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Thermoelectric transport of a topological semimetal with a pair of Weyl points
and a nodal ring in the quantum limit
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We explore the thermoelectric transport properties of a coexistence topological semimetal, characterized by
the presence of both a pair of Weyl points and a nodal ring in the quantum limit. This system gives rise to
complex Landau bands when subjected to a magnetic field aligned with the direction connecting two Weyl points.
In the longitudinal configuration, where the magnetic field is parallel to the electric field or the temperature
gradient, the thermoelectric conductivity indicates a plateau independent of the magnetic field and the Fermi
energy at δ-form short-range scattering. This platform structure should also exist in pure two-node Weyl
semimetals. However, the thermoelectric conductivity and the Seebeck coefficient are significantly influenced by
the parameters of long-ranged Gaussian or screened Coulomb scattering potentials for both fixed carrier density
and Fermi energy scenarios. In the transverse configuration, both Gaussian and screened Coulomb scatterings
yield substantial positive magnetoresistance and thermoelectric conductance. Since the Hall conductivity is larger
than the longitudinal one, the Seebeck coefficient, exhibiting a quadratic increase with the magnetic field, is
close to the dissipationless limit irrespective of scatterings, while the Nernst response is notably dependent on
the scattering mechanism. Additionally, the model parameter, distinct from the two-node Weyl model, influences
the thermoelectric transport properties. The magnetic field response of the thermoelectric coefficients to different
scattering potentials can be used as a basis for distinguishing scattering mechanisms in materials.

DOI: 10.1103/PhysRevB.109.235206

I. INTRODUCTION

Topological semimetals [1–7] have recently attracted in-
creasing attention due to their nontrivial and exotic physical
phenomena: their band structure includes symmetry-protected
band crossings between the valence and conduction bands,
and they exhibit unconventional responses to applied external
fields [8–13]. In particular, as thermoelectric effects are pro-
portional to the derivative of conductivity, they are generally
considered more sensitive to these novel responses [14–21].
In recent years, theoretical studies of three-dimensional
Dirac/Weyl semimetals in the quantum limit, where only the
lowest Landau band is occupied by electrons, have shown
that the Seebeck coefficient Sxx indicates an unsaturated linear
growth at low temperatures [22]. Further investigation demon-
strated that the linear growth of the Seebeck coefficient in
the clean limit originates from the the plateau value of ther-
moelectric Hall conductivity αxy [23,24], proportional to the
temperature. The plateau of αxy or the equivalent linear growth
of Sxx, recognized as a signature of topological semimetals,
has been observed in the Dirac semimetal ZrTe5 [25,26],
Pb1−xSnxSe [14], the Weyl semimetal TaP [27], and nodal-line
semimetal graphite [28,29]. Hence, topological semimetals
show great potential in the realm of thermoelectric transport.

Recently, a distinctive class of topological states, termed
“topological coexistence,” has been identified in certain
topological materials [30–37]. Diverging from traditional
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topological semimetals characterized by a single topological
state, these materials showcase the simultaneous presence of
multiple topological states in the bulk. One notable example is
found in the double perovskites Ba2CdReO6 [30], which host
both Weyl and nodal ring topological states. In a related study,
Zhang et al. [31] investigated the surface states of the ferro-
magnetic material Cs2MoCl6, sharing the same space group
Fm3̄m as Ba2CdReO6 and featuring analogous topological
coexistence states. Their findings reveal a unique surface state
connection between Weyl and nodal ring fermions, a phe-
nomenon also predicted in other systems [33,34]. In these
materials, spin-orbit coupling plays a key role in the formation
of a coexisting topological state.

Topological coexisting materials, as a new class of topo-
logical phases, have energy bands that are quite different from
those previously studied, which may bring special thermo-
electric transport properties. In the quantum limit, there is only
one energy band that contributes to transport. At this point,
scattering may play a crucial role [38–44]. Our study starts
from a two-band model containing both a pair of Weyl points
and a nodal ring, and we investigate the longitudinal as well as
transverse thermoelectric transport properties in the quantum
limit when the magnetic field is applied along the connection
of Weyl points by considering both the Gaussian and screened
Coulomb electron-impurity scatterings.

II. HAMILTONIAN AND THE LANDAU BANDS

We consider a topological semimetal, where a pair of Weyl
nodes and a nodal line coexist. The minimal Hamiltonian is
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FIG. 1. (a) The schematic diagram of the band crossing in mo-
mentum space, which forms a pair of Weyl points (blue and gray
dots) and a nodal ring (red circle). The yellow plane represents the
kz = 0 plane. Energy dispersions in the kx-kz or ky-kz plane (b) and
the kx-ky plane (c). Here M0 = 0.05 eV, M1 = 5 eV nm2, and D =
2M1.

written as [31]

H = Dkz(kxσx + kyσy) + Mkσz, (1)

with

Mk = M0 − M1
(
k2

x + k2
y + k2

z

)
. (2)

Here D, M0, and M1 are material parameters, σ = (σx, σy, σz )
are three 2 × 2 Pauli matrices, and k = (kx, ky, kz ) is the wave
vector. The dispersion of the system is

Eλk = λ

√
D2k2

z

(
k2

x + k2
y

) + M2
k . (3)

The quantum number λ = ±1 denotes the conduction and
valence bands. Compared to the minimal two-node Weyl
semimetal model [45] HW = A(kxσx + kyσy) + Mkσz, the con-
stant Fermi velocity A becomes a momentum-dependent
quantity Dkz, which results in the coexistence of two types
of topological states. Two bands contact each other at a pair
of Weyl points (0, 0,±√

M0/M1 = ±kW ) on the kz axis, in
addition to a closed nodal line (nodal ring) in the kx-ky plane
(kz = 0, k2

x + k2
y = k2

W ), displaying two topological properties
in one system. Figure 1(a) schematically shows the character-
istics of band crossing formed by two energy bands of the
model, where blue and gray dots represent a pair of Weyl
points on the kz axis, and the red circle represents the nodal
ring in the kx-ky plane. The panel (b) shows the energy dis-
persion on the kx-kz or ky-kz plane, where two additional Weyl
points come from the intersections of the ring and the kx or
ky axis. The panel (c) indicates the dispersion in the kz = 0
plane, where the touch points compose a closed circle.

