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We model the equilibrium properties of a two-dimensional electron gas in a square lateral superlattice of
quantum dots in a GaAs heterostructure subject to an external homogeneous perpendicular magnetic field and
a far-infrared circular cylindrical photon cavity with one quantized mode, the TE011 mode. In a truncated
linear basis constructed by a tensor product of the single-electron states of the noninteracting system and the
eigenstates of the photon number operator, a local spin density approximation of density functional theory is
used to compute the electron-photon states of the two-dimensional electron gas in the cavity. The common spatial
symmetry of the vector fields for the external magnetic field and the cavity photon field in the long wavelength
approximation enhances higher order magnetic single- and multiphoton processes for both the para- and the
diamagnetic electron-photon interactions. The electron-photon coupling introduces explicit photon replicas into
the band structure and all subbands gain a photon content, constant for each subband, that can deviate from an
integer value as the coupling is increased or the photon energy is varied. The subbands show a complex Rabi
anticrossing behavior when the photon energy and the coupling bring subbands into resonances. The complicated
energy subband structure leads to photon density variations in reciprocal space when resonances occur in the
spectrum. The electron-photon coupling polarizes the charge density and tends to reduce the Coulomb exchange
effects as the coupling strength increases.

DOI: 10.1103/PhysRevB.109.235306

I. INTRODUCTION

Photon cavities have been proposed and used to tune or
enhance the properties of electron and material systems in
the fields of chemistry [1–5], physics [6–8], and material
science [9]. Hübener et al. suggested engineering quantum
materials with chiral optical cavities to break the symmetry
of the original system to obtain unique characteristics [9], and
Wang et al. presented how cavity photon dynamics could be
manipulated by topologically curved space [10].

The extraordinary high polarizability and mobility of
a two-dimensional electron gas (2DEG) in a GaAs
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heterostructure make it an ideal experimental system for at-
taining nonperturbative coupling of electrons with far-infrared
(FIR) cavity photons [11]. In a modulated 2DEG in a
high-quality-factor terahertz cavity in a magnetic field, the
quasiparticles are Landau subband polaritons.

Nonrelativistic quantum electrodynamics, often for a sin-
gle cavity-photon mode, together with different approaches
to the electron dynamics has been used to describe electronic
systems in photon cavities. For few electrons in a nanoscale
system, various toy models have been used with an empha-
sis on the electron-photon interaction [12–15]. In addition,
models where both the para- and diamagnetic electron-photon
interactions are included together with the Coulomb electron-
electron interaction within a numerical exact diagonalization
formalism have been used to describe the properties of closed
[16,17] and open systems [18,19]. Larger electron systems
have commonly been modeled using some variant of quan-
tum electrodynamical density functional theory (QEDFT)
[8,20–25].

For a 2DEG in an external homogeneous magnetic
field and a periodic superlattice potential, the persistent
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equilibrium currents are rotational [26,27]. In such a system,
active magnetical transitions, i.e., magnetic dipolar and higher
order transitions, are of importance to influence or control its
properties via cavity photons. One way to couple the cavity
photons to the predominantly rotational, or transverse, cur-
rents in the 2DEG is to use a circular cylindrical cavity. In a
far-infrared cavity, where the long wavelength approximation
is applicable as the wavelength of the photon field is much
longer than the characteristic length scale, the superlattice
length L, the TE011 cavity mode can play a special role as its
vector potential has the same spatial symmetry as the vector
potential of the external static homogeneous magnetic field.
This choice of cavity mode is thus selected not to break the
symmetry of the 2DEG but rather to enhance the coupling
of the matter-photon system using its magnetically active
processes stemming from both the para- and diamagnetic
electron-photon interactions.

Utyushev et al. have recently discussed the generation of
highly directional “magnetic light” from rare earth ions placed
in, or near to, dielectric homogeneous spheres to enhance
magnetically active processes in the system [28].

