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Spiral to stripe transition in the two-dimensional Hubbard model
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We obtain an almost complete understanding of the mean-field phase diagram of the two-dimensional Hubbard
model on a square lattice with a sizable next-nearest-neighbor hopping and a moderate interaction strength. In
particular, we clarify the nature of the transition region between the spiral and the stripe phase. Complementing
previous [Phys. Rev. B 108, 035139 (2023)] real-space Hartree-Fock calculations on large finite lattices, we
solve the mean-field equations for coplanar unidirectional magnetic order directly in the thermodynamic limit,
and we determine the nature of the magnetic states right below the mean-field critical temperature T ∗ by a
Landau free-energy analysis. While the magnetic order for filling factors n � 1 is always of Néel type, for n � 1
the following sequence of magnetic states is found as a function of increasing hole-doping: Néel, planar circular
spiral, multispiral, and collinear spin-charge stripe states. Multispiral states are superpositions of several spirals
with distinct wave vectors, and lead to concomitant charge order. We finally point out that nematic and charge
orders inherited from the magnetic order can survive even in the presence of fluctuations, and we present a
corresponding qualitative phase diagram.
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I. INTRODUCTION

The two-dimensional Hubbard model on a square lattice
plays a key role in the field of strongly correlated electron
systems as a prototype model for competing and intertwined
ordering tendencies. It captures the most salient features of
electrons in the copper oxide planes of high-Tc cuprates,
namely antiferromagnetism and, for suitable choices of
the parameters [1], d-wave superconductivity [2]. Thanks to
remarkable advances in the development of computational
techniques, fragments of the phase diagram of this important
model have been established [3,4], but many regions in the
large parameter space spanned by hopping amplitudes, inter-
action strength, electron filling, and temperature remain terra
incognita.

In the most interesting (broad) density range around half-
filling, there is a competition and possible coexistence of
magnetic order, charge order, and superconductivity. While
plausible candidates for superconducting states are easily
classified, there is an overwhelming zoo of possible magnetic
states. At half-filling, the ground state of the Hubbard model
is a simple Néel antiferromagnet. Away from half-filling, most
calculations indicate either planar circular spin spirals [5–17]
or spin-charge stripes with collinear spin order and concomi-
tant charge order [18–35] as energetically favorable magnetic
alternatives to the Néel state.
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A large variety of magnetic phases in the two-dimensional
Hubbard model emerges already in a conventional static
mean-field approximation, that is, Hartree-Fock theory. While
the regime of ordered states in the phase diagram is usu-
ally overestimated by mean-field theory, qualitative insights
may serve as a guide for more sophisticated calculations, in
particular, to interpret data from numerical simulations on
finite lattices. Numerous Hartree-Fock studies of the two-
dimensional Hubbard model have already been published. In
many of them the magnetic order was restricted to certain pat-
terns, such as ferromagnetic and Néel order [36–38] or, more
generally, to spiral order with arbitrary wave vectors [12,13].
Allowing for collinear magnetic order with arbitrary wave
vectors or even for completely arbitrary spin configurations,
spin-charge stripes have been discovered [18–23].

Mean-field theory yields magnetic order also at finite tem-
peratures, below a transition temperature T ∗, violating thus
the Mermin-Wagner theorem [39]. However, magnetically
ordered states at finite temperature become meaningful in
theories of fluctuating magnetic order, where the electron
is fractionalized into a fermion with a magnetically ordered
pseudospin, and a fluctuating SU(2) rotation matrix, which
restores the SU(2) spin symmetry [40–44].

Recently, we have performed a comprehensive and un-
biased mean-field analysis of magnetic and charge order in
the Hubbard model with a moderate interaction strength on a
square lattice, at both zero and finite temperatures [45]. Com-
pletely unrestricted real-space Hartree-Fock calculations on
large finite lattices were combined with a stability analysis of
mean-field solutions restricted to Néel and spiral order in the
thermodynamic limit. It turned out that in most parts of the
phase diagram only three classes of magnetic states with a
relatively simple structure are stabilized in the thermodynamic
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limit: Néel, circular spiral, and collinear stripe states. The
stripes are usually unidirectional, but can also be bidirectional
at very large hole doping in presence of a sizable next-nearest-
neighbor hopping. In spite of rather large lattices (up to
48 × 48) used in the real-space calculations, the analysis of
the stripe states was still hampered by finite-size effects, and
the nature of the transition from the spiral to the stripe phase
remained open.

In this paper we complete the mean-field analysis of our
previous study [45] by performing several complementary cal-
culations. First, we solve the mean-field equations for ground
states with generic coplanar unidirectional order directly in
the thermodynamic limit. This includes the Néel, spiral, and
unidirectional stripe states found in the real-space calculations
[45] as special cases. Second, we determine the magnetic
ordering pattern right below T ∗ from a Landau free-energy
analysis. Third, we clarify the nature of the instability of
the spiral state upon increasing doping by analyzing its spin
susceptibility, again directly in the thermodynamic limit. We
find that the transition from the spiral to the stripe phase
leads through a rather complex intermediate phase with a
superposition of multiple spiral components with three or
four distinct wave vectors. Finally, we present a qualitative
discussion of fluctuation effects. Order parameter fluctuations
restore the SU(2) spin symmetry at least at finite temperature,
but nematic and charge orders found in the mean-field states
may survive.

The remainder of our paper is structured as follows. In
Sec. II we describe our three complementary methods used
to compute the mean-field phase diagram and to clarify the
nature of the various magnetic states. In Sec. III we present
the corresponding results. In the conclusions in Sec. IV we
summarize and present a qualitative discussion of fluctuation
effects.

II. MODEL AND METHOD

The Hubbard Hamiltonian for spin- 1
2 fermions with inter-

site hopping amplitudes t j j′ and a local repulsive interaction
U > 0 reads [3,4]

H =
∑
j, j′,σ

t j j′c
†
jσ c j′σ + U

∑
j

n j↑n j↓, (1)

where c jσ (c†
jσ ) annihilates (creates) an electron on lattice

site j with spin orientation σ ∈ {↑,↓}, and njσ = c†
jσ c jσ .

The hopping matrix t j j′ depends only on the distance be-
tween the sites j and j′. We choose t j j′ = −t if j and j′
are nearest-neighbor sites, t j j′ = −t ′ if j and j′ are next-
to-nearest neighbors, and t j j′ = 0 otherwise. We use the
nearest-neighbor-hopping amplitude t as our energy unit.

In mean-field theory, the interaction term in (1) can be
decoupled as [19,45]

U
∑

j

n j↑n j↓ �
∑

j

3∑
a=0

sa

⎡⎣�a
j c†

jσ
ac j −

(
�a

j

)2
U

⎤⎦, (2)

where c j is the two-component spinor composed of c j↑ and
c j↓, while σ 0 is the two-dimensional identity matrix and

σ 1, σ 2, σ 3 are the Pauli matrices. The sign sa is plus one
if a = 0, and minus one otherwise. The parameters �a

j are
related to charge and spin expectation values as

�a
j = 1

2U 〈c†
jσ

ac j〉. (3)

The mean-field decoupling in Eq. (2) captures both the
Hartree (a = 0, 3) and the Fock (a = 1, 2) terms.