The Berry curvature is considered to be an important quan-
tity reflecting the topological properties of matter. It can be
thought of as the magnetic field in momentum space and is
associated with various topological transport responses such
as the anomalous Hall effect, the quantum Hall effect, and the

chiral anomaly. Three components of the Berry curvature for
the coexistence model are derived in Appendix, and they can
be found as

�x
+ = D2

2E3+
kzkx

[
M0 − M1

(
k2

x + k2
y − k2

z

)]
, (4)

�
y
+ = D2

2E3+
kzky

[
M0 − M1

(
k2

x + k2
y − k2

z

)]
, (5)

�z
+ = − D2

2E3+
k2

z

[
M0 + M1

(
k2

x + k2
y − k2

z

)]
. (6)

Here the “+” subscript represents the Berry curvature of the
λ = +1 band. In contrast to the two-node Weyl semimetal
[45], three components of the Berry curvature all take zero
in the kz = 0 plane. By calculating the integral of the Berry
curvature around the Fermi surface near the ±kW point, we
can obtain a topological charge n = ±1, corresponding to
a pair of Weyl points with opposite chiralities. In addition,
we can define a Chern number to determine the topological
properties on the kx-ky plane. For a given kz, we can compute
the Chern number nc(kz ) = − 1

2π

∫∫
dkxdky�

z
+ along the z di-

rection. We find for −kW < kz < 0 or 0 < kz < kW the Chern
number nc = 1, while for the other case kz �= 0, nc(kz ) = 0.
Such a nonzero Chern number corresponds to a kz-dependent
edge state.

Now we apply an external magnetic field in the z-direction
B = Bẑ to the coexisting topological system. The momentum
plane perpendicular to the magnetic field will be quantized,
while the momentum along the direction of the field is still a
good quantum number. In the presence of a magnetic field, the
new Hamiltonian could be obtained via the Peierls substitu-
tion k → k − eA/h̄, with e being the charge of an electron. If
we choose the Landau gauge A = −Byx̂, the new Hamiltonian
of the coexisting system is shown as the following form:

H =
[

M0 − M1
(
k̂2

x + k̂2
y + k2

z

)
Dkz(k̂x − ik̂y)

Dkz(k̂x + ik̂y) −M0 + M1
(
k̂2

x + k̂2
y +k2

z

)
]
,

(7)

with k̂x = kx − y/�2
B, k̂y = −i∂y, and �B = √

h̄/|eB| being the
magnetic length. We can introduce two ladder operators a† =
(�B/

√
2)(kx − y/�2

B + ∂y) and a = (�B/
√

2)(kx − y/�2
B − ∂y),

which satisfy [a, a†] = 1. This Hamiltonian is then rewritten
as

H =
[
−Mkz − ωc

(
a†a + 1

2

)
ωza

ωza† Mkz + ωc
(
a†a + 1

2

)
]
, (8)

with the frequencies ωc = 2M1/�
2
B and ωz = √

2Dkz/�B, and
Mkz = −M0 + M1k2

z . Therefore, the Landau energies and
wave functions of the Hamiltonian H for the index ν � 1 are

Eλν = 1

2
ωc + λ

√[
M0 − M1k2

z − νωc
]2 + νω2

z , (9)

ψ+ν = ei(kxx+kzz)

√
LxLz

[
sin αν

2 φν−1

cos αν

2 φν

]
, (10)

ψ−ν = ei(kxx+kzz)

√
LxLz

[
cos αν

2 φν−1

− sin αν

2 φν

]
, (11)
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FIG. 2. The Landau energy bands of the system with indices
ν = 0, 1, 2 for three different magnetic fields B = 2, 3.3, 8 T cor-
responding to (a), (b), and (c), respectively. Here M0 = 0.05 eV,
M1 = 5 eV nm2, and D = 2M1.

while for ν = 0,

E0 = −M0 + M1k2
z + 1

2ωc, (12)

ψ0 = ei(kxx+kzz)

√
LxLz

[
0
φ0

]
. (13)

Here LxLz is the area of the sample and tan αν =√
νωz/(νωc + Mkz ). φν is the usual harmonic-oscillator eigen-

state at the center y0 = kx�
2
B relating to the Hermite polynomi-

als Hν (x),

φν (kx, y) = 1√√
π2νν!�B

e−[(y−y0 )2/2�2
B]Hν

(
y − y0

�B

)
. (14)