Our model calculations are based on a DFT approach
for the electrons in a superlattice of quantum dots and si-
multaneously bear a closeness to exact diagonalization, or
configuration interactions (CIs), for photons in a cavity.
The calculations are performed in a basis constructed by
single-electron states of the noninteracting Hamiltonian tensor
multiplied by the states of the photon number operator. Both
the para- and diamagnetic parts of the electron-photon inter-
actions are included in the long wavelength limit to include
higher order virtual and real photon processes and vacuum
effects consistently [29–31]. The method using a linear space
of a tensor product of electron and photon states in a DFT ap-
proach mirrors what Malave et al. call QED-DFT-TP, quantum
electrodynamics [25]. Weight et al. investigated molecular
exciton polaritons using a similar approach and compared
their results to those of a method where the electron-photon
interaction is not included in the self-consistency iterations,
but added at their end [7]. We have chosen the self-consistent
QED-DFT-TP approach as we are dealing with Landau-
subband polaritons in the FIR regime.

The paper is organized as follows: In Sec. II, we describe
the model. The results and discussion thereof are found in
Sec. III, with the conclusions drawn in Sec. IV.

II. MODEL

We consider a 2DEG in a square lateral superlattice of
quantum dots in a GaAs heterostructure subject to a homoge-
neous external magnetic field. The electrons have the effective
mass m∗ = 0.067me, the dielectric constant κ = 12.4, and the
effective g factor g∗ = −0.44. The Hamiltonian of the 2DEG-
cavity system in the photon cavity is

H = He + Hint + Hγ , (1)

where

He = H0 + HZee + VH + Vper + Vxc (2)

describes the 2D electrons in an array of quantum dots and

H0 = 1

2m∗ π2, with π =
(

p + e

c
A

)
. (3)

The vector potential A = (B/2)(−y, x) leads to the homoge-
neous external magnetic field perpendicular to the plane of the
2DEG, B = Bez. The spin Zeeman term is HZee = ±g∗μ∗

BB/2,
and the direct Coulomb interaction is

VH(r) = e2

κ

∫
R2

dr′ �n(r′)
|r − r′| , (4)

with �n(r) = ne(r) − nb, where +enb is the homogeneous
positive background charge density reflecting the charge neu-
trality of the total system. The electron charge density is
−ene(r), and μ∗

B is the effective Bohr magneton. The array
of quantum dots is represented by the periodic potential

Vper (r) = −V0

[
sin

(g1x

2

)
sin

(g2y

2

)]2
, (5)

with V0 = 16.0 meV that defines the superlattice vectors R =
nl1 + ml2, with n, m ∈ Z. The unit vectors of the superlattice
are l1 = Lex and l2 = Ley, and the inverse (reciprocal) lattice
is spanned by G = G1g1 + G2g2 with G1, G2 ∈ Z and the unit
vectors

g1 = 2πex

L
, and g2 = 2πey

L
. (6)

The superlattice period is L = 100 nm. The derivation of the
local spin density approximation exchange and correlation
potentials Vxc is documented in Appendix A of Ref. [23]. The
interaction of the electrons with the vector potential, Aγ , of
the photon cavity in terms of the electron current, and charge
densities is

Hint = 1

c

∫
R2

dr J(r) · Aγ (r) + e2

2m∗c

∫
R2

dr ne(r)A2
γ (r). (7)

In the Appendix, the electron-photon interaction (7) for a sin-
gle quantized TE011 mode of a cylindrical cavity is derived in
the long wave approximation, i.e., when the spatial variation
of the far-infrared cavity field is only slight with respect to L.
Formally, the interaction takes the form

Hint = gγ h̄ωc{lIx + lIy}(a†
γ + aγ )

+ g2
γ h̄ωcN

{(
a†

γ aγ + 1
2

) + 1
2 (a†

γ a†
γ + aγ aγ )

}
, (8)

with the integrals, Ix, Iy, and N defined in the Appendix. The
dimensionless coupling strength is

gγ =
{(

eAγ

c

)
l

h̄

}
, (9)

while ωc = eB/(m∗c) is the cyclotron frequency and l =
(h̄c/(eB))1/2 is the magnetic length. a†

γ and aγ are the creation
and annihilation operators for the photon mode with funda-
mental energy h̄ωγ and the free Hamiltonian

Hγ = h̄ωγ a†
γ aγ , (10)

where the zero-point energy of the photon mode is ne-
glected. Importantly, as shown in the Appendix, the vector
potential of the cavity photon mode in the long wavelength
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approximation is

Aγ (r) = eφAγ (a†
γ + aγ )

( r

l

)
, (11)

where eφ is the unit angular vector in polar coordinates. This
vector potential happens to have the same spatial form as
the vector potential A determining the external homogeneous
magnetic field B = Bez. This observation gives a natural scale
for the dimensionless coupling constant gγ as the strength of
the spatial part of Aγ becomes equal to the magnitude of A
when gγ = 1/2.

