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Electronic nematic order has been reported in a rich landscape of materials, encompassing not only a
range of intertwined correlated and topological phenomena but also different underlying lattice symmetries.
Motivated by these findings, we investigate the behavior of electronic nematicity as the spherical symmetry
of three-dimensional (3D) space is systematically lowered by the lattice environment. We consider all 32
crystallographic point groups as well as four major classes of quasicrystalline point groups, given the recent
observations of electronic phases of interest in quasicrystalline materials and artificial twisted quasicrystals.
Valuable insights are gained by establishing a mapping between the five-component charge-quadrupolar nematic
order parameter of the electronic fluid and the 3D tensorial order parameter of nematic liquid crystals. We find
that a uniaxial nematic state is only generically realized in polyhedral point groups (icosahedral and cubic),
with the nematic director pointing along different sets of rotational symmetry axes. Interestingly, icosahedral
point groups are the only ones in which the five nematic order parameter components transform as the same
irreducible representation, making them the closest analog of 3D isotropic nematics. In axial point groups, one
of the nematic components is always condensed, whereas the other four components decompose into an in-plane
and an out-of-plane nematic doublet, resulting in biaxial nematic ground states. Because these two nematic
doublets behave as Zq clock order parameters, this allows us to identify the types of crystals and quasicrystals
that can host interesting electronic nematic phenomena enabled by the critical properties of the q � 4 clock
model, such as emergent continuous nematic fluctuations in 3D, critical phases with quasi-long-range nematic
order in two dimensions (2D), and Ashkin-Teller nematicity in 2D.
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I. INTRODUCTION

Fingerprints typical of electronic nematic behavior have
been experimentally seen in a wide range of settings, such
as unconventional cuprates [1–5] and iron-based supercon-
ductors [6–11], quantum Hall systems [12,13], correlated ox-
ides [14], doped topological insulators [15,16], twisted moiré
systems [17–20], f -electron materials [21–24], kagome met-
als [25], colossal magnetoresistance compounds [26], trian-
gular antiferromagnets [27–31], topological semimetals [32],
and optical lattices [33]. As its name suggests, this state
of matter is the quantum analog of classical nematic liquid
crystals [34,35] because it causes the spontaneous breaking
of a discrete rotational symmetry of the system while pre-
serving its properties under translations [36]. At first, the
term electronic nematicity was coined to describe the ordered
state that emerges upon the partial melting of an underlying
charge or spin stripe state that restores the translational sym-
metry of a correlated metal or insulator, in close analogy to
the smectic-to-nematic transition of liquid crystals [36–40].
More recently, this concept of a so-called vestigial nematic
phase was extended to the case of multicomponent super-
conductors, which were shown in certain circumstances to
support a partially melted state that restores the U(1) gauge
symmetry but keeps the rotational symmetry of the pairing
state broken [41,42]. Since the seminal work of Ref. [36],
the term electronic nematicity has been broadly employed
to refer to any spontaneous rotational-symmetry-breaking

phase that is driven by electronic interactions (as opposed
to elastic interactions) and that does not break additional
symmetries—for recent reviews, see Refs. [43–46]. This in-
cludes the case of weakly interacting Fermi liquids that
undergo a charge l = 2 Pomeranchuk instability via a Stoner-
like mechanism [47–51], which is particularly favored when
the electronic band structure is close to a van Hove singularity
and thus has an enhanced density of states [52,53]. Another
example of electronic nematicity under this definition are
insulating and metallic multi-orbital systems that display fer-
roquadrupolar order [54]. Extensions of this concept to states
that break rotational and time-reversal or inversion symme-
tries have also been studied [55–60].