In contrast to the two-node Weyl semimetal model, there is
an additional frequency ωz in the Landau bands. It relates to
the parameter D and is kz-dependent, which is a key feature
of the coexisting system. For the indices ν � 1, two Landau
energy levels E±ν intersect at kz = 0 when the magnetic field
Bν = h̄M0/(2ν|e|M1). Figure 2(b) indicates the Landau bands
at B = B1 � 3.3 T, where the +1 band and the −1 band come
into contact at kz = 0. This intersection is a feature of Landau
levels in nodal-line semimetals in the presence of the mag-
netic field perpendicular to the nodal-line plane [46]. But the
zeroth Landau energy band E0 is analogous to the two-node
Weyl semimetal model [45], which is quadratic along the kz

direction.
Due to the kz-dependent frequency ωz, the Landau bands

exhibit a complexity in vivid contrast to the two-node Weyl
model, especially at low magnetic fields. In the two-node
Weyl model, Landau bands are distinctly separated and or-
ganized in the order of band indices [45]. However, in this
coexisting topological system, the Landau bands overlap, with
even the lowest Landau band extending into the negative
band (valence band) at low magnetic fields, as illustrated in
Figs. 2(a) and 2(b). This band-crossing behavior is anticipated
to give rise to unique magnetic transport phenomena, such
as novel magnetoresistance oscillations [47]. Currently, our
focus remains on the quantum limit, where only one Landau
band is occupied. Fortunately, when the magnetic field is
sufficiently large such that the bottom of the zeroth Landau

band is higher than the top of the −1 Landau band, as depicted
in Fig. 2(c), the bands become well-separated and ordered
according to the Landau indices. This condition occurs when
the magnetic field B > h̄M0/(|e|M1), twice the value of B1. In
such cases, if the Fermi energy EF intersects only the zeroth
band, the coexisting topological system enters the quantum
limit. Our subsequent calculations will focus on this extreme
regime.

III. LONGITUDINAL CONFIGURATION

At first, we consider the longitudinal configuration, where
the magnetic field, the electric field, and the temperature
gradient are all along the z-direction, B ‖ E ‖ ∇T ‖ ẑ. The
Mott relation is believed to be valid at temperatures close
to 0 K [42]. Hence, in this configuration we only need to
calculate the longitudinal conductivity σzz. The resistivity ρzz

is just the reciprocal of the conductivity, ρzz = 1/σzz. And the
thermoelectric Seebeck coefficient Szz could be obtained from
the conductivity via the Mott relation [42,48–50]

Szz =π2k2
BT

3e

1

σzz

∂σzz

∂EF
. (15)

Here kB is the Boltzmann constant, T is the temperature, and
EF is the Fermi energy.

The longitudinal conductivity σzz can be expressed as
[38,42,44,45]

σzz = h̄e2

2πV

∫ ∞

−∞
dε

[
−∂nF(ε)

∂ε

]
Tr[v̂zĜ

A(ε)v̂zĜ
R(ε)]. (16)

Here V is the volume, nF(ε) is the Fermi-Dirac distribution
function, ĜR/A(ε) is the retarded (advanced) Green’s function,
and v̂z is the z-component of the velocity operator with the
form

v̂z = 1

h̄

∂H

∂kz
= 1

h̄

⎡
⎣−2M1kz

√
2

�B
Da

√
2

�B
Da† 2M1kz

⎤
⎦. (17)

Different from the two-node Weyl model, the off-diagonal
element of the velocity operator v̂z is nonzero due to the
Dkz term in the Hamiltonian. However, for any band with
nonzero index ν, 〈ψ0|v̂z|ψ±ν〉 = 0. Thus in the quantum limit,
where the Fermi energy only cuts the lowest Landau band E0,
only the zeroth band E0 contributes to the conductivity in the
longitudinal configuration. In this case, only the velocity ele-
ment vkz = 〈ψ0|v̂z|ψ0〉 = 2M1kz/h̄ involves in the expression
leading to the longitudinal conductivity of this coexistence
model analogous to the two-node Weyl model [44,45]:

σzz = 2
e2

h
NLvkF τ 0

tr, (18)

where the Landau degeneracy NL = 1/2π�2
B, the Fermi group

velocity vkF = 2M1kF /h̄, and the Fermi wave vector kF is the
positive intersection of the Fermi energy and the zeroth Lan-
dau band. The transport time at the Fermi energy, denoted as
τ 0

tr , includes an additional factor (1 − vz
k′

z
/vz

kF
) from the vertex

correction in its expression, distinct from the particle lifetime
[42,51]. This factor introduces a selection rule, allowing only
k′

z = −kF to contribute to the transport time. Finally, τ 0
tr has
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the form

h̄

τ 0
tr

= ni

M1kF

∑
k′

x,q

|u(q)|2e− q2‖�2
B

2 δqx,kx−k′
x
δqz,2kF . (19)

Here ni is the impurity density, u(q) represents the Fourier
transform of the scattering potential, the wave vector q =
(qx, qy, qz ), and q2

‖ = q2
x + q2

y .
We consider two popular types of elastic electron-impurity

scatterings: the Gaussian potential and the screened Coulomb
potential. The former characterizes scenarios where scattering
intensity diminishes rapidly with distance from the scattering
center, while the screened Coulomb potential represents situ-
ations where charged impurities induce substantial screening
effects. The Fourier transform of the Gaussian potential is
u(q) = u0e−q2d2/2, where u0 measures the scattering strength,
and d is a parameter that describes the range of the scattering
potential. If we define VG = niu2

0, then the transport time is

h̄

τ 0,G
tr

= VG

2πM1kF
(
2d2 + �2

B

)e−4k2
F d2

. (20)

Therefore, the conductivity has the form

σzz = e2

h

(2M1kF )2

VG

(
1 + 2d2

�2
B

)
e4k2

F d2
. (21)

Since only kF depends on the Fermi energy, the Seebeck
coefficient Szz is given by

Szz = π2k2
BT

3e

1

M1k2
F

(
1 + 4d2k2

F

)
. (22)

Further, the thermoelectric conductivity could be found via
αzz = σzzSzz.

For the δ-form short-range scatters d = 0, σzz ∝ k2
F , and

Szz ∝ k−2
F , so the thermoelectric conductivity is a constant

irrespective of the magnetic field

αzz = 4π2

3

ek2
BT

h

M1

VG
. (23)

It does not rely on carrier density or Fermi energy, indicating
that αzz attains plateaus under sufficiently strong magnetic
fields. Previously observed in Dirac systems, the Hall ther-
moelectric conductivity demonstrates plateau behavior in the
extreme quantum limit [23]. In this study, we identify the
plateau characteristics of longitudinal thermoelectric conduc-
tivity. This phenomenon is expected to be applicable to all
Weyl-like semimetals.