We adapt a quantum electrodynamical density functional
theory approach, QED-DFT-TP, recently presented by Malave
[25] to our 2DEG-cavity system by calculating the energy
spectrum and the eigenstates of H (1) in a linear functional
basis constructed by a tensor product (TP) of electron and
photon states

|αθσn〉 = |αθσ 〉 ⊗ |n〉, (12)

where the photon states are the eigenstates of the photon
number operator and the electron states are the single electron
states of Ferrari designed for a periodic 2DEG in an external
magnetic field at each point in the first Brillouin zone, i.e., θ =
(θ1, θ2) ∈ ([−π, π ] × [−π, π ]) [23,32–35]. σ ∈ {↑,↓} is the
quantum number for the z component of the electron spin, and
all quantum numbers of the Ferrari states [32] are included in
α, which can be viewed as a subband index.

The Ferrari electron states satisfy the commensurability
condition for the competing length scales in the system, the
magnetic length l and the superlattice length L, that can be
expressed as BA = BL2 = pq
0 in terms of the unit mag-
netic flux quantum, 
0 = hc/e, and the integers p and q
[32–34,36]. Each Landau band in the energy spectrum will be
split into pq subbands. The commensurability condition can
be expressed in different ways [32,36,37], but it stems from
the fact that spatial translations by superlattice vectors in the
external magnetic field gather Peierls phase and have to be
replaced by magnetotranslations.

The total block Hamiltonian (1), for both the electrons and
cavity photons, is diagonalized in each iteration of the DFT
scheme in the TP basis (12) and the resulting states for the
2DEG-cavity system are noted by |βθσ ) together with their
wave functions (orbitals) ψβθσ (r) = 〈r|βθσ ). It is important
to note here that in each DFT iteration the electron spin and
the current densities are varying and thus also the para- and the
diamagnetic electron-photon interactions (7) together with the
Coulomb exchange-correlation potentials and functionals.

The expressions for the current and electron densities are
given in the Appendix. The mean photon number is calculated
by defining the photon number operator

Nθ
γ = a†

γ aγ (13)

in each point, θ, in the first Brillouin zone. The matrix of the
photon number operator is assembled in the |αθσn〉 basis. The
mean photon number is then at each θ

〈a†
γ aγ 〉θ = Tr

{
ρθW θ†Nθ

γW θ
}
, (14)

with

ρθ
ασ,βσ ′ = f (Eαθσ − μ)δα,βδσ,σ ′ , (15)

the diagonal density matrix for the interacting 2DEG cavity-
photon system in the {|αθσ )} basis, and Eαθσ is the
corresponding energy spectrum. W is the unitary transforma-
tion between the {|αθσn〉} and the {|αθσ )} bases, and f is the
equilibrium Fermi distribution. The total photon number Nγ is
the average of Nθ

γ over the first Brillouin zone. The orbital and
the spin magnetization are calculated from the current density
and the spin polarization, respectively [23,38].

III. RESULTS

In contrast to a QEDFT approach with an explicit func-
tional describing the electron-photon interactions [22,23],
where no photon replicas of electron states appear in the
energy spectra, the QED-DFT-TP formalism brings back the
cavity photon replicas in a manner comparable to what hap-
pens in models where an exact numerical diagonalization has
been used for the respective interactions in a truncated Fock
space [17,39]. It is important, though, to kep in mind the
inherent differences between the many-body states of a Fock
space and the mean-field type of the single-electron DFT
states associated with the electron orbitals.

In this section, we will start with the analysis of a system
with two electrons in a unit cell or a quantum dot. The photon
replicas of the two occupied subbands will be above the chem-
ical potential, i.e., they are not occupied, but participate in the
band-mixing process promoted by the diagonalization of the
Hamiltonian. Further on, we will present results for quantum
dots with a higher number of electrons as there some pho-
ton replica subbands are occupied, leading to stronger cavity
photon effects on the system. We will explore properties of
the system for different numbers of electrons, Ne, and we will
vary the photon energy, Eγ , and the electron-photon coupling
gγ . In earlier experiments on FIR absorption of QD arrays, the
magnetic field and the electron number were usually varied
[40,41]. Here, due to the commensurability requirement of
the Hofstadter problem, we avoid changing the magnetic field,
as that would require redefinition of the unit cell to attain an
integer number of magnetic flux quanta, 
0, through it. Note
that our parameters are not far off the parameters in Ref. [41].

