts the location of a monovacancy defect at a
specific edge of a ZGNR. This will be achieved through an
analysis of the interaction between circularly polarized light
and ZGNRs featuring a monovacancy defect at the edge.

II. FLOQUET-BLOCH THEORY

When a ZGNR, periodic in the x direction with lat-
tice vector b = (

√
3a0l, 0) and nearest-neighbor vector δ j

given by δ1 = a0(0, 1), δ2 = a0/2(−√
3,−1), and δ3 =

a0/2(
√

3,−1), where a0 is the bond length and l is the
count of unit cells in a supercell, is exposed to an electro-
magnetic field characterized by the vector potential A(τ ) =
(Ax cos(ωτ ), Ay cos(ωτ + φ)) with arbitrary amplitude and
phase, the interaction between light and electrons can be

effectively described using the Peierls substitution, k → k +
eA(τ )

c [47,48]. This approach captures the spatial and tem-
poral periodicity exhibited by the resulting quantum system,
as reflected in the time-dependent tight-binding Hamiltonian
H(x, τ ) governing its behavior. The periodicity is character-
ized by the condition H(x + b, τ ) = H(x, τ + T ), where T =
2π/ω represents the time period. To analyze such systems,
the Floquet technique is employed, which allows for the study
of the time-periodic Hamiltonian. We can assume eigenstates
of the time-periodic Hamiltonian in the Floquet-Bloch form
|�α,k(x, τ )〉 = eik·x−iεα,kτ/h̄|uα,k(x, τ )〉, where εα,k represents
the quasienergy and |uα,k(x, τ )〉 represents the α Floquet state
with k wave vector. Due to the time translational invariance
of the system, the time-dependent Schrödinger equation is
transformed into an eigenvalue equation, HF (k, τ )|uα,k(τ )〉 =
εα,k|uα,k(τ )〉, with HF (k, τ ) = Hk(τ ) − ih̄ ∂

∂τ
as the Floquet

operator, where Hk(τ ) is the time-dependent Bloch Hamilto-
nian. As we know that the Floquet state is periodic in time, we
can expand it in terms of Fourier components |uα,k,p〉,

|uα,k(x, τ )〉 =
∑

p

e−ipωτ |uα,k,p〉. (1)

To deal with basis |uα,k,p=1,2,3,...〉, one has to consider
composed Hilbert space S = H ⊗ T , where H is the Hilbert
space and T is time-periodic space [49]. Quasienergies can be
obtained by the use of composed scalar product which allows
the diagonalization of the matrix,

〈uα,k(τ )|HF (k, τ )|uα,k(τ )〉
=

∑
p,q

〈uα,k,p|Hp−q(k)|uα,k,q〉 − δp,qqh̄ω, (2)

where Fourier components of the Floquet Hamiltonian Hp(k)
are given by Eq. (3),

Hp(k) = 1

T

∫ T

0
dτHk(τ )eipωτ . (3)

Furthermore, the infinite-dimensional Floquet Hamiltonian
can be expressed in matrix form within the basis of the com-
posed Hilbert space,

HF =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

. . .
...

...
...

... . .
.

. . . H0 − 2h̄ω H1 H2 H3 . . .

. . . H−1 H0 − h̄ω H1 H2 . . .

. . . H−2 H−1 H0 H1 . . .

. . . H−3 H−2 H−1 H0 + h̄ω . . .

. .
. ...

...
...

...
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

Matrix HF is organized in a way that its diagonal blocks
(Hm=0) represent distinct Floquet sidebands, each with an
energy separation of h̄ω. Conversely, the off-diagonal blocks
(Hm=±1,±2,±3,...) capture interactions among these sidebands,
which originate from the impact of time-dependent fields. The
size of these matrix blocks is contingent upon the basis of
the undriven ZGNR. In these off-diagonal blocks, the strength
of coupling between adjacent sites is contingent upon the
vector potential A(τ ). The renormalized hopping integrals are
tF

j,m = teimξ j Jm(η j ), where index j = 1, 2, 3 is for the nearest-
neighbor vector (δ j) and Jm represents the mth-order Bessel
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function. All the information of the field configuration is en-
coded in the dimensionless quantities η j and ξ j :

η2,3 = ea

2c

√
3A2

x + A2
y ± 2

√
3AxAy cos φ,

ξ2,3 = ∓
[

π

2
+ tan−1

( √
3Ay sin φ

Ax ± √
3Ay cos φ

)]
,

η1 = Axea/c, ξ1 = π/2 − φ.

Hereafter physical parameters like h̄, e, and c are set
as 1 to make the field parameter dimensionless. To do
numerical computation, we employ the strategy of the photon-
number truncation method to effectively reduce the infinite-
dimensional Floquet-Bloch matrix (HF ) into a reduced-size
Floquet-Bloch matrix, which exclusively encompasses a finite
set of Fourier components derived from the Hamiltonian. In
our scenario, we implement a Hamiltonian cutoff based on
a two-photon number criterion. This entails considering the
Fourier component H±m, where the parameter m ranges from
zero to 2 (for further explanation see Appendix A).