Previous unbiased and unrestricted real-space mean-field
calculations on the Hubbard model [45] revealed that, except
for very low electron densities, the solutions of the mean-field
equations always converge to coplanar unidirectional phases.
Thus, in this paper we focus on mean-field states characterized
by one or more wave vectors of the form Q = (π − δ, π ) or
symmetry related (we call this property unidirectionality), and
where all the spins lie in a common plane (coplanarity). This
includes collinear spin states as special cases (with infinitely
many common planes), and in particular the Néel state as the
collinear state with Q = (π, π ).

We analyze the different phases that one can obtain within
mean-field theory in the Hubbard model by employing three
distinct but mutually consistent techniques.

(A) To find the magnetic ground state, we employ a
Hartree-Fock ansatz that allows for a generic coplanar uni-
directional state with an arbitrary integer periodicity P in x
direction (and antiferromagnetic order in y direction). The
contributing wave vectors have the form Q = (2πn/P, π ),
with integer numbers n � 0. The mean-field equations are
solved directly in the thermodynamic limit. The periodicity
P determines the size of the real-space unit cell one has to
deal with in the solution of the mean-field equations. We could
reach unit cells as big as 220 sites along the x axis, so that even
incommensurate states without any translation symmetry (that
is, P = ∞) are approximated very well.

(B) Close to the critical temperature T ∗ at which mean-
field magnetic order sets in, it is technically hard to obtain
converged solutions of the mean-field equations. Therefore,
to determine the pattern of the magnetic order setting in
right below T = T ∗, we employ a Landau theory for mixed
spin-charge order parameters, and microscopically compute
its coefficients from the paramagnetic state at T = T ∗.
Note that in the limit of a vanishing order parameter, Lan-
dau theory and Hartree-Fock theory yield the same type
of order.

(C) It has been previously observed [5–17,45,46] that a
circular spiral magnetic state is favored for small hole doping
(that is, slightly below half-filling) in presence of a finite
t ′ < 0. We study the instabilities of the spiral state to other
magnetic orders at larger hole dopings by computing the spin
and charge susceptibilities in such a state within random phase
approximation (RPA). This enables us to determine not only
when the spiral state becomes unstable, but also the nature
of the magnetic order emerging beyond the instability line.
Note that the RPA is the unique conserving approximation
for susceptibilities, which is consistent with mean-field the-
ory for the free energy, order parameters, and single-particle
properties [47].

In the following, we provide a detailed description of the
three methods mentioned above.
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FIG. 1. Construction of the reduced Brillouin zone for P = 6 (a), P = 7 (b), and P = 8 (c). The blue dots represent the momenta nQP

with n = 0, . . . , PS − 1 modulo vectors of the original reciprocal lattice. The black lines separate distinct reduced Brillouin zones. The original
Brillouin zone is divided into PS equivalent reduced Brillouin zones.

A. Mean-field theory for a generic coplanar
unidirectional magnetic state

We derive mean-field equations in momentum space,
which describe generic magnetic states characterized by the
following three properties.

Coplanarity. The on-site magnetization should lie in a spe-
cific plane, which we choose, without loss of generality, to be
the xy plane.

Unidirectionality. Spins sitting on neighboring sites along
the, say, y direction are antiparallel and the charge densities
are equal, while along the x direction the magnetization am-
plitude and orientation, as well as the charge density, can be
arbitrarily modulated.

Commensurability. Spin and charge orders display a pe-
riodicity with respect to translations along the x axis with
a finite-integer period (denoted by P) in units of the lattice
spacing. This criterion implies a restriction to states with
ordering wave vectors commensurate with the lattice. Incom-
mensurate states can be approximated to any desired accuracy
by choosing a sufficiently large value for P.

In a coplanar, unidirectional, commensurate state with pe-
riodicity P, the magnetization, and charge density profiles can
be expressed as

�S j =
∑
n odd

(
Mx

n êx + My
nêy
)
einQP ·R j , (4a)

ρ j =
∑

n even

�n einQP ·R j , (4b)

where R j are the coordinates of lattice site j, and QP =
(2π/P, π ). The first sum is running only over odd integers
n because the spin order is antiferromagnetic in y direction,
while the second sum is restricted to even integers since ρ j

is translation invariant in y direction. We define PS as the
smallest positive integer satisfying PSQP = (0, 0) modulo re-
ciprocal lattice vectors. If P is even, one has PS = P, and PS =
2P if P is odd. Because nQP is equivalent to (n + mPS )QP

with m, n ∈ Z, the summations in Eq. (4) run only over a
finite number (PS/2) of terms. Moreover, since the spin and

charge densities on the left hand side of Eqs. (4) are real, the
coefficients Mx

n , My
n , and �n must obey

Mx
n = (Mx

−n

)∗ = (Mx
PS−n

)∗
, (5a)

My
n = (My

−n

)∗ = (My
PS−n

)∗
, (5b)

�n = (�−n)∗ = (�PS−n)∗. (5c)

Spin and charge orderings break the translational symme-
try of the original lattice, resulting in an enlarged unit cell
containing PS inequivalent sites with distinct expectation val-
ues. Similarly, in momentum space, the size of the original
Brillouin zone is reduced by a factor 1/PS . The new reciprocal
lattice can be constructed by adding all vectors of the form
nQP with n = 0, . . . , PS − 1 to the original reciprocal lattice
vectors (see Fig. 1). The reduced Brillouin zone can then be
defined as the set of all points that are closer to a given vector
of the new reciprocal lattice than to any other (Wigner-Seitz
construction). The reduced Brillouin zones for P = 6, 7, 8 are
plotted in Fig. 1.

Inserting Eq. (4) into the Hamiltonian (1) with the mean-
field decoupling (2), and Fourier transforming, we obtain the
quadratic Hamiltonian

HMF =
∫

k
εk c†

kck +
2∑

a=0

PS−1∑
n=0

sa�
a
n c†

kσ
ack+nQP

−
2∑

a=0

PS−1∑
n=0

sa

∣∣�a
n

∣∣2
U

, (6)

where εk = −2t (cos kx + cos ky) − 4t ′ cos kx cos ky is the
Fourier transform of the hopping parameters in Eq. (1). We
have also defined

�0
n =

{
1
2U�n for n even

0 for n odd
, (7a)

�1,2
n =

{
0 for n even
UMx,y

n for n odd . (7b)

∫
k is a shorthand for the integral

∫
k∈BZ

d2k
(2π )2 over the original

Brillouin zone (BZ).
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Introducing a “Nambu spinor” with PS components

	k,σ =

⎛⎜⎜⎜⎜⎜⎜⎝

ck,σ

ck+QP,σ̄

ck+2QP,σ
...

ck+(PS−2)QP,σ

ck+(PS−1)QP,σ̄

⎞⎟⎟⎟⎟⎟⎟⎠, (8)

with the convention ↑̄ =↓ and ↓̄ =↑, one can cast the Hamil-
tonian (6) in the form

HMF =
∑

σ

∫ ′

k
	

†
k,σ

H(P)
k,σ

	k,σ , (9)

where we have dropped the constant term in Eq. (6) and de-
fined

∫ ′
k = ∫k∈BZ′

d2k
(2π )2 , with BZ′ the reduced Brillouin zone.