We are not implying that, experimentally, it is easy to
change the cavity photon energy, but we need to vary it to
show how sensitively the results can depend on it.

A. Two electrons in a dot, Ne = 2

A QED-DFT-TP spectrum is shown in Fig. 1 for two elec-
trons in each dot, Ne = 2, and pq = 2. The two-dimensional
spectrum is projected on the θ1 direction in reciprocal space.
The photon content of the Landau subbands is encoded in their
color with red for zero, or a very low photon number, and
deep violet for 12 photons. The background is gray to make
yellow and light green shades more visible, than would be on a
white one.

The low electron-photon coupling gγ = 0.001 results in
the total average photon number Nγ ≈ 0.00604 for the two
electrons. The low external magnetic field B ≈ 0.827 T and
the small effective g∗ = −0.44 lead to a spin singlet with no
enhancement of the exchange energy, and the spin splitting
between the two orbital states is thus not discernible on the
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FIG. 1. The energy band structure projected on the θ1 direction
in the first Brillouin zone for Ne = 2 and pq = 2 (two flux quanta)
corresponding to B ≈ 0.827 T. The color of the bands indicates their
photon content with red for 0 and violet for 12. The color scale is
at the top of the figure. The chemical potential μ is shown by the
horizontal black line. Due to the low magnetic field, the spin splitting
of the bands is not clearly visible on the energy scale used. Eγ =
h̄ωγ = 1.00 meV, gγ = 0.001, L = 100 nm, and T = 1 K.

energy scale of the figure. The chemical potential indicated
with a black horizontal line in the figure is μ ≈ −9.038 meV
and the total energy per dot or cell is Etot ≈ −21.96 meV.

As gγ is small, we can identify photon replicas of the
two states below the chemical potential located at almost
regular intervals of h̄ωγ = 1.00 meV above them (see the
first photon replica orange subbands around −8.5 meV and
the second replica yellow subbands around −7.5 meV). The
higher energy spectrum displays complex structures hinting
at resonances and interactions. Below, they will be analyzed
in more detail for situations that bring them closer to the
chemical potential of the relevant system. The photon con-
tent in each subband is constant, independent of θ, as the
electron-photon interaction Hamiltonian (7) has no explicit
spatial dependence. It is a functional of the charge and current
densities and fits very well into the DFT formalism used.

As will become clear below, the simplicity of the system
with two electrons in a quantum dot at low magnetic field
and electron-photon coupling makes it ideal to explore what
happens when the electron-photon coupling is increased. In
Fig. 2, the evolution of the total energy Etot, the total mean
photon number Nγ , the orbital Mo, and the spin magnetization
Ms with increasing gγ for two different values of the cavity
photon energy h̄ωγ are presented.

Even for two electrons, the results are nontrivial as the
para- and diamagnetic electron-photon interactions influence
the charge and current densities that themselves enter the
expressions for the interactions (7) and, moreover, higher
order photon- and multiphoton transitions are included in the
QED-DFT-TP formalism. For the selected parameters, the
total energy is higher for the higher photon energy as gγ

increases, but at the same time the number of higher energy
photons is lower. The higher energy photons polarize the
system less effectively, so the orbital magnetization shows a
corresponding effect with respect to the photon energy as the
mean photon number, but the curvature of Nγ and Mo with
respect to gγ differs. As realized for the QEDFT formalism
[23], an increase in gγ tends to decrease the exchange forces.
Here, we see the very small Coulomb-exchange contribution
to spin magnetization Ms effectively killed by an increasing
electron-photon interaction, i.e., the electron-photon interac-
tions force the two electrons into a singlet spin state.

B. More than two electrons in a dot, Ne > 2

The dependence of the mean values presented in Fig. 2 on
the electron number Ne becomes much more complex as the
shell structure of the quantum dots, or filling factor effects of
the modulated 2DEG, come into play. This is evident in Fig. 3,
which displays the mean values as functions of Ne for several
values of gγ .