The main difference between electronic nematic mate-
rials and nematic liquid crystals is that, in the former,
rotational symmetry is already explicitly broken by the
underlying lattice, whereas the latter has full rotational sym-
metry. As a result, the electronic nematic order parameter
always breaks a discrete symmetry that lowers the point
group of the crystal, and all nematic collective modes in
the ordered state are gapped. Historically, much of the the-
oretical investigations on electronic nematicity have focused
on strongly anisotropic layered systems and “planar” ne-
matic order parameters [37,48–51,61–63]. Perhaps the most
well recognized example is the electronically driven break-
ing of C4z symmetry (i.e., fourfold rotations about the z
axis), in which case the electronic nematic order parameter
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is Ising-like [39,64–73]. We emphasize that although such
a nematic transition is, on symmetry grounds, equivalent to
a tetragonal-to-orthorhombic structural transition, the micro-
scopic mechanisms responsible for the spontaneously broken
symmetry are completely different [9]. The fact that electronic
nematic phenomena have been heavily studied in tetrago-
nal lattices is not surprising, since the initial experimental
observations were on tetragonal (or nearly tetragonal) com-
pounds such as bilayer ruthenates [14], cuprates [1], and iron
pnictides [6,7]. More recently, experimental reports of the
spontaneous breaking of C3z symmetry (i.e., threefold rota-
tions about the z axis) by electronic degrees of freedom in
hexagonal and trigonal systems such as doped Bi2Se3 [15,16],
twisted multilayer graphene [17–20], and triangular anti-
ferromagnets [27–31] have motivated a deeper theoretical
investigation of three-state Potts electronic nematic order
parameters [41,57,74–81].

The diversity of systems in which electronic nematic-
ity has been observed indicates that a broader description
and systematic classification of this phenomenon is timely.
Indeed, there is a rich landscape of crystalline symme-
tries whose effects on electronic nematic order remain to
be explored in depth. This includes cubic systems such as
EuB6 [26] and CaSn3 [32], which have been reported to
display anisotropic properties consistent with nematicity. Be-
sides crystals, quasicrystals [82,83] have been recently found
to display electronically ordered states of interest such as
superconductivity [84,85], magnetism [86], and quantum crit-
icality [87], raising interesting questions about how electronic
nematicity would be manifested in systems that lack pe-
riodicity but possess orientational order. This includes not
only quasicrystal materials with icosahedral, dodecagonal,
decagonal, and octagonal symmetries [88–91] but also arti-
ficial quasicrystals that can be assembled in the laboratory by
twisting two periodic crystals by specific angles [85,92–96].
Moreover, besides the planar nematic order parameters stud-
ied in layered systems, there are additional nematic channels
available. Indeed, in terms of the usual electronic operators
ψ̂kσ , the nematic order parameters can be expressed as the
expectation values of the quadrupolar charge operator [48],
di ≡∑k,σ 〈 fi(k̂)ψ̂†

kσ
ψ̂kσ 〉. Since there are five d-wave form

factors fi(k̂), one must consider, in the most general case, a
nematic order parameter d with five components:

d =

⎛
⎜⎜⎜⎜⎜⎝

d 1√
3

(2z2−x2−y2 )

dx2−y2

d2yz

d2xz

d2xy

⎞
⎟⎟⎟⎟⎟⎠, (1)

where the subscript denotes the corresponding d-wave form
factor in Cartesian coordinates. This opens the possibility of
realizing “out-of-plane” nematic order in materials that are not
strongly anisotropic, such as d2xz and d2yz, beyond the widely
investigated “in-plane” nematic states corresponding to dx2−y2

and d2xy.
In this paper, we perform a systematic and thorough

classification of electronic nematic order in all crystalline
and quasicrystalline point groups. Specifically, we derive the

Landau expansions and determine the universal properties of
the nematic transitions associated with the different allowed
types of in-plane and out-of-plane nematic order parame-
ters di for a given point group. To gain further insight into
how the reduced rotational symmetry of the underlying crys-
talline or quasicrystalline environment constrains nematicity,
we establish a direct relationship between the five-component
charge-quadrupolar nematic order parameter d in Eq. (1),
which describes the electronic fluid, and the full rank-2 trace-
less symmetric tensor Qμμ′ that describes nematic liquid
crystals in general [34,35]. We find it illuminating to write
the latter in the eigenstate basis:

Qμμ′ = q1
(
nμnμ′ − 1

3δμμ′
)− q2(mμmμ′ − lμlμ′ ), (2)

where q1 and q2 are scalars and n, m, l form a complete set of
orthonormal vectors in three-dimensional space. When q2 =
0 or q2 = q1, Qμμ′ describes a uniaxial nematic state with a
uniquely defined nematic director n or m, respectively; in all
other cases, Qμμ′ describes a biaxial nematic state [97]. While
in liquid crystals these axes determine the orientation of the
constituent molecules, in metallic systems they are manifested
in the Fermi surface of the nematic state. Thus, by establishing
the relationship between the five free parameters encompassed
by q1, q2, n, m, l in Eq. (2) and the five charge-quadrupolar
order parameters encoded in d in Eq. (1), we determine the
characteristic Fermi surface distortion patterns in the nematic
states of every point group studied.

To perform the analysis in a transparent and insightful
way, we start from the isotropic three-dimensional system,
described by the orthogonal group O(3) = SO(3)×{E , I},
from which all crystallographic and noncrystallographic point
groups can be obtained by systematically reducing the sym-
metry according to group theory. Here, SO(3) contains
arbitrary rotations about any three-dimensional axis, I denotes
inversion, and E denotes the identity operation. Figure 1
illustrates the well-known path by which the O(3) sym-
metry is systematically lowered to yield all point groups.
First, one needs to distinguish between two types of point
groups: the polyhedral groups and the axial groups. There
are only seven polyhedral groups: three tetrahedral and two
octahedral groups, which form the cubic crystal system, and
two icosahedral groups, which describe a large number of
quasicrystals.

In contrast, there is an infinite number of axial groups, all
of which are subgroups of D∞h = SO(2)×{E , I}×{E ,C2x},
which describes a two-dimensional isotropic system and con-
tains arbitrary rotations about the z axis, twofold rotations
about any in-plane axis, inversion, and reflection with respect
to the plane. The axial groups are further subdivided into
the seven different groups outlined in Fig. 1: Dnh, Dnd, Cnh,
Dn, S2n, Cnv, and Cn, which contain discrete n-fold rotations
around the axis perpendicular to the plane and, in some cases,
twofold rotations about an axis parallel to the plane. En-
forcing the crystallographic restriction theorem leads to 27
crystallographic axial point groups, which are then divided
into six crystal systems: hexagonal (seven groups), trigonal
(five groups), tetragonal (seven groups), orthorhombic (three
groups), monoclinic (three groups), and triclinic (two groups).
Together with the five polyhedral cubic groups, they consti-
tute the 32 crystallographic point groups and seven crystal
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FIG. 1. Schematics of the systematic classification performed in this paper of electronic nematicity in crystalline and quasicrystalline
systems. The analysis starts from the ideal isotropic three-dimensional system, described by the orthogonal group O(3) (Sec. II). The spherical
symmetry is systematically lowered, leading to two different sets of groups: the seven polyhedral groups (Sec. III) and the seven classes of axial
groups. The latter are subgroups of D∞h, which describes a two-dimensional isotropic system. Axial groups include 27 crystallographic point
groups (Sec. IV) as well as the noncrystallographic dodecagonal, decagonal, and octagonal point groups that describe quasicrystals (Sec. V).

systems. Importantly, the noncrystallographic point groups
can still describe materials that are nonperiodic and that can
host nontrivial electronic states [88,89]. Thus, in this pa-
per, we also focus on the noncrystallographic point groups
that describe quasicrystals, namely, the polyhedral icosahe-
dral groups as well as the axial dodecagonal, decagonal, and
octagonal point groups.