The matrix H(P)
k,σ

has the form

[
H(P)

k,σ

]


′ =

⎧⎪⎪⎨⎪⎪⎩
εk+
QP if 
 = 
′

�
p(
)
σ,n if 
′ = (
 + n) mod PS, n odd

�0
n if 
′ = (
 + n) mod PS, n even

,

(10)

where we have defined p(
) = + if 
 is even and p(
) = − if

 is odd, and

�±
↑,n = −(�1

n ± i�2
n

)
,

�±
↓,n = −(�1

n ∓ i�2
n

)
. (11)

Since �0
0 only shifts the chemical potential μ, in the following

we redefine μ as μ − �0
0 and set �0

0 = 0. In Appendix A
we report the explicit form of the matrix for the cases P = 3
and 6.

The parameters �a
n are self-consistently determined as

�a
n = 1

2
U
∫

k
〈c†

kσ
ack+nQP 〉

= 1

2
U
∑

σ

∫ ′

k

〈
	

†
k,σ �a

n,σ	k,σ

〉
, (12)

where the matrices �a,n
σ have been defined as[

�0
n,σ

]


′ =

{
1 if 
′ = (
 + n)modPS , n even
0 otherwise , (13a)

[
�1

n,σ

]


′ =

{
1 if 
′ = (
 + n)modPS , n odd
0 otherwise , (13b)

[
�2

n,σ

]


′ =

{
i(−1)σ+p(
) if 
′ = (
 + n)modPS , n odd
0 otherwise

,

(13c)

with (−1)↑ = +1 and (−1)↓ = −1.
Since H(P)

k,↑ and H(P)
k,↓ are related to each other by an inver-

sion of the sign of �2
n, the expectation values on the right-hand

side of Eq. (12) take the same value for each of the two spin
projections. For this reason, one can simplify Eq. (12) to

�a
n = U

∫ ′

k

〈
	

†
k�a

n	k
〉
, (14)

where 	k = 	k,↑ and �a
n = �a

n,↑. In other words, we can

solve the mean-field equations using only the matrix H(P)
k,↑.

The right-hand side of Eq. (14) is computed from Eq. (10)
making an initial random assumption on the mean-field pa-
rameters �a

n, which are then updated using again Eq. (14).
The procedure is repeated until convergence is reached.

To find the energetically best state, we converge Eq. (14)
for different values of P and retain the state with the lowest
mean-field free energy. In practice, we discretize the original
Brillouin zone BZ with N2

k equally spaced points and, for a
fixed Nk , we only allow values of P that are divisors of Nk .
For every fixed set of parameters, we have offered the system
over 90 integer values of P ranging from 2 to 220, each of
them with a suitably adjusted Nk such that Nk/P ∈ N, with Nk

ranging from 116 to 220.
In the following, we discuss how several important famil-

iar phases are captured as special cases within our general
formalism.

1. Néel order

In the case of Néel order, one has

�S j = M(−1) j[cos ϕ êx + sin ϕ êy], (15a)

ρ j = const, (15b)

where ϕ parametrizes the orientation of the spin order in the
xy plane, and M represents its amplitude. Néel order has the
period P = 2, so that the matrix H(P)

k,σ
in Eq. (10) is two di-

mensional and only the two parameters �1
1 and �2

1 contribute,
where

�1
1 = � cos ϕ, (16a)

�2
1 = � sin ϕ, (16b)

with � = UM.

2. Circular spiral order

Circular spiral order has the form

�S j = M[cos(Q·R j +ϕ) êx ± sin(Q·R j +ϕ) êy], (17a)

ρ j = const, (17b)

where, as in the case of Néel order, ϕ parametrizes the orien-
tation of the spin order in the xy plane and M its (constant)
amplitude. Q is a generic wave vector of the form (π − δ, π )
with δ > 0. The “+” or “–” sign distinguishes between spirals
rotating anticlockwise and clockwise.

This type of order emerges as a special case of our general
formalism if �a

n is nonzero only for one mode n̄ and its conju-
gate PS − n̄, with n̄ odd and such that Q can be approximated
by n̄QP modulo a reciprocal lattice vector, with a suitably
chosen P. Spiral order as in Eq. (17) is then described by

�1
n̄ = 1

2
�eiϕ, �1

PS−n̄ = 1

2
�e−iϕ, (18a)

�2
n̄ = ∓ i

2
�eiϕ, �2

PS−n̄ = ± i

2
�e−iϕ, (18b)

with � = UM ∈ R. All other �a
n are zero. The matrix H(P)

k,σ

thus simplifies to a diagonal block matrix form with PS/2
matrices of size two on the diagonal. Indeed spiral order can
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be described by a simpler 2×2 mean-field Hamiltonian for
each k point, as previously used in mean-field calculations
restricted to spiral states [7–10,12,14–17,45]. Note that the
Eqs. (18) apply only if n̄ 
= PS − n̄, which is fulfilled for any
spiral state, which is not a Néel state, that is, as long as
Q 
= (π, π ).

3. Stripe order

We define as stripe order any type of collinear order that
differs from Néel antiferromagnetism. In this case, the mag-
netization and charge densities have the form

�S j = fS (R j )[cos ϕ êx + sin ϕ êy], (19a)

ρ j = fρ (R j ), (19b)

where once again ϕ is an angle parametrizing the orientation
of the spins in the xy plane, while fS (R j ) and fρ (R j ) are two
functions defining the spatial modulation of the magnetiza-
tion amplitude and charge density, respectively. They can be
expressed in terms of their Fourier coefficients as

fS (R j ) =
∑
n odd

Mn einQP ·R j , (20a)

fρ (R j ) =
∑

n even

ρn einQP ·R j . (20b)

Stripe order can be obtained as a particular case of our
general formalism, with �a

n fulfilling

�0
n = Uρn, (21a)

�1
n = UMn cos ϕ, (21b)

�2
n = UMn sin ϕ. (21c)

Depending on the coefficients Mn and ρn, the spin and charge
profiles can be sinusoidal or sharp (like domain walls) or
anything in between.

B. Landau theory close to T ∗

To determine the type of magnetic order close to the crit-
ical temperature T ∗, we decouple the Hubbard interaction
by introducing spin and charge order parameter fields via a
Hubbard-Stratonovich transformation, and subsequently ex-
pand the resulting effective action in powers of the order
parameters.

1. Derivation of the effective action

We write the Hubbard interaction as [48–50]

Unj,↑n j,↓ = U

4
(c†

j c j )
2 − U

4
(c†

j �σ · 
̂ jc j )
2, (22)

where 
̂ j is an arbitrary site- and time-dependent unit vector.
Intuitively, one can imagine 
̂ j as being the direction of the
local (both in space and time) magnetization. Because 
̂ j

can be arbitrarily chosen, in the path integral of the Hubbard
model we take the average over all possible 
̂ j with a properly
defined measure such that

∫
D
̂ = 1. We cast the Hubbard

interaction in the form (22), because this makes it compatible
with our mean-field decoupling [see Eq. (2)].