The shell structure, or the filling factor, effects strongly
modify both the orbital and the spin magnetization as screen-
ing and exchange effects play a paramount role in the
determination of the charge and the current densities. Im-
portantly, the electron-photon interactions introduce photon
replica states (see Fig. 1) into the band structure that further
complicate the shell or the subband structure of the system.
For low gγ . the coupling of the replica bands or states is low
and many iterations can be needed in the calculations to obtain
converged results. Oppositely, for high gγ the electron-photon
interactions effectively subdue Coulomb exchange and cor-
relation effects and generally fewer iterations are needed to
reach convergence.

Here we only present how equilibrium quantities and
measurables depend on the photon energy and the electron-
photon interactions. No information about time dependency
of transitions is available in these static calculations, but our
experience with the time evolution of small open electron-
photon systems within the framework of exact numerical
diagonalization tells us that some of the converged states
found in our equilibrium self-consistent calculation would
only be reachable in a long time in time-dependent calcula-
tions for an open system [42].

In Fig. 2, properties of the system are displayed for two
electrons in a quantum dot or unit cell. Figure 4 presents the
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FIG. 2. The total energy (a), the mean number of photons (b), the orbital magnetization (c), and the spin magnetization (d) as functions of
the dimensionless electron-photon coupling constant gγ for Ne = 2, and pq = 2. L = 100 nm, T = 1 K, and M0 = μ∗

B/L2.

corresponding averages as a function of the electron-photon
coupling, but now for eight electrons in a dot for three differ-
ent values of the photon energy. In light of what was stated in
the previous paragraph, it is noticeable that the results become
simpler as gγ surpasses the value 0.15. In Fig. 4, it is clearly
seen how the electron-photon interactions can effectively sup-
press the relatively large Coulomb exchange effects, and how
in the intermediate interaction range the shell or the subband
structure determines the averages. Without the photon repli-
cas, strong exchange effects are expected for an odd number
of electrons. The photon replicas and the e-photon interaction
strength can drastically change this, as the results show. The
higher number of electrons and not very large photon energy
changes the band structure around the chemical potential and
can lead to the occupation of higher, or more photon replica
subbands.

When the electron-photon coupling or the photon energy
are varied, one can expect resonance conditions to occur,
i.e., Rabi resonances like in numerically exact calculations
for few electrons [16]. In the present system, an analysis
of resonances is complicated by the two-dimensional shape
of the energy subbands in the inverse lattice space and the
fact that in self-consistent calculations it is not always easy
to follow an anticrossing of levels as a single parameter is
varied slightly. But as seen in Fig. 1, there are indications

of resonances in the spectra, even for few electrons. The left
panel of Fig. 5 shows a large section of the spectrum for
Ne = 7, while the right panel shows only a small section close
to the chemical potential (the horizontal black line or plane).
The two-dimensional energy spectrum is projected on the θ1

direction in the inverse space. The color of the bands indicates
the photon content of the subbands as in Fig. 1. The right panel
shows a clear anticrossing of bands close to μ, whose structure
is delicately dependent on gγ , Eγ , and Ne. The closeness of
this structure to the chemical potential means it influences
most properties of the system. In addition to the Rabi splitting
and anticrossing of the subbands, an enhanced spin splitting
is seen.

It is important to realize that the anticrossing displayed
in Fig. 5 is over the whole Brillouin zone, but with variable
strength in each point.

To obtain further insight into the system with seven elec-
trons in each quantum dot, we show in Fig. 6 the averages as
functions of the photon energy Eγ for several values of the
electron-photon coupling gγ . The curves for the two or three
lowest values of gγ tend to overlap, except for values of Eγ for
which the Coulomb exchange interaction creates a difference.
This is connected to the phenomena that the electron-photon
interaction tends to reduce the Coulomb exchange effects and
the photon replicas change the shell structure of the dots. The
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FIG. 3. The total energy (a), the mean number of photons (b), the orbital magnetization (c), and the spin magnetization (d) as functions of
the number of electrons Ne for Eγ = 1.00 meV, and five values of the dimensionless electron-photon coupling constant gγ . pq = 2, L = 100
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spin magnetization in Fig. 6 shows transitions between two
preferred configurations, one with approximately one odd spin
and another one with three odd spin z-components. Clearly,
both the electron-photon interactions and the photon energy
determine the configuration in interplay with the confinement
potential and the effects of the Coulomb interaction.