Of course, several of our results for the character of
the nematic transition in certain point groups recover well-
established results obtained in previous symmetry analyses
of two-dimensional nematics [43,44,46], structural and fer-
roelastic transitions [98–100], multipolar order [56,101], and
intertwined orders [102]. We emphasize that our main goal
here is to provide a complete, self-contained classification
of electronic nematicity in crystals and quasicrystals by
systematically determining how the removal of symmetries
impacts the general structure of the tensorial nematic order
parameter (2) via its relationship with the five-component
charge-quadrupolar order parameter (1). Our results are sum-
marized in Tables I and II in Sec. VI, and their derivations
are shown in Secs. II–V and Appendixes D–G. For the conve-
nience of the reader not interested in the technical details of
our analysis, we outline here the main results.

(1) The icosahedral quasicrystalline point groups are the
only ones for which the five components of the nematic order
parameter (1) transform together as a single five-dimensional
irreducible representation. The nematic transition is first order
within mean field due to a cubic invariant in the Landau
expansion. Depending on the signs of the Landau coefficients,
the nematic director that characterizes the uniaxial nematic
ground state aligns itself with either the ten axes of three-
fold rotational symmetry or the six axes of fivefold rotational
symmetry of the quasicrystal. In the former case, the residual
point group is crystalline (trigonal) whereas in the latter, it is
quasicrystalline (decagonal).

(2) The components of the nematic order parameter d in
the cubic crystal groups split into separate triplet and doublet
order parameters. The triplet behaves as a Z4 Potts order
parameter, giving rise to a uniaxial nematic state in which the
director is parallel to one of four axes of threefold rotational
symmetry of the crystal (i.e., the space diagonals). The dou-
blet behaves as a Z3 Potts (which is equivalent to the Z3 clock)
order parameter, and the three nematic axes point along the
coordinate axes. In the cubic groups for which the coordinate

axes are also axes of fourfold rotational symmetry, the nematic
ground state is uniaxial, otherwise, it is biaxial. The nematic
transitions are, again, first order within mean field.

(3) In any axial group, the nematic component
d 1√

3
(2z2−x2−y2 ) is necessarily nonzero, which changes the

shape of the Fermi surface in the symmetry-unbroken phase
from spherical to cylindrical. The other four components are
decomposed into at least two independent nematic doublets,
the in-plane d ip = (dx2−y2 , d2xy)T and the out-of-plane
dop = (d2yz, d2xz )T . The nematic ground state is always
biaxial for the axial groups, unless the Landau parameters
are fine tuned. In most cases, at least one of the nematic axes
aligns with a high-symmetry in-plane direction.

(4) Each nematic doublet in the axial groups behaves as a
Zq clock order parameter. If the group has (2n)-fold rotational
symmetry, q = n for d ip and q = 2n for dop. If the group
has (2n + 1)-fold rotational symmetry, q = 2n + 1 for both
d ip and dop. In three dimensions, the q-state clock model is
known to undergo an XY transition for q � 4, similarly to
the isotropic two-dimensional (2D) nematic case. In two di-
mensions, the Zq clock model displays an intermediate critical
phase with quasi-long-range order for q � 5 and an Ashkin-
Teller phase transition with nonuniversal critical exponents
for q = 4. A first-order transition occurs for q = 3 and above
the upper critical dimension du � 2. If the axial group lacks
in-plane rotational symmetry axes, or if d ip and dop have the
same transformation properties, the clock term in the Landau
expansion acquires a nonuniversal offset, which we denote as
the Z∗

q clock model.
(5) The main difference between hexagonal and trigonal

crystals is that, in the latter, d ip and dop are not indepen-
dent, which has a significant impact on the character of the
nematic transition. In tetragonal crystals, d ip is further decom-
posed into two one-component Ising-like order parameters.
Orthorhombic, monoclinic, and triclinic crystals are described
by Abelian point groups, which only admit one-dimensional
irreducible representations. As a result, any nematic transition
must be Ising-like.