III. RESULTS AND DISCUSSION

In our study, we investigate monovacancies positioned at
the edges of ZGNRs. These monovacancies result from the re-
moval of a carbon atom from the hexagonal lattice, creating a
single vacant site defect. Unlike bulk graphene, where vacan-
cies exhibit Jahn-Teller distortion, the edge monovacancies in
ZGNRs have unique properties [50,51]. Monovacancies at the
ZGNR edges create two dangling bonds, which are effectively
passivated by hydrogen atoms, thus stabilizing the edge struc-
ture. We perform density functional theory (DFT) calculations
to verify the existence of monovacancies at the edge using the
VASP package. We choose two initial structures, each sharing
the same unit cell but differing in the arrangement at the
edge: one featuring a pentagon motif with no dangling bonds,
and the other displaying a monovacancy where two dangling
bonds are saturated with hydrogen atoms. Both structures
undergo optimization across all degrees of freedom, including
atomic relaxation and lattice constants, until the force on each
atom reaches 0.01 eV/Å. We calculate formation energies per
unit cell for both the optimized pentagon motif (referred to as
“PT”) and the monovacancy (referred to as “MV”) structures.
The computational results reveal that the monovacancy at the
edge exhibits greater energetic stability compared to the for-
mation of a pentagon motif. Specifically, the formation energy
of the monovacancy is determined to be −1.13 eV, while for
the pentagon motif, it is 2.77 eV. Additionally, we calculate
the energy change associated with a reaction where the initial
state is the MV structure transitioning to the formation of
a pentagon motif structure while liberating a hydrogen (H2)
molecule as a product (MV structure → PT structure + H2).
The computed reaction energy, 
E = 3.96 eV, indicates an
endothermic process, implying that energy input is required
for converting the MV structure into the pentagon motif while
releasing the hydrogen molecule. This observation aligns with
findings reported by Sahan et al. [52], who also observed a
similar energy difference between monovacancy and pentagon
motifs at the edge of ZGNRs. Furthermore, the bond length

FIG. 1. Demonstration of ZGNRs with array of monovacancy
defects at edge of (a) lattice type A represented by red-colored
atoms and (b) lattice type B represented by green-colored atoms. The
monovacancy site is represented by a blue circle at the edges. δ1, δ2,
and δ3 represent the nearest-neighbor vectors. b is the lattice vector
of the supercell, represented by dashed lines

between two dangling bonded atoms for forming the pentagon
was found to be approximately 1.89 Å, which closely matches
their reported value of 1.8 Å. The computational findings
suggest that a monovacancy is energetically more favorable
than a pentagon motif, indicating that optimizing the edge
structure would entail avoiding the formation of pentagons.
This is supported by the results suggesting that the release
of H2 is less probable, and the defected edge behaves simi-
larly to a notched hexagonal edge (for computational details
see Appendix B). These monovacancies can manifest at two
distinct positions within the lattice, namely sublattice A and
B, as illustrated in Fig. 1(a). We note that one edge of the
ZGNR terminates with sublattice type A and the other edge
terminates with sublattice type B. Hence, the two edges of
ZGNRs are not equivalent.

We first delve into the band structure characteristics of
hydrogen-passivated ZGNRs exhibiting monovacancy defects
either at the edge of sublattice type A (A-ZGNR), depicted
by red-colored atoms in Fig. 1(a), or at the edge of sublattice
type B (B-ZGNR), represented by green-colored atoms in
Fig. 1(b). A-ZGNR represents vacancy at one of the edges,
while B-ZGNR represents vacancy at the other edge. For
our investigation, we have chosen a ZGNR with a width
defined by N = 20 carbon chains, as depicted in Fig. 1(a).
The movement of π electrons within a nanoribbon featuring
periodic defects can be elucidated through the utilization of
the tight-binding (TB) model.
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FIG. 2. The plots showcase the electronic band structures of pris-
tine ZGNR in panel (a), A-ZGNR in panel (c), and B-ZGNR in panel
(e). Panel (b) details the contribution of EDD of edge states to one of
the flat bands at zero energy in ZGNR. Similarly, panels (d) and (f)
depict the contributions of EDD edge states to the flat bands at zero
energy in A-ZGNR and B-ZGNR, respectively. Red color depicted
to the edge of lattice type A and green color depicted to the edge of
lattice type B.

Figure 2(a) illustrates the TB band structure of pristine
ZGNR, while Figs. 2(c) and 2(e) depict the band structures of
A-ZGNR and B-ZGNR, respectively, facilitating a compara-
tive analysis of their band structures. In the case of pristine
ZGNR, two degenerate localized bands emerge around the
Fermi energy, while upon examining the band structures of
A-ZGNR and B-ZGNR, a distinct single flat band appears at
the Fermi energy. To delve deeper into these band structures,
the electron density distribution (EDD) of edge atoms was
plotted for both pristine and defected ZGNRs. In Fig. 2(b),
the twofold-degenerate edge states in the pristine ZGNR show
contributions from both edge atoms. Figures 2(d) and 2(f)
depict the EDD of edge atoms, illustrating the contribution
of edge states to the flat band at the Fermi energy for A-
ZGNR and B-ZGNR, respectively. These plots indicate that
the defect-free edge significantly influences the flat bands. The
elimination of a band at the Fermi energy in both A-ZGNR
and B-ZGNR is a result of the pronounced contribution from
the removed atoms within that particular band. Atoms along
the defected edge contribute to bands situated slightly above
and below the flat band occurring in the Fermi energy regime.
In Figs. 2(c) and 2(e), it is evident that distinguishing between
the band structures of A-ZGNR and B-ZGNR is quite chal-
lenging. Furthermore, Fig. 2(a) is barely distinguishable from
Figs. 2(c) and 2(e), indicating that the distinction between
the band structures of pristine ZGNRs and defected ZGNRs
is also minimal. To address the challenges posed by the