We have focused our attention on how the electron-photon
coupling affects the global quantities, like the total energy, the
mean photon number, and the orbital and spin magnetization,
but the interaction of the 2DEG with the cavity photons also
leads to local changes or patterns in the electron properties.
The polarizing effects of the cavity photons are presented in
Fig. 7 for both the charge and spin densities of the 2DEG-
cavity system. In the left panel, it is seen how the polarizing
power of the photons lowers the charge density in the center
of each dot and moves it preferably on the diagonals between
the dots to minimize the Coulomb interaction energy. Note
that here the densities are compared for seven electrons and
Eγ = 1.0 meV, for gγ = 0.005 and 0.750. The spin polariza-
tion, ζ = (n↑ − n↓)/ne, in the right panel of Fig. 7 shows a
concentration of one spin direction in the quantum dots as
the electron-photon coupling increases, an effect consistent
with the information in Fig. 6(d). Qualitatively corresponding
polarization of electron charge was seen in the QEDFT 2DEG
model [23], but variation in the electron density does imply a

variation of the cavity photon density in the system, informa-
tion that was not available in the QEDFT 2DEG model.

The photon density, nγ (θ1, θ2) = 〈Nθ
γ 〉 in the first Brillouin

zone of the inverse lattice is displayed in Fig. 8 for two
different values of the coupling constant gγ and four values
of the photon energy Eγ for the system with Ne = 7.

From Fig. 6(b), it is clear that the total photon number does
not differ much for the two values of gγ in the upper left panel
of Fig. 8(a) for Eγ = 1.00 meV, but the latter subfigure makes
clear that the main difference occurs in the corners of the
square unit Brillouin cell. A further comparison of Fig. 8 and
Figs. 6(b) and 6(d) makes clear the complex dependence of the
photon number, their energy, and the coupling constant. Fur-
thermore, a nontrivial behavior of the photon density emerges
in reciprocal space. The structure of the photon density can
be referred back to the energy band structure around the
chemical potential. Since the photon content of each subband
is constant, large variations in the photon density for a system
with an integer number of electrons in a quantum dot reflect
resonances and Rabi anticrossing bands around μ. Both the
para- (A8) and diamagnetic (A9) parts of the electron-photon
interaction can lead to resonances [30].

In a superlattice of antidots, it is easier to defend a non-
integer number of electrons on average within each lattice
unit. Mughnetsyan et al. have studied the differences in the
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screening power and the magnetic properties of the 2DEG
in both the anti- and quantum dot lattice within the QEDFT
formalism for a noninteger number of electrons [43].

IV. CONCLUSIONS

Using a linear basis constructed by a tensor product of
one-electron states of the noninteracting Hamiltonian and
the photon states of the number operator, we model a
2DEG in a lateral square lattice of quantum dots placed
in a circular cylindrical photon cavity and an external ho-
mogeneous magnetic field using a QED-DFT-TP approach.
The total Hamiltonian for the electrons and the photons de-
scribable as a photon-block Hamiltonian with interactions
between the blocks determined by the electron-photon in-
teractions, is diagonalized in each point in the reciprocal
space.

After convergence, or self-consistency, is reached in the
calculations, the final states are not eigenstates of the photon
number operator anymore and the energy subbands of the
system have been assigned a constant integer or fractional
photon number. The calculations are performed for an integer
number of electrons in each quantum dot or unit cell of the
lattice. The vector potential of the single TE011 cavity mode
in the long wavelength approximation has the same spatial

symmetry as the vector potential describing the external
magnetic field, and does not break the symmetry of the
original system, but enhances higher order single- or multi-
photon magnetic processes in both the para- and diamagnetic
electron-photon interactions.

The use of the Coulomb gauge for both the external mag-
netic field and the cavity field paves the way to effectively
include higher order magnetic processes in the model, and
the off-diagonal terms stemming from the electron-photon
interactions together with the photon blocks of the Hamilto-
nian of the electron-photon coupling guarantees the inclusion
of many-photon processes. We do not use a rotating wave
approximation for the electron-photon interactions anywhere
as their antiresonance terms are important when several pro-
cesses, virtual or real, close to resonance or not, are active in
the system simultaneously.