We perform a Hubbard-Stratonovich transformation to de-
couple each of the terms in Eq. (22) by means of two fields,
ρ j and ρS

j , representing fluctuations of the charge and spin

amplitude, respectively. Defining a spin field as �S j = ρS
j 
̂ j ,

we can represent the Hubbard interaction as

e−U
∫ β

0 dτ
∑

j n j↑n j↓ =
∫

Dρ D�S e−(Sρ+SS+Sint ), (23)

where β = 1/T is the inverse temperature, and

Sρ = 1

U

∫ β

0
dτ
∑

j

ρ2
j , (24a)

SS = 1

U

∫ β

0
dτ
∑

j

|�S j |2, (24b)

Sint =
∫ β

0
dτ
∑

j

c̄ j (iρ j + �S j · �σ )c j . (24c)

To keep the notation light, we have dropped the time de-
pendence of the bosonic (ρ j , �S j) and fermionic (c j , c̄ j) fields.

An effective action for the bosonic fields ρ j and �S j can be
derived by integrating out the fermions. Except for a field-
independent term, one obtains

Seff[ρ, �S] = 1

U

∫ β

0
dτ
∑

j

(
ρ2

j + |�S j |2
)

− Tr ln[1st − G0 · (iρ + �σ · �S)], (25)

where G0 is the Fourier transform to real space and imagi-
nary time of the bare Matsubara Green’s function G0(k) =
(iν + μ − εk )−1, with ν = (2n + 1)πT the fermionic Mat-
subara frequencies. Here, ρ and �S are diagonal matrices
in space and time defined as ρ j j′ (τ, τ ′) = ρ j (τ ) δ j j′δ(τ −τ ′)
and �S j j′ (τ, τ ′) = �S j (τ ) δ j j′δ(τ −τ ′). The trace is summing
over space and time indices, G0A is the space-time ma-
trix product

∑
j′′
∫ β

0 dτ ′′ G0, j j′′ (τ −τ ′′) Aj′′ j′ (τ ′′, τ ′), and 1st =
δ j j′δ(τ − τ ′) is the space-time unit matrix.

2. Taylor expansion of the effective action

We now expand the logarithm in Eq. (25) in powers of ρ j

and �S j . Such an expansion is justified in the vicinity of the
critical temperature T ∗, where the magnetic and charge order
parameters are small. To this end we write

Tr ln [1st − G0A] =
∞∑

n=1

1

n
Tr[(G0A)n], (26)

with A = iρ + �σ · �S. The trace does not depend on the rep-
resentation. In the following we perform all calculations in
momentum and frequency space.

The quadratic term in �Sq, with �Sq the (spatiotemporal)
Fourier transform of �S j , takes the form∫

q
[U −1 − �0(q)]�S−q · �Sq, (27a)

�0(q) = −
∫

k
G0(k)G0(k + q) , (27b)
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∫
k = T

∑
ν

∫
k is a shorthand for a sum over Matsubara fre-

quencies and a momentum integration, and q = (q,
) is
a collective variable comprising a lattice momentum and a
bosonic Matsubara frequency. We define T ∗ as the critical
temperature where minq[U −1 − �0(q, 0)] = 0, signaling an
instability towards the formation of magnetic order. This con-
dition is first met, in the most general case, at four symmetry
related wave vectors in the Brillouin zone of the form q =
±Qx or q = ±Qy, with Qx = (π − δ, π ) and Qy = (π, π −
δ). This means that the magnetic order forming right be-
low T ∗ can be entirely characterized by these wave vectors.
Note that, because of the opposite sign between the two
terms on the right-hand side of Eq. (22), the coefficient of
the term quadratic in ρq is U −1 + �0(q), which is always
positive. Thus, within mean-field theory, an instability to-
wards charge order alone can never occur in the Hubbard
model.

For a mean-field study of the Taylor-expanded effec-
tive action (25), we can therefore assume that �Sq possesses
solely modes at q = ±Qx and q = ±Qy close to T = T ∗,

corresponding to the ansatz

�S(q,
) = [ �Mx δ(q − Qx ) + �M∗
x δ(q + Qx )

+ �My δ(q − Qy) + �M∗
y δ(q + Qy)]δ
,0, (28)

where �Mx and �My are constant complex vectors. We assume
static fields, consistent with our mean-field treatment.

Third-order terms involving only spin fields vanish due to
time-reversal symmetry. The third-order term involving two
�Sq fields and one ρq field takes the form∫

q,q′
iλ(q, q′)�Sq · �S−q′ρq′−q, (29)

with a coupling function λ(q, q′). Inserting Eq. (28) into
this equation, we see that, within mean-field theory, the only
charge modes that couple to �Mx and �My are those where q =
0, q = ±2Qx,y, and q = ±(Qx ± Qy). Neglecting the q = 0
mode, which does not lead to any symmetry breaking, and
higher-order spin-charge interactions (this approximation will
be justified below), we can write

iρ(q,
) = [φx δ(q − 2Qx ) + φ∗
x δ(q + 2Qx ) + φy δ(q − 2Qy) + φ∗

y δ(q + 2Qy) + φ+ δ(q − Q+) + φ∗
+ δ(q + Q+)

+ φ− δ(q − Q−) + φ∗
− δ(q + Q−)]δ
,0, (30)

where φx, φy, and φ± are complex constants, and Q± = Qx ± Qy.
Inserting Eqs. (28) and (30) into Eq. (25), and expanding up to quartic order in �Mx and �My, to quadratic order in φx, φy, and

φ±, and to third order in the mixed terms, we obtain the effective potential

V ( �Mx, �My, φx, φy, φ±) = s(| �Mx|2 + | �My|2) + u0(| �Mx|2 + | �My|2)2 + u1(| �Mx|2 − | �My|2)2 + u2(| �Mx · �Mx|2 + | �My · �My|2)

+ u3(| �Mx · �My|2 + | �Mx · �M∗
y |2) − r1(|φx|2 + |φy|2) − r2(|φ+|2 + |φ−|2)

+ b1(φx �M∗
x · �M∗

x + φy �M∗
y · �M∗

y + c.c.) + b2(φ+ �M∗
x · �M∗

y + φ− �M∗
x · �My + c.c.). (31)

The coefficients s, u0, u1, u2, u3, r1, r2, b1, and b2 are determined by frequency and momentum integrals of products of bare
propagators G0. The concrete expressions are presented in Appendix B.

The charge degrees of freedom can be eliminated from the theory by imposing ∂V/∂φα = 0, for α = x, y,±, which yields

φx = b1

r1

�Mx · �Mx, φy = b1

r1

�My · �My, (32a)

φ+ = b2

r2

�Mx · �My, φ− = b2

r2

�Mx · �M∗
y . (32b)

From the above equations we see that at the extremal points of the potential V the charge order parameter is a bilinear of the
spin-order parameter. Therefore, in order to get an effective theory that is at most quartic in �Mx and �My, one has to retain all and
only the terms in Eq. (31) in the expansion of the bosonic action (25). Inserting Eqs. (32) into (31), one gets

Veff ( �Mx, �My) = s(| �Mx|2 + | �My|2) + u0(| �Mx|2 + | �My|2)2 + u1(| �Mx|2 − | �My|2)2

+ ũ2(| �Mx · �Mx|2 + | �My · �My|2) + ũ3(| �Mx · �My|2 + | �Mx · �M∗
y |2), (33)

with ũ2 = u2 + b2
1/r1 and ũ3 = u3 + b2

2/r2. Minimizing
Veff ( �Mx, �My) with respect to �Mx and �My we can determine the
magnetic state at temperatures right below T ∗. A Landau the-
ory with an effective potential of the form (33) has previously
been derived from general symmetry arguments [41,51,52].
The form of the Landau theory restricted to the case a single
mode ( �Mx or �My) was derived earlier in Ref. [53].