identical band structure of A-ZGNR and B-ZGNR, our aim
is to manipulate the edge properties by employing light with
diverse characteristics [53–56]. By adjusting the parameters of
the vector potential [A(τ )], it becomes possible to introduce
both linearly polarized light (LPL) and circularly polarized
light (CPL). Modifying the amplitude (Ax,y), frequency (ω),
and phase (φ) leads to alterations in the band structure. In off-
resonant conditions, where the light frequency greatly exceeds
the bandwidth (
W ), the Floquet bands remain independent,
lacking interband coupling. The dominant term of the Flo-
quet Hamiltonian is the zeroth Fourier component (m = 0).
Consequently, Eq. (2) becomes block diagonal in Fourier
space, consisting of a series of identical, time-independent
Hamiltonians, each shifted by ω. In these off-resonant driving
scenarios, electronic states neither absorb nor emit photons
due to the constraints of energy conservation. Rather, the
electronic structures are modified through a process known
as virtual photon exchange. This involves a combination
of two second-order processes: one where an electron first
emits a photon and then absorbs another photon, and another
where an electron first absorbs a photon and then emits one
[57]. This mechanism leads to the dynamical localization of
electrons, where electron hopping between sites can be effec-
tively suppressed by carefully choosing the driving amplitude
and frequency. When the frequency is much lower than the
bandwidth (ω � 
W ), a complex band structure emerges.
The distinction between neighboring Floquet bands and their
associated edge states becomes less apparent and more chal-
lenging to discern. However, as the frequency approaches the
bandwidth (ω ∼ 
W ), band crossings occur, leading to the
formation of an energy gap and the potential emergence of
edge states within it. In a physical sense, band crossing can
be conceptually linked to processes involving one-photon or
multiple-photon absorption and emission. This is why our
focus is on the regime where the frequency is very high or
comparable to the bandwidth.

Let us begin our discussion by exploring how light
interacts with different polarization in the off-resonant (high-
frequency) limit, focusing on pristine ZGNRs and ZGNRs
with a the monovacancy defect at the edges. In this regime,
the interaction results in electron localization along specific
orientations determined by the field polarization and intensity,
introducing anisotropy into the system. This localization can
be quantified through the renormalized hopping strength, de-
noted as tF

j,0, where j = 1, 2, 3 represents nearest neighbors.
The value of this hopping integral is influenced by the polar-
ization and intensity of light. As the light intensity increases,
the value of tF

j,0 varies according to the Bessel function,
indicating a damping effect. At certain intensity levels, the
hopping along specific bonds is entirely suppressed, leading to
electron localization [58]. When linearly polarized light (LPL)
travels along the x direction (x-LPL) and interacts with the
ZGNR, the hopping strength becomes tF

1,0 = t , while tF
2,0 and

tF
3,0 vary with changing amplitude. Figure 3(a) illustrates the

quasienergy spectrum of pristine ZGNR for Ax = 2.56, which
reduces the hopping strength by t/10 along δ2 and δ3. It is ev-
ident from the figure that due to electron localization along δ1,
the quasienergy spectrum of the ZGNR resembles bulk atoms
along δ1 behaving as carbon dimers, with corresponding bands
appearing at ε = ±t , while edge atoms behave like isolated
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FIG. 3. Quasienergy spectra of pristine ZGNR (left panels), A-ZGNR (central panels), and B-ZGNR (right panels) are depicted under the
influence of different field polarizations. (a), (b), and (c) correspond to LPL with Ax = 2.56, Ay = 0, and φ = 0. (d), (e), and (f) correspond to
LPL with Ax = 0, Ay = 2.21, and φ = 0. (g), (h), and (i) correspond to CPL with Ax = Ay = 2.21 and φ = π/2. The figures illustrate how the
quasienergy spectrum of pristine ZGNRs, A-ZGNR, and B-ZGNR responds to different field polarization and amplitudes in the off-resonant
limit providing insights into the electronic behavior of these systems.

carbon atoms, resulting in bands appearing at ε = 0. When
A-ZGNR and B-ZGNR interact with light, the single removal
of a carbon atom at the edge does not significantly impact the
quasienergy spectrum, merely removing one flat band from
ε = 0, as depicted in Fig. 3(b) for A-ZGNR and Fig. 3(c)
for B-ZGNR. For Ax = 2.584, the hopping strength along δ2

and δ3 is completely suppressed, leading to the quasienergy
of ZGNR portraying behavior akin to carbon dimers and iso-
lated atoms (refer to Appendix C 1 for further explanation).
From Figs. 3(a)–3(c), it is clear that detecting pristine ZGNRs
and defected ZGNRs from quasienergy spectra using x-LPL
in an off-resonant condition is not possible. Similarly, when
a ZGNR is exposed to LPL along the y direction (y-LPL),
the hopping integrals along δ1 bonds change more rapidly
compared to δ2 and δ3 bonds for certain amplitudes. Due to
this variation in hopping strength, electrons start localizing
equally along δ2 and δ3 bonds. In Fig. 3(d), for instance, at
Ay = 2.21, the quasienergy spectrum of the ZGNR begins to
exhibit characteristics resembling 1D carbon chains. In the