The important message from our modeling of a 2DEG
in a square array of quantum dots in an external magnetic
field placed in a circular cylindrical FIR-photon cavity is that
the magnetically active photon processes, that are weak in
most systems, can very effectively drastically change the static
properties of the system. We take this as an indication that
the same processes could be activated in a time-dependent
setup to explore the band structure of the systems in contrast
to electrical processes that are more often limited by some
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their photon content with red for 0 and violet for 12. The chem-
ical potential μ is shown by the horizontal black line. The color
scale is the same as in Fig. 1. An enhanced spin splitting of the
bands is seen. Eγ = h̄ωγ = 1.00 meV, gγ = 0.005, L = 100 nm,
and T = 1 K.

general symmetry properties of the system, the extended Kohn
theorem for nearly parabolically confined dots, etc.

The photon density in the first Brillouin zone of the recip-
rocal lattice can vary strongly due to possible anticrossings of
subbands with different photon content close to the chemical
potential created by Rabi resonances for certain photon ener-
gies. It is more difficult to map the Rabi resonances as can
be done in small confined systems by changing the photon
energy or the electron-photon coupling, as in a modulated
2DEG described within a DFT approach the energy subband
structure is complicated and depends critically on both these
parameters.

The electron-photon interactions polarize the electron
charge as seen earlier in a QEDFT calculation for an ar-
ray of quantum dots, and in that process lattice effects are
seen depending nontrivially on the number of electrons in
a dot, the photon energy, and their coupling strength to the
electrons [24].

Coulomb exchange effects leading to enhanced spin split-
ting are reduced by the electron-photon coupling. This
phenomena has been observed both for arrays of quantum dots
and antidots, though in a slightly different manner [24,43],
but here in the QED-DFT-TP approach we see a stronger
dependence on the photon energy.

In our experience, the QEDFT formalism with photon
exchange and correlation functionals, but no explicit photon
degrees of freedom [22], gives good qualitative results for

both arrays of quantum dots and antidots in an external mag-
netic field. It can handle multiple cavity photon modes, but
it does not give any explicit information about the photon
content of the 2DEG [24,43]. In the QED-DFT-TP formalism
used in the present calculations, we see a possibility to include
in a simpler way both many-photon processes and photon
correlations effects, and the straightforward information about
the photon component in the system makes comparison to
calculations using the CI approach possible.
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APPENDIX: THE INTERACTION OF THE 2DEG
WITH A SINGLE QUANTIZED TE011 PHOTON MODE

OF A CYLINDRICAL CAVITY

A general TEmnp mode of a circular cylindrical cavity is
described by

Hz(r, φ, z) = BmnpJm

(
χ ′

mnr

a

)
cos(mφ) sin

(
π pz

d

)
, (A1)

with a and d the radius and the height of the cavity, respec-
tively. Jm is the Bessel function of the first kind and χ ′

mn the
nth zero of its derivative. The transverse components of the
electric field are then defined by

E = i

h2
ωmnpμ(ez × ∇T Hz ), (A2)

235306-8



MAGNETO-OPTICAL PROPERTIES OF A QUANTUM DOT … PHYSICAL REVIEW B 109, 235306 (2024)

-58

-56

-54

-52

-50

-48

-46

 1  1.2  1.4  1.6  1.8  2

(a)

E
to

t (
m

eV
)

Eγ (meV)

gγ=0.100

gγ=0.075

gγ=0.050

gγ=0.010

gγ=0.005

gγ=0.001

Ne = 7

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 1  1.2  1.4  1.6  1.8  2

(b)

N
γ

Eγ (meV)

gγ=0.100

gγ=0.075

gγ=0.050

gγ=0.010

gγ=0.005

gγ=0.001

Ne = 7

-7

-6

-5

-4

-3

-2

-1

 0

 1  1.2  1.4  1.6  1.8  2

(c)

M
o/

M
0

Eγ (meV)

gγ=0.100

gγ=0.075

gγ=0.050

gγ=0.010

gγ=0.005

gγ=0.001

Ne = 7

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 1  1.2  1.4  1.6  1.8  2

(d)

M
s/

M
0

Eγ (meV)

gγ=0.100

gγ=0.075

gγ=0.050

gγ=0.010

gγ=0.005

gγ=0.001

Ne = 7

FIG. 6. The total energy (a), the mean number of photons (b), the orbital magnetization (c), and the spin magnetization (d) as functions of
the photon energy Eγ for Ne = 7, and pq = 2. L = 100 nm, T = 1 K, and M0 = μ∗
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giving for the TE011 mode