(6) In dodecagonal, decagonal, and octagonal quasicrys-
tals, both nematic doublets behave as Zq clock order
parameters with q � 4. This makes axial quasicrystals inter-
esting platforms to realize exotic nematicity enabled by the
critical properties of the q � 4 clock model, such as emergent
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XY nematic fluctuations and critical nematic phases display-
ing quasi-long-range order.

The organization of the paper, schematically shown in
Fig. 1, is as follows: Section II introduces the formalism and
presents the results for nematicity in the three-dimensional
isotropic system. The case of polyhedral groups, i.e., cubic
crystal system and icosahedral quasicrystals, is discussed in
Sec. III. Section IV presents the properties of electronic ne-
matic order in the isotropic two-dimensional system and in
the axial crystallographic groups (hexagonal, trigonal, tetrag-
onal, orthorhombic, monoclinic, and triclinic crystal systems).
The cases of dodecagonal, decagonal, and octagonal qua-
sicrystalline axial groups are presented in Sec. V. Section VI
contains our concluding remarks as well as a summary of our
results for the crystalline point groups in Table I and for the
quasicrystalline point groups in Table II. Appendix A contains
additional details about isotropic nematicity. Appendix B ex-
plains the concept of symmetrized decomposition of products
of irreducible representations, whereas Appendix C shows
details of the minimization of the nematic Landau expan-
sion in icosahedral systems. Appendix D presents details of
electronic nematic order in cubic crystals without fourfold
rotational symmetry axes. Appendixes E, F, and G derive the
properties of electronic nematicity, respectively, in hexagonal,
trigonal, and tetragonal point groups that lack in-plane rota-
tional symmetry axes.

II. ELECTRONIC NEMATICITY IN A
THREE-DIMENSIONAL ISOTROPIC SYSTEM

A. Representations of the nematic order parameter

To set the stage for the remainder of the paper, we
first review the properties of electronic nematicity in three-
dimensional (3D) isotropic systems, i.e. systems that are fully
rotational invariant. In classical nematics, the order parame-
ter is a “headless vector” associated with the orientation of
the elongated molecules that form the liquid crystal. It is
conveniently expressed in terms of the symmetric traceless
tensor Qμμ′ = 〈aμaμ′ − 1

3δμμ′a2〉, with μ,μ′ = 1, 2, 3 and
the director a = (a1, a2, a3) [34,35]. The generalization to the
quantum (i.e. electronic) case has been widely discussed in
the literature [48,97]. In terms of the electronic annihilation
(creation) operators ψ̂k (ψ̂†

k ), the tensorial order parameter is
given by

Qμμ′ = 1

k2
F

∑
k,σ

〈
Fμμ′ (k)ψ̂†

kσ
ψ̂kσ

〉
, (3)

with momentum k, Fermi momentum kF , spin σ =↑,↓, and
the d-wave form factor Fμμ′ (k) = 2(kμkμ′ − 1

3δμμ′k2). Gen-
eralizations to multi-orbital systems are straightforward, but
will not be covered here [71,101]. Thus, the components of the
electronic nematic order parameter correspond to quadrupolar

charge order which, in the theory of interacting Fermi liquids,
corresponds to an angular momentum l = 2 Pomeranchuk
instability of the Fermi liquid in the singlet channel [47]. The
condensation of the tensor order parameter Q leads to a dis-
tortion of the otherwise spherically symmetric Fermi surface,
thus breaking the rotational invariance of the isotropic system:

εk = k2

2m
− μ0 + 1

2
tr[QF (k)]. (4)

Here, m is the effective electron mass and μ0, the chemical
potential. For concreteness, and to better visualize the fin-
gerprints of nematicity on the electronic degrees of freedom,
our analysis will focus on metals. Of course, the symmetry
properties of the nematic state would be the same in insulators.