presence of a monovacancy defect at one edge of the ZGNR,
the resulting effective 1D carbon chain from the defected
edge behaves as subchains, resembling small flakes of carbon
chains. Figures 3(e) and 3(f) depict the band structure of
A-ZGNR and B-ZGNR, respectively, under the influence of
y-polarized light with an amplitude of Ay = 2.21, highlighting
the unique features of 1D carbon chains and carbon flakes.
The quasienergy spectra of A-ZGNR and B-ZGNR suggest
the presence of flat bands distributed along the energy axis,
reminiscent of the band structure of carbon flakes consisting
of edge carbon chains with monovacancies. For Ax = 2.23,
the hopping along the δ1 bond is entirely suppressed, causing
the quasienergy spectrum of ZGNR to closely resemble that of
a 1D carbon chain, as depicted in Fig. 10(d) of Appendix C.
Again, with the assistance of y-LPL, we can distinguish only
between pristine ZGNR and defected ZGNR, while discerning
between A-ZGNR and B-ZGNR remains challenging in the
off-resonant case. However, when a ZGNR is exposed to
circularly polarized light (CPL) within the off-resonant limit,
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it undergoes a uniform change in hopping strength along the
δ1, δ2, and δ3 bonds as the amplitude varies. As the amplitude
increases, electron localization at individual carbon atoms
intensifies. Consequently, all atoms within the ZGNR begin
to behave like isolated entities, with their bands localizing
at ε = 0 on the energy scale. Figures 3(g)–3(i) represent the
quasienergy spectrum of the pristine ZGNR, A-ZGNR, and B-
ZGNR, respectively, for Ax = Ay = 2.21. From these figures,
it is evident that bands start localizing at ε = 0, indicating
electron localization at respective atoms. The introduction of a
monovacancy defect at either edge of the ZGNR has minimal
impact, merely removing one band from the zero-energy level.
When the amplitude of CPL is set to Ax = Ay = 2.38, the
hopping along all nearest neighbors is completely suppressed,
and the energy spectrum illustrates that the ZGNR behaves
entirely like a collection of isolated atoms (for detailed ex-
planation, see Appendix C 3). Similar theoretical study for
the localization of charge, where hopping between sites can
be completely suppressed in the off-resonant limit, was con-
ducted by Dunlap and Kenkre [59], and Delplace et al. observe
the localization of charge along 1D carbon chains and at indi-
vidual atoms of graphene [60]. From the preceding discussion
on the off-resonant condition, we can conclude that discerning
between pristine ZGNR, A-ZGNR, and B-ZGNR based on
the quasienergy spectra for any polarization and amplitude of
light is notably arduous.

Now, let us explore the regime where the frequency of light
closely matches the bandwidth of a typical ZGNR, denoted
as ω ∼ 
W . In this specific regime, the Floquet Hamiltonian
does not effectively behave as a block-diagonal matrix, and
the interaction matrices (Hm) become pivotal in shaping the
quasienergy band structure. From the renormalized hopping
integral, it becomes evident that the elements within these
interaction blocks rely on higher-order Bessel functions with
additional phase terms. These phase terms are contingent on
the values of Ax, Ay, and φ. We opt to set ω = 6t as our chosen
frequency value, as at this frequency, the impact of the inter-
action term is significant. Moreover, this choice ensures that
we can prevent any band crossings between the Floquet side
bands for various amplitude values, simplifying our analysis.
Figure 4 presents the quasienergy spectrum of A-ZGNR (left
panels) and B-ZGNR (right panels) under the influence of
LPL. Figures 4(a) and 4(b) illustrate the quasienergy spec-
trum for Ax = 2.35 and Ay = 0, while Figs. 4(c) and 4(d)
depict the scenario with Ax = 0 and Ay = 2.04 at φ = 0. The
quasienergy spectrum reveals similar trends observed in the
off-resonant limit, albeit with a subtle influence from the in-
teraction terms. These interactions prevent any degeneracy in
the bulk bands. It is discouraging to find that the quasienergy
band structure remains entirely identical for both A-ZGNR
and B-ZGNR when subjected to LPL along different polar-
ization, regardless of the frequency regime. Consequently,
whether considering ZGNRs with or without defects under
the influence of LPL, the Floquet quasienergy spectrum ex-
hibits an elegant inversion symmetry and notably manifests
the presence of particle-hole symmetry.

As we shift our attention to exploring the interaction of
CPL with ZGNRs in the frequency regime comparable to
bandwidth, it is important to note that extensive research
has already delved into investigating the topological phases

FIG. 4. Quasienergy spectra of A-ZGNR (left panels) and B-
ZGNR (right panels) under the influence of LPL at ω = 6t . (a) and
(b) are for Ax = 2.35 and Ay = 0 while (c) and (d) are for Ax = 0 and
Ay = 2.04 with phase φ = 0.

and chiral edge states, particularly concerning various field
parameters. CPL introduces a unique aspect by inducing a
rotation in its electric fields as they propagate through space.
The distinct phase induced in interaction blocks due to this
rotation varies for different nearest neighbors. This interaction
triggers a phenomenon known as chiral symmetry breaking,
selectively enhancing electron propagation along one edge
direction while concurrently suppressing it along the oppo-
site edge. This intricate process ultimately gives rise to the
emergence of chiral edges.

At this stage, it is foreseeable that CPL can interact with
the edge states localized within the zero-energy gap of the
band structure in ZGNRs, especially when edge defects are
present. Now we choose to focus on the quasienergy spectra
of A-ZGNR as it interacts with CPL. Our initial approach
involves systematically varying the amplitudes Ax and Ay, par-
ticularly within a frequency regime comparable to bandwidth.
We maintain Ax = Ay = A0, where A0 varies from 0.5 to 5
in increments of 0.5. Additionally, we set the phase angle
φ = −π/2 to induce left-circularly polarized light. The inter-
action between the edge state and the applied periodic driving
yields significant changes, as depicted in Fig. 5. Figures 5(a)
to 5(c) illustrate an anticlockwise (ACW) increase in the angle
(α) between the edge state (highlighted in green) and the kx

axis (indicated by the dashed violet line). Subsequently, as
the amplitude (A0) increases, this α decreases and eventually
reaches zero, as evident in Figs. 5(d) through 5(f). Further
increases in A0 shift the direction of rotation to clockwise
(CW), as demonstrated in Figs. 5(g) and 5(h). As we continue
to increment A0, it induces changes in the oscillation direction,
leading to a motion resembling oscillating angular patterns
around the point where ε = 0 and kx = π/b. A similar oscil-
latory behavior is observed in the bandwidth, characterized by
damped oscillations as the amplitude increases. The damping
and oscillatory pattern arise due to the renormalization of
the nearest-neighbor hopping parameter, given by tJm(A0a),
with Jm(A0a) representing the mth-order Bessel function.
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FIG. 5. The quasienergy spectra of A-ZGNRs with N = 20 and
l = 5, under the influence of left-circularly polarized light with a
phase angle of φ = −π/2 and frequency of ω = 6t , while system-
atically varying the amplitude A0 from 0.5 to 5 in increments of 0.5,
as indicated by plots labeled from (a) to (j). The band colored in
green corresponds to the edge without defect. α is the angle between
the rotating band and kx axis.