C. Susceptibilities in the spiral state

With a proper redefinition of the local spin reference frame
[54,55], spiral order as in Eq. (17) can be described in terms
of a 2×2 Hamiltonian of the form

Hsp
k =

(
εk � e−iϕ

� eiϕ εk+Q

)
. (34)
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Since the energy does not depend on the phase ϕ, we can
choose, without loss of generality, ϕ = 0. Within the rotated
reference frame, one can compute the charge and spin suscep-
tibilities within random phase approximation (RPA) as

χ̃ (q, ω) = χ̃0(q, ω)[14 − �0χ̃0(q, ω)]−1, (35)

where �0 = 2U diag(−1, 1, 1, 1), and the bare susceptibility
χ̃0(q, ω), as a function of the bosonic Matsubara frequency 
,
is given by

χ̃ab
0 (q, i
) = −1

4

∫
k

Tr[σ aG(k + q, ν + 
) σ bG(k, ν)],

(36)

where G(k, ν) = [(iν + μ)12 − Hsp
k ]

−1
is the mean-field

Green’s function. The real frequency susceptibility is obtained
by substituting i
 → ω + i0+ after performing the Matsub-
ara sum.

To compute the susceptibilities in the physical (unrotated)
spin reference frame, one must rotate Eq. (35) in the xy
plane with a spatially dependent angle of Q · R j [54,55]. Such
a rotation will produce in general momentum off-diagonal
components of the susceptibilities, as spiral order breaks
translational invariance. However, for our purpose of a sta-
bility analysis of the spiral state it suffices to consider the
susceptibilities in the rotated spin reference frame.

While in this paper we apply the methods described above
to a two-dimensional system, nothing prevents one from em-
ploying them on a three-dimensional system. In the latter case,
since symmetry breaking is allowed to occur at finite tem-
perature, a mean-field magnetic phase possesses the meaning
of a real long-range ordered state. This has to be contrasted
with the two-dimensional case under study, where we interpret
finite-temperature magnetism as the starting point of a low-
energy theory, as in Refs. [42,56,57] (see also discussion in
Sec. IV).

III. RESULTS

We now present the mean-field phase diagram of the two-
dimensional Hubbard model as obtained from the three com-
plementary methods described in the preceding section. We
choose a sizable next-nearest-neighbor hopping t ′ = −0.3t ,
as is frequently used to model the band structure and Fermi
surface of the cuprate superconductor yttrium barium cop-
per oxide (YBCO) [58]. In the hole-doped region (n < 1)
we obtain the same sequence of magnetic states also for
other negative values of t ′/t . For the interaction strength we
choose U = 3t , which is strong enough to obtain magnetic
order in spite of the magnetic frustration imposed by t ′, but
weak enough to obtain qualitatively plausible results from
the Hartree-Fock approximation. In the cuprates the Hubbard
interaction is much larger, but the effective interaction driving
magnetic order and magnetic correlations is renormalized to
smaller values by fluctuations.

Since the magnetic order at densities n � 1 is generally
of Néel type [45], we focus on the hole-doped regime n < 1,
where an intriguing sequence of ordering patterns is found.

FIG. 2. (Top) Magnetic phases in the ground state of the 2D Hub-
bard model with t ′ = −0.3t and U = 3t , for densities 0.7 � n < 1.
(Bottom) Incommensurability δ, collinearity parameter C, average
spin amplitude 〈S〉, and average charge modulation 〈δρ〉 as functions
of n. Note that a jump in C does not necessarily imply a first-order
phase transition.

A. Ground-state phase diagram

In Fig. 2 we show the ground-state phase diagram as ob-
tained from the mean-field solution described in Sec. II A.
The Néel state at half-filling (n = 1) is immediately unstable
toward a spiral state upon hole doping. At n � 0.9, the spiral
state becomes unstable, leading into a more complex phase
at lower densities, which is still coplanar and noncollinear,
but with a modulated spin amplitude and charge density. We
discuss this phase, which we call multispiral, in more detail in
Sec. III C. Upon further increasing the hole doping, a conven-
tional stripe state with collinear spin order and charge density
wave order is stabilized. The transitions from the Néel to the
spiral state and from the spiral to the multispiral state are
continuous, while the transition from the multispiral state to
the stripe state might be first order.

For a quantitative characterization of the various states, we
define the average spin amplitude 〈S〉 and the average charge
modulation 〈δρ〉 as

〈S〉 =
√

P−1
S

∑
j∈cell

|�S j |2, (37a)

〈δρ〉 =
√

P−1
S

∑
j∈cell

|ρ j − n|2, (37b)

where the lattice sum extends over one unit cell (with PS sites).
The dominant wave vector is parametrized by the incommen-
surability

δ = π − Qmax
x , (38)

with Qmax = nmaxQP, where nmax is the index belonging to
the largest magnetic gaps �1

n or �2
n. Furthermore, we define

a collinearity parameter C that quantifies whether a state is
collinear or coplanar. It is defined as

C = min
θ∈[0,2π )

√√√√2
∑

j∈cell(�S j · n̂θ )2∑
j∈cell |�S j |2

, (39)
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FIG. 3. Mean-field phase diagram of the Hubbard model for
t ′ = −0.3t and U = 3t . The various types of magnetic order appear-
ing at T = T ∗ were determined from Landau theory, the states at
T = 0 by solving the Hartree-Fock equations derived in Sec. II A.
The phase transitions for 0 < T < T ∗ are indicated only schemati-
cally by straight lines connecting the calculated transition points at
T = T ∗ and T = 0.

with n̂θ = (cos θ, sin θ, 0). A value C 
= 0 indicates a copla-
nar state, while C = 0 indicates a collinear state in which all
spins are aligned perpendicular to the n̂θ̄ direction, with θ̄ the
angle that minimizes (39).

In Fig. 2 we see that, irrespective of the phase transitions
occurring, both 〈S〉 and δ display a rather smooth and mono-
tonic behavior. By contrast, 〈δρ〉 vanishes in the Néel and
spiral phases, but then rises quickly in the multispiral regime,
peaking at the transition to the stripe phase. It then slowly
decays as the density is further decreased. Finally, we observe
that C remains equal to one in the spiral and multispiral
phases, indicating that they are both coplanar phases. It then
drops to zero in the stripe phase, where the small nonzero
values shown in Fig. 2 are numerical artifacts. In the Néel
state, obtained for n = 1, we also find C = 0. Note that a jump
in C does not necessarily imply a first-order phase transition.

B. Phase diagram at T = T ∗

In Fig. 3 we show the various magnetic phases we obtain
at T = T ∗ by minimizing the effective potential (33). In a
density regime near half-filling, at T = T ∗ the maximum of
�0(q, 0) in Eq. (27b) occurs at q = (π, π ), implying that
the phase being realized right below the (mean-field) critical
temperature is a Néel antiferromagnet. Reducing the density,
�0(q, 0) develops four identical maxima at q = ±Qx and
±Qy at T ∗. An analysis of the quartic terms in the effective
potential (33) reveals that the Néel state is replaced by a spiral
phase characterized by

�Mx = M√
2

(ê1 ± iê2), (40a)

�My = 0, (40b)

or by the same expression with �Mx ↔ �My. Here, ê1 and ê2 are
two orthogonal real unit vectors. The spiral phase maintains a
uniform charge density, but it breaks the C4 rotational symme-
try of the square lattice.