Being a traceless symmetric tensor, Q has five indepen-
dent components. Thus, it is also convenient to express
nematic phenomena in terms of a five-component “vector”
d = (d1, d2, d3, d4, d5). To derive the symmetry properties of
this vector, we note that a 3D isotropic system is described
by the continuous (orthogonal) group O(3) = SO(3)×{E , I},
which combines the full rotation group SO(3) with the inver-
sion operation I (here, E denotes the identity operation). Thus,
in group-theory notation, the five-component nematic vector d
transforms according to the five-dimensional irreducible rep-
resentation (IR) �+

j=2 of the orthogonal group O(3). Note that
the superscript + (−) indicates an inversion-even (inversion-
odd) IR.

Such a five-component order parameter can be obtained
in a straightforward way as a bilinear M constructed from
the coordinate vector r = (x, y, z), which in turn transforms
according to the three-dimensional vector IR �−

j=1. That such
a bilinear M in the �+

j=2 channel exists follows from the
product decomposition �−

j=1 ⊗ �−
j=1 = �+

j=0 ⊕ �+
j=2 ⊕ �+

j=1.

Writing the bilinear components as Mi = rμλ
j=2,i
μμ′ rμ′ with i ∈

{1, . . . , 5} and μ ∈ {1, 2, 3}, we obtain the five matrices λ j=2

from the transformation condition

RT
−, j=1(g)λ j=2,iR−, j=1(g) = R+, j=2(g)ii′λ

j=2,i′ , (5)

where R±, j (g) denotes the 5×5 transformation matrix of
a symmetry element g associated with the IR �±

j . The

symmetry elements g = (ϑ, �̂, I ) are parametrized in terms
of the rotation angle ϑ around the unit rotation axis �̂

and the index I = ±1 for inversion being applied (I =
−1) or not (I = +1). Therefore, the transformation ma-
trices are given by R+, j (g) = R j (ϑ, �̂) and R−, j (g) =
IR j (ϑ, �̂) where R j (ϑ, �̂) = exp(−iϑ J ( j) · �̂) are the well-
known (2 j + 1)×(2 j + 1)-dimensional rotation matrices. Us-
ing the J ( j) matrices outlined in Appendix A, one finds the
five matrices λ j=2 in (5) to be identical to the five symmetric
Gell-Mann matrices,

λ j=2 =
⎧⎨
⎩ 1√

3

⎛
⎝−1 0 0

0 −1 0
0 0 2

⎞
⎠,

⎛
⎝1 0 0

0 −1 0
0 0 0

⎞
⎠,

⎛
⎝0 0 0

0 0 1
0 1 0

⎞
⎠,

⎛
⎝0 0 1

0 0 0
1 0 0

⎞
⎠,

⎛
⎝0 1 0

1 0 0
0 0 0

⎞
⎠
⎫⎬
⎭. (6)
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We can now label the five nematic components of d as
polynomials of the coordinate vector r = (x, y, z), according
to their symmetry properties encoded in the bilinear M:

d =

⎛
⎜⎜⎜⎜⎝

d1

d2

d3

d4

d5

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

d 1√
3

(2z2−x2−y2 )

dx2−y2

d2yz

d2xz

d2xy

⎞
⎟⎟⎟⎟⎠. (7)

Unsurprisingly, the five components of d correspond to the
five d-wave form factors written as tesseral harmonics. The
symmetric Gell-Mann matrices (6) also conveniently establish
the relationship between the tensor notation Q and the vector
notation d:

Q = d · λ j=2, d = tr
[
Qλ j=2

] /
2, (8)

which, in explicit form, gives

Q =

⎛
⎜⎝

d2 − 1√
3
d1 d5 d4

d5 −d2 − 1√
3
d1 d3

d4 d3
2√
3
d1

⎞
⎟⎠. (9)

In this work, we interchangeably use the tensor notation
Q (9) and the five-component vector notation d (7). Moreover,
throughout this work, we use the following transformation
relation for the nematic order parameter:

d
g−→ R+, j=2(g) d, (10)

such that the transformation matrices are fixed by the set of
given symmetry elements g. This is particularly useful as it
uniquely defines the multicomponent nematic channels within
reduced symmetry systems where R+, j=2(g) is block diago-
nal, such as crystal lattices.