The inherent nature of Bessel functions to exhibit damping
oscillations accounts for this phenomenon. A corresponding
observation was made in a study involving a kagome lattice
ribbon by He et al. [61]. At this stage, we have the flexibility
to fine-tune the amplitude according to our preferences. We
have chosen to set A0 = 2.04, as this particular value provides
an optimal angle for our observations. Additionally, we have
opted for a lower amplitude to avoid the risk of significantly
increased intensity, which could potentially harm the system.
Once we have established the amplitude, we also have the
option to modify another optical parameter: the phase angle
(φ). It is important to note that adjusting the phase angle
between +π/2 and −π/2 induces a shift in the polarization
of light, transforming it from right-circularly polarized to left-
circularly polarized. This alteration in polarization, coupled
with the presence of the edge state, subsequently results in a
change in the direction of oscillation.

Furthermore, our research has led us to examine how the
width and size of the supercell of ZGNRs influence the rota-
tion angle. At first, our investigation focused on observing the
impact of the quasienergy spectra of A-ZGNR while varying
the width (N) and keeping the supercell size constant. Interest-
ingly, as we incrementally increased the width of the ribbon,
we observed that the rotation angle remained unchanged. This
observation is intriguing because altering the width of the
A-ZGNR does not impact the edge state, as the number of
atoms at the edge remains the same, while the bulk region
becomes denser. This finding suggests that, even with the ex-
pansion of the width of the ribbon, the rotation angle remains
consistent under fixed phase and amplitude conditions for
CPL. However, when we choose to adjust the spacing between
the array of monovacancies along the edge, it necessitates a
corresponding modification in the supercell size. The distance
between these individual vacancies is determined by a param-
eter l , which determines the lattice vector of the supercell.

FIG. 6. Quasienergy spectra of A-ZGNR for A0 = 2.04 and φ =
−π/2 for (a) l = 8 and (b) l = 9. Circle indicates the Dirac points.

As we increase the value of l , the separation between the
arrays of defects at the edge widens. This widening gap gives
rise to an increasing number of Dirac points due to the edge
states nestled between the bulk valence and conduction bands.
The reason behind this phenomenon lies in the fact that the
band structure is dictated by the crystal lattice periodicity,
which is described by the Brillouin zone. Altering the size
of the supercell essentially entails changing the dimensions of
the Brillouin zone. This can lead to shifts and distortions in
the band structure as the allowed energy levels adapt to the
new periodicity. We calibrate the value of l with respect to
the number of Dirac points (n) while keeping a fixed value
of A0 = 2.04. We have observed that for even values of l , the
number of Dirac points appears to be n = l/2, whereas for
odd values of l , it becomes n = (l − 1)/2 (for explanation,
see Appendix C). We can determine the even-odd condition
for l by examining the maxima of the valence bulk band and
the minima of the conduction bulk band associated with the
bulk carbon atoms. For even values of l , these extrema occur
at kx = 0 whereas for odd values of l they shift to kx = π .
Figure 6 illustrates the quasienergy spectra of A-ZGNR, sub-
ject to modification by CPL with parameters A0 = 2.04 and
φ = −π/2. Specifically, Fig. 6(a) corresponds to the case
with an even value of l = 8, while Fig. 6(b) pertains to an
odd value of l = 9. In both plots, the number of Dirac points
remains the same, with n = 4.

The summarized observations, detailed in Table I, provide
insights into the rotational behavior of localized edge states
within the zero-energy gap region of the quasienergy spectra
of A-ZGNR and B-ZGNR. These observations are categorized
based on various factors, including the field phase (φ), the l
values (even or odd), and the position of the monovacancy

TABLE I. Summary of observations for field phase variation,
even/odd l values, and ZGNR with monovacancy defect at edge
represented by A-ZGNR and B-ZGNR.

Phase (φ) Separation (l) Rotation Monovacancy

+π/2 2n ACW A-ZGNR
+π/2 2n CW B-ZGNR
+π/2 2n + 1 ACW B-ZGNR
+π/2 2n + 1 CW A-ZGNR
−π/2 2n ACW B-ZGNR
−π/2 2n CW A-ZGNR
−π/2 2n + 1 ACW A-ZGNR
−π/2 2n + 1 CW B-ZGNR
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FIG. 7. Quasienergy spectra of (a) A-ZGNR and (b) B-ZGNR
under the influence of CPL for A0 = 2.04 and φ = −π/2. All the
Dirac points are encircled. Red color represents the edge of A type
and green color indicates the edge of B type.

defect at either the A-type or B-type edge of the ZGNRs.
By examining these observations in the table, we can make
predictions regarding the location of the monovacancy defect
at either of the edges. To achieve this, we utilize the known
parameters of the incident light, namely the amplitude (A0)
and phase (φ). When analyzing the quasienergy spectra, our
initial step involves identifying the number of Dirac points,
which, in turn, informs us about the value of l . Subsequently,
we assess the rotation of the edge state around the point
(kx = π, ε = 0). These collective observations empower us to
make accurate predictions regarding the precise location of
the monovacancy defect within the edges of the structure.