At larger hole dopings, the spiral phase is replaced by a
stripe phase, such that

�Mx = Meiϕ ê, (41a)

�My = 0, (41b)

with an arbitrary unit vector ê, or by the same expression
with �Mx and �My interchanged. This phase displays collinear
magnetic order, a modulation of the charge density ρ j − n ∝
cos(2Qx + 2ϕ), and it breaks the C4 symmetry.

A smooth interpolation between (circular) spiral and stripe
order is given by elliptical spiral order [53],

�S j = M(cos α cos φ j ê1 ± sin α sin φ j ê2), (42a)

ρ j − n ∝ cos(2α) cos(2φ j ), (42b)

with φ j = Qx · R j + ϕ or Qy · R j + ϕ. The parameter α al-
lows for a smooth interpolation between a spiral (α = π/4)
and a stripe (α = 0) phase. At the transition point between spi-
ral and stripe order, the effective potential (33) is degenerate
with respect to variations of α. For T < T ∗, this degeneracy
is lifted by higher order terms (beyond quartic).

At even lower densities, we find a coplanar bidirectional
stripe phase (CpBS), characterized by

�Mx = Meiϕ1 ê1, (43a)

�My = Meiϕ2 ê2, (43b)

with orthogonal unit vectors ê1 and ê2, and arbitrary phases
ϕ1 and ϕ2. The charge density is then modulated as ρ j −
n ∝ cos(2Qx · R j + 2ϕ1) + cos(2Qy · R j + 2ϕ2). It is there-
fore conceivable that, at a finite distance below the T = T ∗
line, a new phase emerges between unidirectional stripe and
CpBS orders, interpolating between the two. We have marked
this possible intermediate phase with a question mark in
Fig. 3. The white color in the low-temperature regime of the
CpBS phase indicates that we have not clarified the nature
of this phase far below T ∗. More complex ordering patterns
are possible there [45], but in this regime of very large hole
doping any magnetic order is probably an artifact of mean-
field theory, and thus of limited interest.

C. Instability of the spiral state

The spiral state is stable in a finite hole-doping range near
half-filling. At larger hole-doping, collinear stripe states have
the lowest energy. We now clarify the nature of the instability
of the spiral state upon increasing hole doping, and the tran-
sition to a stripe state. The instability of the spiral state can
be detected by analyzing the static charge and spin suscep-
tibilities. At zero frequency, the bare susceptibilities χ̃ab

0 in
Eq. (36) vanish if a = 3 and b 
= 3 or a 
= 3 and b = 3. Hence,
the a, b = 0, 1, 2 sector of the susceptibilities, corresponding
to charge, spin amplitude, and in-plane spin orientation fluctu-
ations, decouples from the a, b = 3 sector, which is associated
with out-of-plane spin orientation fluctuations. An instabil-
ity is signaled by a divergence and subsequent sign change
of the susceptibilities in Eq. (35). Such a divergence must,
however, be distinguished from divergences due to Gold-
stone modes. Within our conventions, the Goldstone modes
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of the spiral state manifest themselves as χ̃22(0, 0) = ∞ and
χ̃33(±Q, 0) = ∞ in the rotated spin frame [54,55]. The static
out-of-plane spin susceptibility χ̃33(q, 0) remains always pos-
itive and finite for q 
= ±Q.

We therefore search for a diverging susceptibility in
the a, b = 0, 1, 2 sector at q 
= 0, which is necessarily as-
sociated with an eigenvalue of the RPA denominator in
Eq. (35) crossing zero. Hence, to determine the instability
of the spiral state, and the nature of the magnetic order be-
yond the instability line, we study the eigenvalues of the
matrix

D(q) =

⎛⎜⎜⎝
− 1

2U − χ̃00
0 (q) −χ̃01

0 (q) −χ̃02
0 (q)

−χ̃10
0 (q) 1

2U − χ̃11
0 (q) −χ̃12

0 (q)

−χ̃20
0 (q) −χ̃21

0 (q) 1
2U − χ̃22

0 (q)

⎞⎟⎟⎠,

(44)

with χ̃ab
0 (q) = χ̃ab

0 (q, 0). The spiral state is stable if the matrix
has two positive and one negative eigenvalues for all q 
= 0,
and viceversa when it is unstable.

We define Q′ as the nonzero wave vector at which the
absolute value of the second largest eigenvalue of D(q) has a
global minimum. With some lengthy but straightforward alge-
bra, one can prove that Q′ is the momentum at which |χ̃12

0 (q)|
is maximal. In the ground state, Q′ is entirely determined by
the geometry of the Fermi surface in the spiral state, which, at
least for small dopings, consists of two hole pockets centered
at ( π+δ

2 ,±π
2 ) with δ > 0, see Fig. 4(b). In Fig. 4(a) we see

that |χ̃12
0 (q)| has pronounced peaks at crossing points of two

ellipse-shaped lines in q space, on which |χ̃12
0 (q)| exhibits

a singularity. These lines are “2kF -lines” [59] corresponding
to the set of wave vectors connecting points with parallel
tangents on the Fermi surfaces of the hole pockets. They can
be geometrically constructed by shifting the two hole pockets
such that their centers coincide with the � point (0,0), and
rescaling them by a factor of two. The global maximum of
|χ̃12

0 (q)| occurs where the two 2kF -lines cross. As displayed
in Fig. 4, there are two pairs of crossings, one occurring
on the qx axis (qy = 0), and one on the qy axis (qx = 0).
Since χ̃12

0 (q) is identically zero along the qy axis [55], Q′
and −Q′ are determined as the points in momentum space
where the two 2kF -lines cross on the qx axis. Using these
prescriptions, an analytical expression for Q′ = (Q′, 0) can be
derived,

Q′ = 2arccos[μ̃ sin(δ/2) +
√

�̃2 + (1 − μ̃2) cos2(δ/2)],

(45)

where μ̃ = μ/(2t ) and �̃ = �/(2t ).
The eigenvector of D(q) corresponding to the smallest

positive eigenvalue (in the regime of stability of spirals) or the
largest negative one (in the regime of instability of spirals) can
be shown to take the general form (�0, 1, iγ ), with �0, γ ∈ R.
This form can be deduced by using that χ̃12

0 (q) = −χ̃21
0 (q)

and χ̃02
0 (q) = −χ̃20

0 (q) are purely imaginary, while all other
entries of D(q) are purely real [55]. The form of the eigen-
vector corresponding to the eigenvalue of D(q) that can cross

FIG. 4. (a) Momentum dependence of |χ̃ 12
0 (q)|, displaying non-

analyticities on the two so-called 2kF -lines. The absolute maxima
occur where these two lines cross on the qx axis. In the upper half
of the Brillouin zone (qy > 0), the 2kF -lines are retraced by dashed
white lines as a guide to the eye. (b) Fermi surface in the spiral
state, consisting of two hole pockets. The scattering processes with a
momentum transfer of Q′, connecting opposite sides of the pockets
with parallel tangents, are highlighted by red arrows.Parameters:
T = 0, t ′ = −0.3t , n = 0.90, U = 3t , for which mean-field theory
yields � ≈ 0.637t and δ ≈ 0.167π .