Now we move to the analysis of the screened Coulomb
potential. The Fourier transform is u(q) = e2

ε0εr (q2+κ2 ) with ε0

and εr being the dielectric constants of the vacuum and the
material. The κ from the standard random phase approxima-
tion is κ2 = e2

2πε0εr

1
2π�2

B

1
M1kF

. In this case, the transport time is

h̄

τ 0,C
tr

= VC

M1kF

�2
B

8π
F1(c1). (24)

Here VC = nie4/(ε2
0ε

2
r ), the function F1(x) = 1/x − exE1(x)

with E1(x) = ∫ ∞
x dte−t/t being an exponential integral func-

tion, and c1 = (4k2
F + κ2)�2

B/2. Therefore, the conductivity

has the form

σzz =e2

h

(4M1kF )2

VC�4
B

1

F1(c1)
, (25)

meanwhile the Seebeck coefficient can be expressed as

Szz =π2k2
BT

3e

1

M1k2
F

[
1 − kF

2

∂ ln F1(c1)

∂kF

]
. (26)

The function F1(x) has the following asymptotic behavior:
F1(x) = 1/x when x � 1, while F1(x) = 1/x2 when
x  1. Hence, for c1 � 1, σzz ∝ k2

F (4k2
F + κ2)/�2

B, Szz ∝
k−2

F (16k2
F + κ2)/(4k2

F + κ2), and αzz ∝ (16k2
F + κ2)/�2

B;
while for c1  1, we find σzz ∝ k2

F (4k2
F + κ2)2, Szz ∝

(4k2
F + κ2)−1, αzz ∝ k2

F (4k2
F + κ2). The κ relies on the Fermi

wave vector kF . Therefore, the magnetic field dependence of
these three transport quantities strongly depends on how the
Fermi wave vector relies on the field. It is known that kF is
related to the filling state of electrons. When the Fermi energy
is fixed, the Fermi wave vector is given by

kF =
√

1

M1
(EF + M0 − ωc/2). (27)

The B-dependence is in the frequency ωc. Another choice
is to keep the carrier density occupying the lowest energy
band unchanged, that is to say Ne = ∑

kx,kz
�(EF − E0) is a

constant, which leads to

kF = 2π2�2
BNe. (28)

Now the kF is inversely proportional to the magnetic field.
Since the conductivity in the longitudinal configuration is

the same as that of the two-node Weyl model, which has
been carefully studied before [38,44], here we focus on the
thermoelectric quantities of this coexisting model. Figure 3
shows the longitudinal thermoelectric transport contributions
of the coexistence topological semimetal as a function of mag-
netic field at a fixed carrier density for the Gaussian-type [(a)
and (c)] and Coulomb-type [(b) and (d)] elastic scatterings.
For δ-form scattering (d = 0 in the Gaussian potential), the
thermoelectric conductivity αzz remains constant independent
of the magnetic field, aligning with Eq. (23). However, for
Gaussian-type scattering with nonzero distance, it linearly
depends on the magnetic field at high field strengths. This
behavior can be understood from Eqs. (21) and (22): for short
distances, such as dkF � 1, the thermoelectric conductiv-
ity exhibits a weak linear relationship with B, where αzz =
σzzSzz ∝ 1 + 2d2/�2

B. For long distances (e.g., d = 12 nm),
αzz may first decrease and then increase with the increment
of the field. At short distances where dkF � 1, several curves
(d = 2, 4, 8 nm) of the Seebeck coefficient almost exactly
coincide and grow parabolically with the magnetic field since,

in this case, Szz � π2k2
BT

3e
1

M1k2
F

∝ B2. As the distance increases,
deviations begin to appear.

For the screened Coulomb scattering, we first discuss the
results with large relative dielectric constant (εr = 20, 50).
The thermoelectric coefficient αzz first decreases and then
increases with the field shown in Fig. 3(b). For this case,
the small field limit corresponds to 4k2

F  κ2, but the large
field one corresponds to 4k2

F � κ2. We find the following:
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FIG. 3. The thermoelectric conductivity αzz and the Seebeck co-
efficient of the coexisting system are plotted as functions of the
magnetic field B at Gaussian [(a) and (c)] and Coulomb [(b) and
(d)] potentials for fixed carrier density Ne = 5 × 1022 m−3. The
four curves in (a) and (c) are taken for d = 0, 4, 8, 12 nm, and
four curves in (b) and (d) correspond to εr = 2, 8, 20, 50. Here
VG = 10−3 eV2 nm3, the impurity density for the screened Coulomb
potential is taken as ni = 3 × 1021 m−3, and T = 0.5 K.

(i) In the small magnetic field limit, the thermoelectric coef-
ficient αzz transitions from ∝ B−4 at 2k2

F �2
B  1 to ∝ B−1 at

2k2
F �2

B � 1, but Szz is proportional to B2 with the increment
of the field according to the previous analysis. (ii) For the
strong magnetic field limit, Eq. (26) can be simplified to Szz �
(2M1k2

F )−1(�2
Bκ2/2 + 1)−1 with the help of the approximation

F (c1) � 1/[c1(c1 + 1)]. Hence, we find that Szz transitions
from ∝ B2 at �2

Bκ2/2 � 1 to ∝ B at �2
Bκ2/2  1 with the

growth of the field indicating in Fig. 3(d). However, the
thermoelectric coefficient αzz = σzzSzz is always proportional
to B3. Now we move to the low relative dielectric constant
case (εr = 2, 8). In this case, the strong screening condition
(4k2

F � κ2) is satisfied in the whole field regime. The smaller
dielectric constants allow us to witness the linear growth of
Szz within smaller magnetic fields, as indicated by the orange
and blue curves in Fig. 3(d). Similarly, αzz maintains its cubic
relationship with the magnetic field. Hence, the Gaussian or
Coulomb scattering with a large dielectric constant is inten-
tional for obtaining a large Seebeck coefficient.