In this section, we conduct a comparative analysis of the
quasienergy spectra of A-ZGNR and B-ZGNR, aligning with
the earlier findings detailed in Table I. Specifically, we set the
amplitude of the illuminating light at 2.04, with a phase an-
gle of φ = −π/2, signifying left-CPL. We carefully examine
the quasienergy spectra presented in Fig. 7. Upon observation,
we note that the rotation of the edge state depicted in Fig. 7(a)
is anticlockwise (ACW), while in Fig. 7(b), it is clockwise
(CW). Additionally, we observe that the number of Dirac
points in both cases is n = 2. Given that the extremities of
the bulk valence and conduction bands occur at kx = π , it
indicates that the value of l should be odd. By employing the
formula for odd values of l , we determine that the value of l
is 5. Comparing this observed data with the information pro-
vided in the table, we can conclude that Fig. 7(a) corresponds
to an A-ZGNR, and Fig. 7(b) corresponds to a B-ZGNR. The
separation between the array of monovacancy defects at the
edge is l = 5.

IV. CONCLUSION AND OUTLOOK

In this comprehensive study, we have meticulously ex-
plored the intricate characteristics of the band structures of
A-ZGNR and B-ZGNR. Our comparative analysis has re-
vealed that the introduction of these monovacancy defects
at the edges induces subtle yet significant changes in the
band structures of ZGNRs. These changes manifest in the
emergence of flat bands within the zero-energy gap, which are
notably influenced by the adjacent defect-free edges. We have
also delved into the intriguing interactions between ZGNRs
and both LPL and CPL across different frequency regimes.
In the off-resonant limit, we have noted that light tends to
localize charge along carbon-carbon bonds depending on the

polarization of light and intensity. This process of localization
can mimic the behavior of isolated carbon atoms, carbon
dimers, single-atom carbon chains, or carbon flakes. When
the frequency regime aligns with the bandwidth, the inter-
action terms (Hm=±1,2,3,...) play a significant role in shaping
the quasienergy spectra. In the case of LPL, our investigation
revealed trends similar to those observed in the off-resonant
limit, albeit with subtle influences from the interaction terms.
These interactions effectively prevent degeneracy in the bulk
bands. A noteworthy discovery is that the quasienergy band
structure remains entirely consistent for both A-ZGNR and
B-ZGNR when subjected to LPL along both directions, re-
gardless of the frequency regime. Remarkably, in this regime,
CPL interactions with ZGNRs lead to the breaking of chiral
symmetry, resulting in the emergence of chiral edge states.
Our research meticulously dissects the complex interplay
between light orientation, magnitude, and the resulting be-
haviors of edge states, underscoring the sensitivity of edge
state rotation angles to variations in light parameters. Fur-
thermore, our study has revealed that altering the width of
ZGNRs has no impact on the rotation angles of edge states.
In contrast, adjusting defect spacing plays a pivotal role in
the formation of Dirac points—a critical finding concisely
summarized in our comprehensive Table I. This table eluci-
dates the influence of distinct field phases, defect placements,
and lattice dimensions on the rotation of edge states. In brief,
our research culminates in a thorough investigation that com-
pares the quasienergy spectra of A-ZGNRs and B-ZGNRs.
The findings consistently demonstrate that the associated flat
bands exhibit opposite rotation directions when subjected to
CPL, aligning with our earlier observations. These insights
allow us to predict the location of the monovacency at either
of the edges within ZGNRs.

While the experimental observation of the distinctive
features of light-induced Floquet states in materials poses sig-
nificant challenges, time- and angle-resolved photoemission
spectroscopy (tr-ARPES) emerges as a particularly effective
tool for delving into the intricacies of Floquet physics, es-
pecially in driven ZGNRs. tr-ARPES allows for the direct
investigation of the dressed electronic states induced by ex-
ternal driving, providing a promising avenue for empirical
exploration. Zhou et al. employed tr-ARPES in experimen-
tal investigations on black phosphorous, selected as a model
semiconductor [44]. Their study revealed experimental man-
ifestations of Floquet band engineering. Additionally, Wang
et al. demonstrated that the tr-ARPES spectrum resulting
from an intense ultrashort mid-infrared pulse, with energy
below the bulk band gap, undergoes hybridization with the
surface Dirac fermions of a topological insulator, leading to
the formation of Floquet-Bloch bands [45]. Furthermore, in a
separate study, Aeschlimann et al. combined tr-ARPES with
the time-dependent density functional theory of WSe2 and
graphene, aiming to explore the persistence of Floquet-Bloch
states in the presence of scattering [46]. Very recently, we
have come to know about the direct observation of Floquet-
Bloch states in monolayer graphene through tr-ARPES with
mid-infrared pump excitation [62]. Hence, by harnessing this
theoretical knowledge, there is a possibility to experimentally
demonstrate the quasienergy spectrum of A-ZGNRs and B-
ZGNRs. This approach could be instrumental in detecting
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specific structural features, such as monovacancy defects,
thereby bridging the gap between theoretical understanding
and empirical realization in the realm of Floquet physics in
graphene-based materials.