A convenient representation of the nematic tensor Q (9)
is in terms of its eigenbasis. In this representation, which we
denote the (nml ) representation, the nematic tensor becomes

Qμμ′ =
√

3|d| cos α
(
nμnμ′ − 1

3δμμ′
)

− |d| sin α
(
mμmμ′ − lμlμ′

)
, (11)

where the angle α determines the eigenvalues while the unit
vectors n, m, l span the eigenspace of the matrix (9). As a set
of orthonormal eigenvectors, n, m, l obey the orthogonality
relations n · m = n · l = m · l = 0, as well as the complete-
ness relation

nμnμ′ + mμmμ′ + lμlμ′ = δμμ′, (12)

valid for any μ,μ′. One reason why the (nml ) representation
is particularly useful is because the tensor (11) is readily
diagonalized using the orthogonal matrix U = (n, m, l ),

Qd = U T QU

= 2|d|√
3

⎛
⎝cos (α) 0 0

0 cos
(
α + 2π

3

)
0

0 0 cos
(
α + 4π

3

)
⎞
⎠.

(13)

FIG. 2. (a) Eigenvalues of the tensorial nematic order parameter
Q (13), in units of 2|d|/√3, as a function of the parameter α. The
eigenvalues are colored according to their corresponding eigenvector
n (blue), m (green), and l (red), see Eq. (14). Note that for α =
0, π/3, two eigenvalues are degenerate and the corresponding ne-
matic state is uniaxial. (b)–(d) Fermi surfaces (32) of the 3D isotropic
system in the absence [panel (b)] or presence of nematic order in the
ground state α = π/3 [panel (c), corresponding to a tensile nematic
distortion] and α = 0 [panel (d), corresponding to a compressive
nematic distortion]. The nematic axes n, m, l are also shown; for
visual purposes, they are rescaled by the corresponding value of the
Fermi momentum along that direction, 2.25 kF ({n, m, l}).

Moreover, in this representation, we can use Eq. (8) to write
the five-component vector d (7) as

d = |d|√
3

{
cos (α)

(
nμλ

j=2
μμ′ nμ′

)+ cos

(
α + 2π

3

)(
mμλ

j=2
μμ′ mμ′

)

+ cos

(
α + 4π

3

)(
lμλ

j=2
μμ′ lμ′

)}
, (14)

where summation over μ, μ′ is implied. The parametriza-
tion of the orthonormal eigenvectors n, m, l involves three
angles and it is not unique, see Appendix A for details. Im-
portantly, to ensure a one-to-one mapping between Eqs. (9)
and (11), the eigenvalue-angle α must be restricted to the
range [0, π/3]. Plotting the three eigenvalues as a function
of α in Fig. 2(a) makes it clear that the smallest eigenvalue
is always related to m whereas the largest one is associated
with n, see also Eq. (14). Moreover, the figure also reveals
two special points, α = 0, π/3, for which two eigenvalues are
degenerate—either the smallest eigenvalue (for α = 0) or the
largest eigenvalue (for α = π/3), corresponding to a uniaxial
nematic state. For later convenience, we note that in the (nml )
representation of Eq. (14), a sign change in d corresponds to
changing α → π

3 − α and swapping n ↔ m:

−d[|d|, α, n, m, l] = d
[
|d|, π

3
− α, m, n, l

]
. (15)

Here, |d| � 0 should be understood as the radial variable of
the coordinates (|d|, α, n, m, l ).