At temperatures near 0 K, the chemical potential μ ≈ EF .
Alternatively, in experiments where a fixed Fermi energy is
often considered, we select the Fermi energy EF = 2M0 to
position the system in the quantum limit. Figure 4 depicts
the variations of thermoelectric conductivity and Seebeck
coefficients with magnetic field for two scattering potentials
at a fixed Fermi energy. In this scenario, the magnetic field
cannot be excessively applied, as a too-large magnetic field
would elevate the lowest energy band E0 beyond the Fermi
energy, contrary to the fixed carrier density case. The re-
sults for Gaussian-type scattering are presented in (a) and
(c). For δ-form scattering (d = 0), the thermoelectric coef-
ficient αzz remains constant. When the distance is nonzero

FIG. 4. The thermoelectric coefficients αzz and the Seebeck co-
efficient of the coexisting system vs the magnetic field at Gaussian
[(a) and (c)] and screened Coulomb [(b) and (d)] potentials at fixed
Fermi energy EF = 2M0. The other parameters are the same as Fig. 3.

(d �= 0), αzz increases rapidly with d and decreases swiftly
with an increasing magnetic field due to the exponential rela-
tion αzz ∝ e4k2

F d2
. The Seebeck response Szz increases with the

field following Szz ∝ k−2
F for δ-form scattering. The curves of

Szz with d �= 0 are essentially shifted by a field-independent

constant π2k2
BT

3e
4d2

M1
from the curve with d = 0, in accordance

with Eq. (22). For screened Coulomb scattering, all ther-
moelectric conductivities with different εr decrease with the
magnetic field. This decrement of αzz for the fixed Fermi en-
ergy contrasts with the case of fixed carrier density. Regarding
the Seebeck coefficient, where the dependence on εr only
arises from κ , its value grows rapidly with the field, as shown
in Fig. 4(d).

IV. TRANSVERSE CONFIGURATION

In the transverse configuration, the magnetic field remains
aligned along the z-direction, maintaining the validity of
the previously derived Landau energy bands and eigenstates.
However, the electric field (temperature gradient) is now cho-
sen to be along the x axis perpendicular to the magnetic field.
In this way, the conductivities include the longitudinal one
σxx and the Hall one σxy. For the longitudinal conductivity
σxx, we could still use the Kubo formula. But the veloc-
ity should be taken as the component in the x direction.
Since the z-direction magnetic field quantizes the energy in
the x-y plane, the needed expectation value in the quantum
limit vx = 〈ψ0|v̂x|ψ0〉 is zero. Hence, the associated velocity
elements come from the off-diagonal ones. The nonzero con-
ductivity σxx originates from the interband velocity v0,±1 =
〈ψ0|v̂x|ψ±1〉 [45]. v0,+1 is expressed as

v0,+1 = 1

h̄

(
Dkz sin

α1

2
+

√
2

�B
M1 cos

α1

2

)
. (29)
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v0,−1 can be obtained by exchanging sine and cosine, as well
as changing the sign from positive to negative in v0,+1. The
expression for the longitudinal conductivity in the quantum
limit, σxx, is written as

σxx = h̄e2

2πLz

1

2π�2
B

∑
m=±1,kz

v0,mGA
m(EF )vm,0GR

0 (EF ), (30)

where the retarded and advanced Green’s functions at the
Fermi energy are

GR
0 (EF ) = 1

EF − E0 + i h̄
2τ0

, (31)

GA
±1(EF ) = 1

EF − E±1 − i h̄
2τ±1

. (32)

Here τ0 and τ±1 are the lifetimes, where τ±1 describes the vir-
tual process going back and forth between bands E0 and E±1.
We keep only the real part of σxx since the fields considered
here are all static. In the weak scattering limit EF − Em 
h̄/(2τm), the conductivity σxx becomes

σxx � h̄e2

πLz

1

2�2
B

∑
m,kz

[
h̄

2τm

(v0,m)2

(EF − Em)2 δ(EF − E0)

]
. (33)

The lifetime could be calculated in the Born approximation
[42], where both the kz = kF and kz = −kF terms contribute
in contrast to the transport time. Hence, they are given by

h̄

τ±1
=ni(1 ± cos α1F )

4M1kF

∑
k′

x

∑
qx,qy

[|u(qx, qy, 0)|2

+ |u(qx, qy, 2kF )|2]e−ζ ζ δqx,kx−k′
x
, (34)

with ζ = q2
‖�

2
B/2. α1F is the value of α1 at kz = kF . The

behavior of τ±1 exhibits variance depending on the scattering
potentials, leading to distinct transport quantities.

For the Gaussian potential, the relaxation time τG
±1 is given

by a specific expression

h̄

τG
±1

= VG�2
B(1 ± cos α1F )

8πM1kF
(
2d2 + �2

B

)2 (1 + e−4k2
F d2

). (35)

Therefore, the corresponding σxx is of the form

σ G
xx =e2

h

VG�2
B(1 + cos2 α1F )

64π2M2
1 k2

F

(
2d2 + �2

B

)2 (1 + e−4k2
F d2

). (36)

The thermoelectric conductivity αxx can be determined

through the Mott relation αxx = π2k2
BT

3e
∂σxx
∂EF

. It is worth noting
that the material parameter D affects conductivity via the
factor 1 + cos2 α1F . This factor only fluctuates between 1
and 2, hence its impact on the overall magnetic field depen-
dence of conductivity is relatively minor. First, we disregard
the influence of this factor. Additionally, when examining
the magnetic field-dependent analytical behavior of transport
quantities, we specifically consider the scenario of short-
distance impurities, where e−4d2k2

F ≈ 1. In the fixed carrier
density situation, we find σ G

xx ∝ B and αG
xx ∝ B3 for short mag-

netic length (large magnetic field) 2d2  �2
B, but σ G

xx ∝ B3

and αG
xx ∝ B5 for long magnetic length (small magnetic field)

2d2 � �2
B.