In essence, our research offers a deep comprehension of
the complex dynamics between sublattice defects, external
light interactions, and the consequent behaviors of edge states
within ZGNRs. Consequently, this investigation offers valu-
able insights into comprehending the Floquet quasienergy
spectra of both pristine ZGNRs and those with edge defects,
opening up a door to utilizing Floquet theory as a tool for
detecting defects in various systems by analyzing quasienergy
spectra.
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APPENDIX A: FLOQUET THEORY: ZGNR IN AC FIELD

To compute the Floquet operator, we begin by examin-
ing the tight-binding Hamiltonian of the undriven ZGNR
in reciprocal space H(k) = t

∑
k C†

k Ckeik·b, employing the
nearest-neighbor approximation, where C†

k and Ck are the
creation and annihilation operator, respectively. The width of
the ZGNR is determined by selecting the number of carbon
chains, denoted as N. The basis of the Hamiltonian relies on
the lattice within the supercell. Consequently, the basis of the
Hamiltonian is expressed as 2Nl , where l represents the num-
ber of unit cells in the supercell. The influence of the ac field
is introduced through the vector potential A(τ ), incorporating
a time-dependent phase factor in the hoppings via Peierls
substitution: t → t j (τ ) = teiA(τ )·δ j . Here, δ1 = a(0, 1), δ2 =
a/2(−√

3,−1), and δ3 = a/2(
√

3,−1) represent the nearest-
neighbor vectors.

The composed scalar product of the Floquet operator,
denoted as HF (k, τ ) = H(k, τ ) − ih̄ ∂

∂τ
, is calculated in the

same space of time-independent basis |uα,k,p〉 as depicted
in the eigenvalue equation in the main text. Solving Fourier
components leads to the expression

1

2π

∫ 2π

0
einθ eη(φ) cos(θ )eiγ (φ) sin(θ )dθ

= 1

2π

∫ 2π

0
einθ eη(φ) cos(θ )

∞∑
s=−∞

Js(γ (φ))eisθ dθ, (A1)

which can be solved using the Jacobi-Anger expansion,

e±iz sin(θ ) =
∞∑

s=−∞
Js(z)e±isθ , (A2)

where Js(z) is the Bessel function of sth order with argument
z. Further solving leads to summation which can be solved by

FIG. 8. Demonstration of ZGNR with (a) array of monovacancy
defects at edge with optimized formation energy and (b) array of
pentagon reconstruction at edge.

using the identity
∞∑

s=−∞
Jn+s(η(φ))Js(γφ)eisφ = ein�Jn(
), (A3)

where ac field parameters are encoded in � and 
 given by

� = tan−1

(
γ (φ) sin(φ)

η(φ) − γφ cos(φ)

)
, (A4)


 =
√

η(φ)2 + γ (φ)2 − 2η(φ)γ (φ) cos(φ). (A5)

The detailed derivation of the Floquet operator in Sambe
space is done by Delplace et al. [63].

APPENDIX B: COMPUTATIONAL DETAILS

The formation energy of the monovacancy defect was
determined through computational density functional theory
calculations to verify the stability of the edge monovacancy
in zigzag nanoribbons. The geometry of the monovacancy
zigzag nanoribbon was studied using the Vienna ab initio sim-
ulation package (VASP) with the projector augmented wave
(PAW) method. The electron exchange and correlation poten-
tial have been described using the Perdew-Burke-Ernzerhof
(PBE) functional within the generalized gradient approxima-
tion (GGA) framework. A cell size of 12.46 × 30 × 20.0 Å
with an energy cutoff of 600 eV was employed in the cal-
culations. A vacuum separation distance of 30 Å and 20 Å
along the y and z directions has been implemented to mitigate
interactions beyond the periodic boundary conditions. Atomic
positions are iteratively optimized until the energy change
becomes less than 1 × 10−6 eV per cell and the force on
each atom falls below 0.01 eV Å−1. The k-point sampling for
Brillouin zone integration was carried out using a 6 × 1 × 1
Monkhorst-Pack k-point mesh to capture energy and elec-
tronic properties accurately. The unit cell of nanoribbons has
a lattice constant of |b| = 12.426 Å, periodic along the zigzag
(x-axis) direction, as shown in Fig. 8. The edge monovacancy
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arises from the removal of a single carbon atom, with hy-
drogen atoms then stabilizing the resulting dangling bonds.
Meanwhile, the formation of a pentagon occurs through the
rearrangement of these dangling bonds caused by the creation
of the monovacancy defect. Figure 8 illustrates the optimized
geometries of both the monovacancy defect and the pentagon
in the ZGNR at the edge.

APPENDIX C: INTERACTION OF ZGNR WITH
LIGHT OF DIFFERENT POLARIZATION

IN OFF-RESONANT CONDITION

In our study, we have selected zigzag graphene nanorib-
bons (ZGNRs) with a width composed of twenty carbon
chains (N = 20), and the supercell consists of five unit cells
(l = 5).

1. Linear polarization along x direction

When a ZGNR is exposed to LPL radiation in the x di-
rection, with A = (Ax cos(ωt ), 0), and the frequency is high
(h̄ω 
 6t), the Floquet Hamiltonian has a structure that looks
like a block diagonal. Each block matrix is analogous to the
undriven graphene Hamiltonian but experiences an eigenvalue
shift of ω. The renormalized hopping integral in the δ1 di-
rection remains constant regardless of the field amplitude.
However, the hopping integrals along δ2 and δ3 are equiva-
lent and exhibit variation with field amplitude, expressed as
follows:

tF
1 = tJ0(0),

tF
2 = tJ0(

√
3Axa/2),

tF
3 = tJ0(

√
3Axa/2). (C1)

Examining the renormalized hopping term reveals that in the x
direction, the LPL exerts localization of charge on the ZGNR
specifically affecting the δ2 and δ3 bonds. As the field am-
plitude increases, the hopping strengths, denoted as tF

2 and
tF
3 , weaken, restricting electron mobility along the bonds.