zero enables us to derive the form of the magnetic and charge
ordering occurring right beyond the instability line. In the
rotated frame in which spiral order appears as ferromagnetic,
the order parameters take the form

�̃S j = M

⎛⎝1
0
0

⎞⎠+ M ′

⎛⎜⎝ cos(Q′ · R j + ϕ′)
γ sin(Q′ · R j + ϕ′)

0

⎞⎟⎠, (46a)

δρ j = M ′�0 cos(Q′ · R j + ϕ′), (46b)

where M ′ is an overall amplitude and ϕ′ a phase. Assuming an
anticlockwise rotating spiral proportional to cos(Q · R j )êx +
sin(Q · R j )êy, corresponding to γ > 0, rotating Eqs. (46) to
the physical spin reference frame yields

�S j =

⎛⎜⎝M cos φ
sp
j + M ′

+ cos φ+
j + M ′

− cos φ−
j

M sin φ
sp
j − M ′

+ sin φ+
j + M ′

− sin φ−
j

0

⎞⎟⎠, (47)
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TABLE I. Comparison of the values of Q = (Q, π ), Q′
− =

(Q′
−, π ), Q′

+ = (Q′
+, π ), Q′ = (Q′, 0), γ , �0, and M ′ (see text) as

predicted from calculations in the spiral phase (first row) and as
numerically obtained from the mean-field theory of Sec. II A (second
row).

Q Q′
+ Q′

− Q′ γ �0 M ′

D(q) 2.616 2.269 1.218 1.398 1.568 0.258
MF 2.618 2.269 1.222 1.396 1.567 0.261 0.006

where φ
sp
j =Q·R j , φ±

j =Q′
± ·R j −ϕ′ with Q′

± =−(Q′ ± Q),
and M ′

± = M ′(1 ± γ )/2. The charge-order parameter is left
unchanged by the rotation. Equation (47) describes a mag-
netic state with three overlapping spirals with distinct wave
vectors, two of which propagate anticlockwise (those with
Q and Q′

−), and one clockwise (with Q′
+). Thus, one can

label this state as 3Q spiral. Such a state is found also by
our numerical calculations using the formalism discussed in
Sec. II A. In Table I, we report the ground-state values of
Q, Q′

±, Q′, γ , and ρ0 as predicted by the analysis of the
susceptibilities in the spiral state, and as computed by solving
the mean-field equations from Sec. II A for n = 0.90, that is,
right beyond the instability line (see Fig. 2 for comparison).
The lowest energy state was found to have a period of P = 36.
In Fig. 5, we show the spin and charge patterns for a 3Q
spiral state.

If the strength of the spiral order is weakened by rais-
ing the temperature, χ̃12

0 (q) approaches [�0(q + Q, 0) −
�0(q − Q, 0)]/(2i), with �0(q) the bare bubble defined as in
Eq. (27b). At the onset of magnetic order �0(q, 0) is peaked
exactly at Q (and symmetry related), which implies that for
very weak � one has Q′ = −2Q modulo a reciprocal lattice
vector. Similarly, in this limit one observes that χ̃01

0 (q), and
χ̃02

0 (q) become zero, and that χ̃11
0 (q) and χ̃22

0 (q) approach the
same value. For this reason the eigenvector of D(q) that can
cross zero takes the form (0, 1, i) in the limit of vanishing
spiral order, that is, γ → 1. This, together with Q′ → −2Q,
implies that Eq. (47) takes the form of an elliptical spiral [see
Eq. (42)]. Thus, the multispiral phase smoothly turns into an
elliptical spiral phase as one raises the temperature toward T ∗,
as schematically shown in Fig. 6.

When moving away from the instability line of the spi-
ral phase by increasing the doping, we find a fourth mode

FIG. 6. Schematic phase diagram of the mean-field transition
from spiral to stripe order. We call in general multispiral the inter-
mediate phase between spiral and stripe order. Closer to the spiral
phase, we find three contributing Q vectors [Eq. (47)], while close
to the stripe phase, we observe four [Eq. (48)]. Close to the critical
temperature, the multispiral phase asymptotically approaches ellipti-
cal spiral order with only one Q vector.

emerging, such that the spin order assumes the form

�S j =
4∑

n=1

Mn[cos(Qn ·R j )êx + (−1)n sin(Qn ·R j )êy], (48)

where we have dropped possible phases in the sine and co-
sine functions, and Q1 = Q, Q2 = Q′

+, Q3 = Q′
−. We also

observe, upon increasing doping, that M2 → M1, Q2 → Q1,
M4 → M3, and Q4 → Q3. Hence, S j in Eq. (48) could gradu-
ally turn into a collinear stripe order with two harmonics,

�S j = 2[M1 cos(Q1 · R j ) + M3 cos(Q3 · R j )]êx. (49)

At the lowest density n = 0.87 evaluated numerically in the
multispiral regime, we find M2 ≈ 0.5M1, while at n = 0.86
we already find a stripe phase with a single Q vector. Hence,
either M2 grows to approach M1 very quickly in a small
density range, or the transition from multispiral to stripe is
of first order. This is the reason why we have interrupted the
lines that serve as a guide to the eye in Fig. 2 at the transition
point.

FIG. 5. Spin and charge order pattern for a 3Q spiral state. Bigger (smaller) red bubbles represent a higher (lower) local hole concentration.
The black arrows represent the local magnetization vector �Sj . The parameters are the same as in Table I, except for M ′, which we have enhanced
for visualization purposes.
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IV. CONCLUSIONS

Complementing our previous real-space Hartree-Fock
study [45] by various additional techniques, we have obtained
an almost complete understanding of the mean-field phase
diagram of the two-dimensional Hubbard model with a mod-
erate interaction strength. A large variety of distinct magnetic
states appears, some with and some without concomitant
charge order. Since, in presence of a sizable next-nearest-
neighbor hopping, the magnetic states in the electron doped
regime (filling n > 1) are always Néel ordered [45], we fo-
cused on the hole doped regime n < 1.

The analysis in Ref. [45] showed that the magnetic
order of the Hubbard model is always coplanar and usually
unidirectional, with wave vectors of the form (π − δ, π ).
Bidirectional order was found only at very small densities
(large hole doping). Allowing for arbitrary coplanar and
unidirectional order, we were able to solve the mean-field
equations directly in the thermodynamic limit. In the ground
state, we thereby confirmed the circular spiral order at low
hole doping and the stripe order at large hole doping. In
between, we discovered a new multispiral phase consisting
of a superposition of various spirals with distinct but unidi-
rectional wave vectors. Unlike the single-component spiral
phase, the multispiral phase exhibits charge order similar
to the stripe phase. Analyzing the spin-charge susceptibility
of the spiral phase at its instability point, we found that the
additional wave vectors contributing to the multispiral phase
are related to nesting vectors of the hole-pockets in the simple
spiral state. We complemented the ground-state calculation
by a Landau free-energy analysis of the magnetic states
right below the mean-field transition temperature T ∗, where
we found the following sequence of states as a function of
increasing hole doping: Néel, circular spiral, unidirectional
stripe, bidirectional stripe. The multispiral phase found in the
ground state becomes narrower (in doping) upon increasing
temperature, and collapses to a point at T ∗. Approaching that
point from below (T < T ∗), the multispiral state converges to
an elliptical spiral with a single-wave vector.