For the screened Coulomb potential, the lifetime becomes

h̄

τC
±1

=VC�B
2(1 ± cos α1F )

16πM1kF
[F2(c1) + F2(c2)], (37)

with c2 = �2
Bκ2/2. Hence, the conductivity σC

xx is expressed as

σC
xx =e2

h

VC�2
B(1 + cos2 α1F )

128πM2
1 k2

F

[F2(c1) + F2(c2)]. (38)

We could also obtain αxx from the Mott relation. Here
the function F2(x) = −1 + (1 + x)exE1(x). F2(x) exhibits
the asymptotic behavior F2(x) ∝ x−2 at x  1, but F2(x) ≈
ln(1/x) − 1 − γ which is almost a constant independent of
the magnetic field at x � 1 with γ being Euler’s constant. For
this screened Coulomb potential, we also neglect the effect
of the factor 1 + cos2 α1F . We notice the following: (i) If
c2  1, the conductivity σC

xx is inversely proportional to the
magnetic field at both strong screening (4k2

F � κ2) and weak
screening (4k2

F  κ2) for the fixed carrier density case. (ii)
However, if c2 � 1, we have σC

xx ∝ B and αC
xx ∝ B3.

For this transverse configuration (B ‖ ẑ and E ‖ x̂), another
important quantity is the Hall conductivity σyx. For this three-
dimensional system dispersing with kz, it is known that each
kz contributes a quantized Hall conductivity e2/h, hence the
total Hall conductivity is [45]

σyx =2
∫ kF

0

dkz

2π

e2

h
= e2

h

kF

π
. (39)

If we consider the case of the fixed carrier density Ne, we get
the Hall conductivity at zero temperature σyx = −eNe/B; this
is the well-known classical Hall conductivity. Therefore, the
resistivities ρxx and ρxy can be written as

ρxx = σxx

σ 2
xx + σ 2

yx

, (40)

ρxy = − ρyx = σyx

σ 2
xx + σ 2

yx

. (41)

In the presence of B ‖ ẑ and −∇T ‖ x̂, due to the diffu-
sion and drift motion of the carriers, the material generates
voltage gradient, Ex and Ey, respectively, along the x and y
directions. Therefore, the Seebeck and Nernst coefficients can
be expressed as

Sxx = − Ex/|∇T | = ρxxαxx + ρyxαxy, (42)

Sxy =Ey/|∇T | = ρxxαxy − ρyxαxx. (43)

Here αxy is a thermoelectric Hall coefficient, which in the
quantum limit is given by [23,52]

αxy(B, T ) = − e

2π h̄Lz

∑
kz

s

(
E0(kz ) − EF

kBT

)
, (44)

with the entropy per electron state being

s(x) = kB

[
ln (1 + ex ) − x

1 + e−x

]
. (45)

One should note that Eq. (44) is model-independent, which
has been successfully applied to the Schrödinger parti-
cles [23,52], the Dirac semimetal [23], and the multi-Weyl
semimetal [42]. If M1k2

F = EF − (−M0 + ωc/2)  kBT , that
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FIG. 5. The conductivities, thermoelectric conductivity αxx , resistivities, Seebeck coefficient Sxx , and Nernst coefficient Sxy of the coex-
istence topological semimetals at fixed carrier density Ne = 5 × 1022 m−3 as functions of magnetic field under Gaussian (a1, a2, a3, a4, a5)
and screened Coulomb (b1, b2, b3, b4, b5) scatterings in the transverse case. The red curves in (a1), (a2), and (a3) [and (b1), (b2), and (b3)]
represent σyx , αxy, and ρxy. Here VG = 10−3 eV2 nm3, the impurity concentration for the screened Coulomb potential is ni = 3 × 1021 m−3, and
T = 0.5 K. The other model parameters are the same as in Fig. 2.

is to say, if the distance between Fermi energy and the bottom
of the zeroth Landau band is much greater than kBT , αxy could
be calculated as

αxy � − ek2
BT

24h̄M1kF
= e2k2

BT B

48π2h̄2M1Ne
. (46)

It is proportional to the magnetic field when the carrier density
is fixed, rather than a constant value, because the current
lowest Landau level behaves like a Schrödinger particle [23].

Figure 5 shows the variation of σxx, αxx, ρxx, Sxx, and
Sxy with magnetic field at fixed carrier density for two scat-
tering potentials [(a) Gaussian and (b) Coulomb potentials].
Additionally, employing Eqs. (39) and (44) yields σyx and
αxy displayed with red curves in the corresponding σxx and
αxx. For the δ-form scattering (blue curve), the longitudinal
conductivity σxx experiences a faster increase than the cases
with finite distances. This is due to σxx ∝ B3 under δ poten-
tial, while σxx ∝ B at large magnetic fields (short magnetic
lengths) under Gaussian potential. Concerning the screened
Coulomb potential, the conductivities increase with the mag-
netic field for both εr = 20 and 50 in Fig. 5(b1), whereas the
conductivity for εr = 2 (blue curve) initially increases and
then decreases with the field. It is essential to note that log-
arithmic coordinates are used here, and a substantial decrease
in conductivity is observable in normal coordinates [Fig. 6(c)].
The conductivity reduction is attributed to the fact that for
small εr , c1 > c2  1 at large fields, causing the conductivity
σxx to tend towards ∝ B−1. In Figs. 5(a2) and 5(b2), both
longitudinal thermoelectric coefficients αxx increase with the
magnetic field. Contrary to the Dirac semimetal, the ther-
moelectric Hall conductivity αxy exhibits an almost linear
dependence on the field rather than forming a plateau, as seen
by the red curves in Figs. 5(a2) and 5(b2). This behavior arises
because the zeroth band of this semimetal is similar to the
Schrödinger particle [23]. The large positive magnetoresis-
tance takes place in Figs. 5(a3) and 5(b3) especially in the
presence of Gaussian potential scattering. The Hall resistivity