The preferred direction for electron hopping is predominantly
along the δ1 bond. With a very high field strength, electron
hopping along the δ2 and δ3 bonds is entirely suppressed,
and electrons primarily move along δ1. The quasienergy band
structure for this system is depicted in Fig. 9. Figure 9(a)
corresponds to Ax = 1.756, where the hopping strength tF

2 and
tF
3 is reduced to half compared to tF

1 . Similarly, for Fig. 9(b),
Ax = 2.256, resulting in a quarter of the hopping strength
along δ2 and δ3. Panels (c) and (d) of Fig. 9 correspond to
Ax = 2.561 and Ax = 2.584, respectively. In panels (c) and
(d), the hopping strengths tF

2 and tF
3 are reduced to one-tenth

and one-hundredth of tF
1 , respectively.

Figure 9(d) reveals the presence of ten flat bands at zero
energy throughout the entire Brillouin zone. This occurrence
results from the electron localization at the edge atoms be-
cause edge atoms behave as isolated atoms. Additionally, the
quasienergy bands within the valence and conduction bands,
stemming from the bulk atoms, become localized at ε = ±t .
This band localization phenomenon arises due to the behavior
of bulk atoms resembling a carbon dimer configured along the
δ1 direction.

FIG. 9. ZGNR irradiated with LPL along x direction in high-
frequency regime with (a) Ax = 1.756, (b) Ax = 2.256, (c) Ax =
2.561, and (d) Ax = 2.584.

2. Linear polarization along y direction

In the high-frequency regime, when a ZGNR interacts with
a LPL along the y direction, the resulting effective renormal-
ized hopping potential is described in Eq. (C2):

tF
1 = tJ0(Aya), tF

2 = tJ0(Aya/2), tF
3 = tJ0(Aya/2). (C2)

As the amplitude Ay increases, it induces charge localiza-
tion in the ZGNR in such a manner that the values of δ1, δ2,
and δ3 decrease. However, the condition is maintained such
that the value of the effective renormalized hopping energy,
denoted as tF

1 , always remains greater than tF
2 and tF

3 . This
results in the localization of electrons along each carbon chain
within the ZGNR, effectively causing each carbon chain in
the ZGNR to exhibit properties akin to an infinite 1D carbon
chain.

FIG. 10. ZGNR irradiated with LPL along x direction in
high-frequency regime with (a) Ay = 1.521, (b) Ay = 1.954,
(c) Ay = 2.218, and (d) Ay = 2.238.
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FIG. 11. ZGNR irradiated with CPL in high-frequency regime
with (a) A0 = 1.521, (b) A0 = 1.954, (c) A0 = 2.218, and
(d) A0 = 2.385.

Figure 10 illustrates the quasienergy spectra of the ZGNR
for various values of Ay. Notably, Fig. 10(d) depicts the
band structure of the ZGNR when Ay = 2.238, during which
tF
1 = t/100, and tF

2 = tF
3 is adjusted accordingly. At a specific

value of Ay, the tF
1 value reaches zero. In this scenario, each

chain within the ZGNR becomes completely isolated from the
others, behaving as an independent 1D carbon chain.

3. Circularly polarized light

When the parameters of light are set to Ax = Ay = A0 and
φ = ±π/2, then the hopping integral in the high-frequency
regime is given in Eq. (C3). The renormalized hopping energy
along all three nearest neighbors decreases equally with in-
creasing amplitude. This decrease in hopping strength induces
localization of the electron along all three bonds and starts
showing the properties of isolated atoms:

tF
1 = tJ0(A0a), tF

2 = tJ0(A0a), tF
3 = tJ0(A0a). (C3)

Figure 11 illustrates the quasienergy spectra of a ZGNR
when subjected to CPL with very high frequency. In
Fig. 11(a), the scenario is presented for A0 = 1.521, result-
ing in a hopping strength of t/2. For Figs. 11(b) and 11(c),
the hopping strength is reduced to t/4 and t/10, respec-
tively. In Fig. 11(d), with A0 = 2.385, the hopping strength

FIG. 12. Quasienergy spectra of A-ZGNR for A0 = 2.04 and
φ = −π/2. (a) to (d) are for l = 2, 4, 6, 8 and (e) to (h) are for
l = 3, 5, 7, 9. Encircled points represent the Dirac points.

becomes t/100. It is evident from Fig. 11 that the band lo-
calization phenomenon begins at ε = 0, indicating properties
similar to those of an isolated atom.

APPENDIX D: ZGNRs WITH VARYING l IRRADIATED
BY CPL IN LOW-FREQUENCY REGIME

As the separation between the periodic array of monova-
cancy defects increases, there is a corresponding increase in
the parameter denoted as l . We have established a calibra-
tion of l in relation to the number of Dirac points (denoted
as n) that appear between the bulk valence and conduction
bands, while keeping the field amplitude fixed at a value
of A0 = 2.01 and the phase at φ = −π/2. Figures 12(a) to
12(d) depict the quasienergy spectra for even values of l ,
specifically, 2, 4, 6, and 8. In parallel, Figs. 12(e) to 12(h)
represent the quasienergy spectra for l values of 3, 5, 7, and
9. A noticeable trend emerges: an increase in the value of
l leads to a corresponding increase in the value of n. This
relationship arises because the multiple zone folding effect
results in the crossing of multiple edge states in the system.
For situations where l is an even number, the value of n
is simply half of l (i.e., n = l/2). Conversely, when l is an
odd number, n can be expressed as l − 1/2. Therefore, by
examining the quasienergy spectra and counting the num-
ber of Dirac points, one can readily determine the values
of l .
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