Our results are thus largely consistent with the previous
real space Hartree-Fock calculation on large but finite lattices
[45]. Only the multispiral phase could not be identified in
the real space calculation, since the superposition of three or
more contributing wave vectors leads naturally to very large
unit cells.

To keep our paper concise, we fixed the next-nearest-
neighbor hopping and the Hubbard interaction to one value,
t ′ = −0.3t and U = 3t , respectively, in all numerical results.
The nearest-neighbor hopping t sets the global energy scale.
Qualitative changes of the phase diagram upon changing these
parameters can be described as follows. Setting t ′ = 0, the
phase diagram becomes electron-hole symmetric. The mag-
netic order of the ground states is either Néel (at half-filling),
or stripe (away from half-filling). Spiral states near half-filling
exist only at finite temperatures in this special case [45]. From
a continuity argument it is clear that for very small finite t ′,
spiral and stripe order will still be present also in the elec-
tron doped regime. However, already for t ′/t = −0.15, the
electron-doped regime is exclusively Néel ordered for U = 3t
[45]. Bidirectional stripe order at large hole doping appears

FIG. 7. Schematic phase diagram in presence of magnetic-order
parameter fluctuations in the most relevant density regime, excluding
very large hole doping (cf. Fig. 3 for the corresponding mean-field
phase diagram). Various pseudogap phases with and without nematic
(C4 broken) and/or charge density wave (CDW) order are obtained.
The hatched-red region derives from the multispiral phase in mean-
field theory, which has the same symmetries as the stripe regime in
the presence of thermal fluctuations.

only for a rather large t ′. It is absent for t ′/t = −0.15 [45].
Decreasing U obviously reduces the magnetically ordered
regime, both in density and temperature. For sufficiently weak
U and a negative t ′/t , a Néel ground state can be stable
even for (small) finite hole doping [7,14]. For t ′ = 0 there is
magnetic order at and near half-filling for any nonzero U , due
to perfect nesting of the half-filled Fermi surface, while for
t ′ 
= 0 a certain minimal interaction strength is required.

We finally discuss how order parameter fluctuations affect
the phase diagram. The Mermin-Wagner theorem [39] dictates
that the spin SU(2) symmetry cannot be broken at any finite
temperature. Hence, magnetic long-range order appearing in
mean-field theory is destroyed by order-parameter fluctua-
tions. However, some secondary order parameters emerging
in the phases described above may survive in the form of
vestigial order. Moreover, features of the spectral function
for fermionic single-particle excitations in the magnetically
ordered regime, such as the Fermi arcs in the Néel and spi-
ral regimes [15,60,61], may also survive [40,42,56,57]. The
mean-field critical temperature T ∗ then becomes a crossover
temperature, below which the electronic spectral function de-
velops gaps for momenta in the antinodal region and Fermi
arcs near the nodal region. The magnetic phases obtained in
mean-field theory can therefore be interpreted as pseudogap
(PG) phases at T > 0 (see Fig. 7). Whether the ground state
remains magnetically ordered depends on the strength of the
quantum fluctuations.

The breaking of the discrete (not continuous) C4 rotational
symmetry in the spiral, multispiral, and stripe phases can
survive fluctuations, leaving a nematic phase, whose (mean-
field) transition temperature Tnem is indicated in Fig. 7. At
low hole doping nematic order sets in at Tnem < T ∗, while at
larger doping Tnem and T ∗ coincide (with T ∗ of course not
being sharply defined in the presence of fluctuations). Charge
density wave (CDW) order, displayed by the multispiral
and stripe phases, can also survive the presence of
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fluctuations. Figure 2 indicates that the incommensurabil-
ity δ is a continuous function of the electron density, at
least on the mean-field level. This implies that, except for
certain special fillings, CDW order is generically incom-
mensurate. Such an order has an emergent U(1) symmetry
[62] and can exist at finite temperature only in the form of
topological order in a Berezinskii-Kosterlitz-Thouless (BKT)
phase. In Fig. 7, we sketched the mean-field CDW transi-
tion temperature TCDW. The BKT transition temperature for
CDW quasi long-range order (QLRO) T BKT

CDW is expected to
be lower than TCDW. The temperature range T BKT

CDW � T �
TCDW is a regime of fluctuating short-range CDW order. It
is possible that at lower temperature CDW fluctuations will
lock the period of the charge modulation to a commensu-
rate value, realizing a phase with long range order via an
incommensurate to commensurate transition [62]. Spin fluctu-
ations will render the multispiral and stripe phase qualitatively
identical at finite temperature, as they both break the same
symmetries.
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APPENDIX A: HAMILTONIAN MATRIX FOR P = 3 AND 6

The explicit form of the Hamiltonian (10) for P = 3 and
P = 6 reads

H(6) or (3)
k,σ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

εk,0 �+
σ,1 �0

2 �+
σ,3 �0

4 �+
σ,5

�−
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σ,3 �0
4

�0
4 �+

σ,5 εk,2 �+
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2 �+
σ,3

�−
σ,3 �0

4 �−
σ,5 εk,3 �−

σ,1 �0
2

�0
2 �+

σ,3 �0
4 �+

σ,5 εk,4 �+
σ,1

�−
σ,1 �0

2 �−
σ,3 �0

4 �−
σ,5 εk,5

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(A1)

where εk,
 = εk+
Q6 if P = 6, and εk,
 = εk+
Q3 if P = 3.

APPENDIX B: LANDAU COEFFICIENTS

In this section, we report the microscopic expressions for
the coefficients of the effective potential in Eq. (31), as ob-
tained by Taylor expanding the effective action (25).

The coefficients of the quadratic terms are given by

s = 2

U
− 2�0(Qx ) = 2

U
− 2�0(Qy), (B1a)

r1 = 2

U
+ 2�0(2Qx ) = 2

U
+ 2�0(2Qy), (B1b)

r2 = 2

U
+ 2�0(Qx + Qy) = 2

U
+ 2�0(Qx − Qy), (B1c)

where the bare bubble �0(q) has been defined in Eq. (27b),
and Qα = (Qα, 0) for α = x, y.

The third-order coefficients b1 and b2 are given by

b1 = 2
∫

k
G0(k) G0(k + Qx ) G0(k + 2Qx )

= {x ↔ y}, (B2a)

b2 = 4
∫

k
G0(k) G0(k + Qx ) G0(k + Qx + Qy)

= {x ↔ y}, (B2b)

where
∫

k indicates an integration over the lattice momentum
and a sum over the fermionic Matsubara frequencies.

The fourth-order coefficients can be conveniently ex-
pressed in terms of the integrals

E1 =
∫

k
G0(k) G0(k + Qx ) G0(k + 2Qx ) G0(k + Qx ),

E2 =
∫

k
G0(k) G0(k + Qx ) G0(k) G0(k + Qx ),

E3 =
∫

k
G0(k) G0(k + Qx ) G0(k) G0(k + Qy),

E4 =
∫

k
G0(k) G0(k + Qx ) G0(k + Qx + Qy) G0(k + Qy),

(B3)

in the form

u0 = E2 + 2E3 − E4,

u1 = E2 − 2E3 + E4,

u2 = 2E1 − E2,

u3 = 4E4. (B4)
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