linearly increases with the field, nearly independent of the
scattering. Consequently, we only plot one curve in Figs. 5(a3)
and 5(b3).

The Seebeck and Nernst coefficients for the two scat-
tering potentials obtained through Eqs. (42) and (43) are
shown in Figs. 5(a4), 5(b4), 5(a5), and 5(b5), respectively.
In this configuration, the rapid growth of the Seebeck and
Nernst coefficients is observed for both scatterings. For the
Gaussian potential with small distance (d = 2, 4 nm) or the
screened Coulomb potential with large dielectric constant
(εr = 20, 50), the Seebeck response can be approximated with
the one in the dissipationless limit Sxx ∼ αxy/σxy ∝ B2 inde-

FIG. 6. The conductivities and thermoelectric conductivity αxx of
the transverse case as functions of magnetic field at fixed electron
density Ne = 5 × 1022 m−3 for different D = 2M1, 8M1, 20M1 under
Gaussian [(a) and (b)] and screened Coulomb [(c) and (d)] scatter-
ings. Here d = 2 nm and εr = 2. The other parameters are the same
as Fig. 5.
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FIG. 7. Same as Fig. 5, but at fixed Fermi energy EF = 2M0.

pendent of the scattering. This parabolic behavior arises from
the linear dependence of αxy. In this scenario, σxx � σyx at
the given scattering parameters and electron density, making
the first term in Sxx negligible. Hence, the yellow and green
curves in Sxx almost completely overlap. The behavior of the
Sxx is in sharp contrast to the Dirac/Weyl semimetal with a
single node describing by the linear model H ∝ σ · k, where
the Seebeck response exhibits a linear dependency on the
field, attributed to the constant value of αxy [22,23]. The Sxx of
this coexisting system closely resembles that of Schrödinger
particles [23], a similarity that stems from the fact that its
lowest Landau band is also proportional to the square of kz.
In principle, Sxx of this system will also tend to saturate if the
magnetic field reaches 2π2Ne

h̄
|e|

√
M1
kBT . However, given that we

are considering the low-temperature limit, the magnetic field
required for saturation would far exceed 100 T. The Seebeck
response deviates from the dissipationless limit for the δ-form
scattering (d = 0) or the screened Coulomb scattering with
small relative dielectric constant (εr = 2) especially at larger
magnetic field, where the ρxxαxx in Eq. (42) contributes. In
contrast, the behavior of the Nernst coefficient strongly de-
pends on the scattering, as two larger quantities, αxy and ρyx,
are in the two parts of Sxy. It grows rapidly with the magnetic
field, and the small distance d or the small dielectric constant
εr could enhance its value.

The model parameter D distinguishes this coexistence
model from the two-nodal Weyl model. In the transverse case,
its effect will be revealed through the factor cos α1F , which
is illustrated in Fig. 6. We focus on the electric and ther-
moelectric conductivities for different scatterings [Gaussian
scattering in (a) and (b), and screened Coulomb scattering
in (c) and (d)]. It is observed that the effect of parameter D
is mainly concentrated near a moderate magnetic field since
cos α1F nearly equals the constant 0 or 1 at small (large)
magnetic fields. For the Gaussian potential, the parameter D
has a limited effect on the conductivity σxx, which slightly de-
creases with increasing D, and its magnetic field trend remains
unchanged. However, the conductivity substantially decreases
with increasing D for the screened Coulomb potential, and the
trend changes slightly at the same time. Overall, the influence
of the parameter D on thermoelectric conductivity αxx is rela-
tively small, as shown in Figs. 6(b) and 6(d).

The behaviors of these thermoelectric quantities at fixed
Fermi energy are plotted in Fig. 7 (different scattering po-
tentials) and Fig. 8 (effect of the model parameter D). For
the Gaussian potential, we observe that σxx increases with the
magnetic field, whereas it shows a slight decrease at fields less
than 10 T for the screened Coulomb potential, in contrast to
the case of fixed electron density. The Hall conductivity σyx

exhibits a decreasing trend as the field increases. This trend
stands in stark contrast to the one in Dirac semimetals with
linear dispersion, where the Hall conductivity maintains a
plateau value [24,53]. This phenomenon in Dirac semimetals
can be attributed to the fact that the Fermi wave vector remains
constant regardless of the magnetic field at fixed Fermi energy,
as evident from Eq. (39), rendering the Hall conductivity inde-
pendent of the magnetic field. Conversely, for this coexisting
topological semimetal, Eq. (27) reveals that the Fermi wave
vector is influenced by the magnetic field, thereby causing
the Hall conductivity to vary with the magnetic field. The
longitudinal thermoelectric conductivity αxx grows with the
magnetic field for both scatterings, as shown in Figs. 7(a2)
and 7(b2). In the entire range of the magnetic field, σxx � σyx

FIG. 8. Same as Fig. 6, but at fixed Fermi energy EF = 2M0.
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holds, allowing the Seebeck coefficient to be approximated
with the one of the dissipationless limit irrespective of the
scattering, proportional to the square of the magnetic field.
However, the Nernst response strongly depends on the type of
scatterings. From Fig. 8, we can see that the model parameter
D could rapidly diminish the conductivity and thermoelectric
conductivity, though it does not change the variation tendency.
For the two cases of fixed Fermi level and fixed electron den-
sity, the overall trend of these transport quantities is similar,
but there are significant differences in the specific magnetic
field-dependent behavior.