Eφ = −B011J1

(
χ ′

01r

a

)
sin

(
πz

d

)
iω011μ

h2
(A3)

and Er = 0, as J ′
0 = J1. In Eq. (A2), the label T refers to the

Cartesian coordinates perpendicular to z, i.e., x and y, and

B011 is the strength of the mode, Bmnp. The eigenvalue of the
Helmholtz equation for the cavity mode is h2 = ω2

011μκ −
(π/d )2, which leads to the energy of the TE011 mode being

h̄ω011 = h̄c

√(
χ ′

01

a

)2

+
(π

d

)2
. (A4)
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For GaAs parameters for the cavity in the case a = d = 40 ×
103 nm, h̄ω011 ≈ 1.5 meV, or 3.1 meV for a = d = 20 × 103

nm, i.e., the radius of the cavity is much larger than the

superlattice period L. We thus assume J1(x) → x/2 and
choose a long wavelength approximation for the vector po-
tential of the cylindrical cavity:

Aγ = eφAγ (a†
γ + aγ )

(
r

l

)
. (A5)

This choice is consistent with

∇ × A = ez
1

r

{
∂

∂r
rAφ − ∂Ar

∂φ

}
= ez

1

r

∂

∂r
rAφ, (A6)

and

E = −1

c
∂t A. (A7)

To evaluate the integrals defining the electron-photon interactions, Eq. (7), we introduce the notation r = R + x with x in
the first unit cell of the superlattice and R = L(m, n) = mLex + nLey, with n, m ∈ Z and the lattice length L. Furthermore,
eφ = − sin φ ex + cos φ ey. Then

Hpar
int = 1

c

∑
R

∫
A

dx J(R + x) · Aγ (R + x) = 1

c

∑
R

∫
A

dx J(R + x) · |R + x|
l

(−nL − y

|R + x| ,
mL + x

|R + x|
)
Aγ (a†

γ + aγ )

= 1

c

{
(2π )2

A δG(G)

}∫
A

dx
[
−Jx(x)

(
y

l

)
+ Jy(x)

(
x

l

)]
Aγ (a†

γ + aγ ) (A8)
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and

Hdia
int = e2

2m∗c
A2

γ (a†
γ + aγ )2

∑
R

∫
A

dx ne(R + x)A2
γ (R + x)

= e2

2m∗c
A2

γ (a†
γ + aγ )2

[{
(2π )2

A δG(G)

}∫
A

dx ne(x)

(
x2 + y2

l2

)
−

{
Ne

(2π )2

A
∂2

∂ (Gl )2
δG(G)

}]
, (A9)

where Ne is the number of electrons in a unit cell, and we have
used ∑

R

eiR·k = (2π )2

A δG(k), (A10)

together with A = L2. As the spatial integrals in the electron-
photon interactions (7) lead to the interactions to be expressed
as constants multiplied by combinations of the photon cre-
ation and annihilation operators, we interpret (A10) as the
conversion of a periodic Dirac-delta function to a Kronecker
delta, implying that in the matrix elements of the interactions
(A8) and (A9), only the G = 0 terms contribute. Accordingly,
we neglect the last term of (A9). The constants, Ix, Iy, and N
in (8), are thus

l (Ix + Iy) = m∗

e

∫
A

dx
l

h̄

[
−Jx(x)

(y

l

)
+ Jy(x)

(x

l

)]

N =
∫
A

dx ne(x)

(
x2 + y2

l2

)
, (A11)

while the electron current and the number densities are

Ji(r) = −e

m∗(2π )2

×
∑
ασ

∫ π

−π

dθ {ψ∗
αθσ (r)πiψαθσ (r)} f (Eαθσ − μ)

(A12)

for i = x or y, and

ne(r) = 1

(2π )2

∑
ασ

∫ π

−π

dθ |ψαθσ (r)|2 f (Eαθσ − μ), (A13)

respectively.
The confidence in the derivation of the Hamiltonians (A8)

and (A9) for the interaction of the mode in a cylindrical FIR
cavity with the 2DEG in the long wavelength (A5) should be
enhanced when the reader realizes that the spatial form of
Aγ is the same as for the vector potential A from which the
external homogeneous magnetic field is derived.
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