V. SUMMARY AND DISCUSSION

To conclude, we investigate the Landau bands of a coex-
isting topological system, and we discuss its thermoelectric
transport properties in the quantum limit by using the linear-
response theory. Such a system with coexisting Weyl points
and nodal rings behaves like a Weyl semimetal for its zero
Landau energy level and similarly to a nodal ring for its
greater-than-zero Landau energy band. In the presence of two
scattering potentials—a Gaussian potential and a screened
Coulomb potential—we study the thermoelectric transport
properties of the system, including both longitudinal and
transverse configurations. The longitudinal configuration is
the case when the magnetic field, temperature gradient, and
electric field are all along the z-direction, while the transverse
configuration chooses the magnetic field to remain along the
z-direction while the electric field and temperature gradient
are along the x-direction.

In the longitudinal configuration, the thermoelectric con-
ductivity shows a plateau irrespective of the magnetic field
and the Fermi energy for δ-form short-ranged scattering.
For long-ranged Gaussian or screened Coulomb potentials,
the thermoelectric coefficients strongly depend on the im-
purity distance or the relative dielectric constant. However,
the Seebeck response always increases with the field for
various scatterings at fixed carrier density or Fermi energy
for longitudinal configuration. In the transverse configuration,
significant positive magnetoresistance and enhanced thermo-
electric conductance are observed for both Gaussian and
screened Coulomb scatterings. The Hall conductivity sur-
passes the longitudinal conductivity, resulting in a Seebeck
coefficient that approaches the dissipationless limit with a
quadratic increase in the magnetic field, regardless of the
nature of scattering. Conversely, the Nernst response exhibits
a strong dependence on the specific scattering mechanism.
Moreover, the thermoelectric transport properties are notably
influenced by the model parameter D.

Beyond the theoretical predictions, recent experiments
[54–56] have verified the topologically coexisting states in
real materials, such as TaIrTe4, PdBiSe, and LaSb2, us-
ing angle-resolved photoemission spectroscopy and transport
measurements. It is noteworthy, however, that these sys-
tems might exhibit greater complexity than the minimum
coexistence model. In TaIrTe4 [54], the topological coexis-
tence state comprises 12 Weyl points and a pair of node
lines protected by mirror symmetry. In PdBiSe, the coexis-
tence state is composed of four distinct types of topological
fermions, including Weyl, Rarita-Schwinger-Weyl, double

class-II three-component, and charge-2 fourfold fermions
[55]. Additionally, LaSb2 has been confirmed to possess both
nodal lines and eightfold degenerate nodal points [56]. Among
these materials, TaIrTe4 appears to be closest to the theo-
retical model, as its coexisting state can be modulated by
external strain, enabling the reduction of Weyl nodes to four.
Recently, Jian et al. reported resistance and thermoelectric
transport measurements in TaIrTe4 [57]. The shift in chemical
potential can result in transport properties being dominated
by a single pocket in samples, corresponding to our single
carrier case here. Unfortunately, there were no measurements
of the thermoelectric power versus the magnetic field. We
expect experimenters to conduct magnetic-field-dependent
measurements of thermoelectric quantities in this material
and, ultimately, to synthesize Cs2MoCl6-type ferromagnetic
materials to directly test our theoretical predictions. Our work
will also facilitate experimental progress in the thermoelectric
measurement of other topologically coexisting materials.
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APPENDIX: DERIVATION OF THE BERRY CURVATURE

Considering a general two-band model H = d0 + d · σ,
where d0 and d = (dx, dy, dz ) are functions of the wave vector,

the energies of it are given by E± = d0 ±
√

d2
x + d2

y + d2
z .

Here the symbols ± represent the conduction and valence
bands, respectively. The Berry curvature of this general sys-
tem for the conduction band is expressed as [58]

�
ξ
+ = − εμνξ

(
∂kμ

d × ∂kν
d
) · d

2
(
d2

x + d2
y + d2

z

)3/2 . (A1)

Here εμνξ is the Levi-Civita antisymmetric tensor with
μ, ν, ξ = (x, y, z).

For this coexistence semimetal, we find d0 = 0, dx =
Dkzkx, dy = Dkzky, and dz = Mk. Therefore, the components
of the Berry curvature for the conduction band are

�x
+ = − 1

2E3+

∣∣∣∣∣∣∣
∂ky dx ∂ky dy ∂ky dz

∂kz dx ∂kz dy ∂kz dz

dx dy dz

∣∣∣∣∣∣∣
= D2

2E3+
kzkx

[
M0 − M1

(
k2

x + k2
y − k2

z

)]
, (A2)

�
y
+ = 1

2E3+

∣∣∣∣∣∣∣
∂kx dx ∂kx dy ∂kx dz

∂kz dx ∂kz dy ∂kz dz

dx dy dz

∣∣∣∣∣∣∣
= D2

2E3+
kzky

[
M0 − M1

(
k2

x + k2
y − k2

z

)]
, (A3)

�z
+ = − 1

2E3+

∣∣∣∣∣∣
∂kx dx ∂kx dy ∂kx dz

∂ky dx ∂ky dy ∂ky dz

dx dy dz

∣∣∣∣∣∣
= − D2

2E3+
k2

z

[
M0 + M1

(
k2

x + k2
y − k2

z

)]
. (A4)
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