B. Minimization of the nematic free energy

The value of the angle α that determines the eigenvalues of
the nematic order parameter Q or d, see Eqs. (13) and (14),
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can be obtained by minimizing the corresponding Landau
expansion. The symmetry-allowed terms in the Landau ex-
pansion can be obtained by decomposing the products of the
nontrivial IR that defines the order parameter and then picking
the terms in the decomposition that transform trivially under
the group operations. One way to unambiguously determine
these terms, which will be very useful once we consider point
groups, is through the so-called decomposition of the sym-
metrized product, see Appendix B for details. This special
decomposition removes any redundancy related to the anti-
symmetric channels and avoids the double-counting that one
would encounter by considering the nonsymmetrized product.
With the order parameter d transforming according to the IR
�+

j=2, the decomposition of the symmetrized products for each
Landau expansion order becomes[⊗2

l=1�
+
2

]
s = �+

0 ⊕ �+
2 ⊕ �+

4 , (16)[⊗3
l=1�

+
2

]
s = �+

0 ⊕ �+
2 ⊕ �+

3 ⊕ �+
4 ⊕ �+

6 , (17)[⊗4
l=1�

+
2

]
s = �+

0 ⊕ 2�+
2 ⊕ 2�+

4 ⊕ �+
5 ⊕ �+

6 ⊕ �+
8 . (18)

Here, we use the abbreviated tensor product notation, e.g.,
⊗3

l=1�
+
2 = �+

2 ⊗ �+
2 ⊗ �+

2 , and the subscript s to indicate
that only the symmetrized product is considered. The sym-
metrized decompositions (16)–(18) imply the existence of one
Landau invariant per expansion order, since there is exactly
one trivial channel (�+

0 ) per expansion order. To systemati-
cally identify these invariants, it is useful to first determine the
bilinears associated with each IR in Eq. (16), which we denote
by D j=0 = |d|2 (�+

0 ), D j=2 (�+
2 ) and D j=4 (�+

4 ). Solving the
respective transformation conditions, similar to Eq. (5), leads
to the five-component vector

D j=2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

d2
1 − d2

2 + 1
2

(
d2

3 + d2
4 − 2d2

5

)
−2d1d2 −

√
3

2

(
d2

3 − d2
4

)
(
d1 − √

3d2
)
d3 + √

3d4d5(
d1 + √

3d2
)
d4 + √

3d3d5

−2d1d5 + √
3d3d4

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (19)

and the nine-component vector D j=4 given in Eq. (A10) in
Appendix A. Since D j=2 is quadratic in di, it is straight-
forward to construct the cubic invariant that appears in the
symmetrized decomposition in Eq. (17). Specifically, since d
and D j=2 transform as the same IR �+

j=2, their scalar product
must transform trivially and thus appear in the free-energy
expansion:

d · D j=2 =
√

3

2
tr[Q3] = |d|3 cos (3α). (20)

In the last step, we employed the (nml ) representation (11)–
(14) to further simplify the expression. As for the quartic
decomposition in Eq. (18), since there is only one term in the
symmetrized product that transforms trivially, we can readily
identify it as D j=0D j=0 = |d|4. Therefore, the resulting ne-
matic Landau expansion is given by the action

S[|d|, α] =
∫

x
{r0|d|2 + g|d|3 cos (3α) + u|d|4}, (21)

where x = (r, τ ) comprises position and imaginary time,∫
x ≡ ∫ d3r

∫ 1/T
0 dτ , r0 is the control parameter that tunes the

system across a nematic transition, and g, u are cubic and
quartic Landau parameters, respectively. We opted to repre-
sent the Landau expansion in terms of an action rather than
a free energy in order to explicitly account for the temporal
dependence of the nematic order parameter, which is neces-
sary in the case of a quantum phase transition. For a thermal
transition, we can write r0 = a0(T − T0) with a0 > 0 and T0

a reference temperature, such that the free energy is given by
F = ST0.

We note that the action (21) does not depend on the orien-
tation of the nematic axes n, m, and l , which is a manifestation
of the full rotational invariance of the 3D isotropic system. Al-
though the expansion (21) resembles that of a three-state Potts
or clock model (Z3 model), it is important to emphasize that
α ∈ [0, π

3 ] and that d is a five-component vector. Minimiza-
tion with respect to α gives the mean-field ground-state angle:

α0 = π

3

(
1 + sign(g)

2

)
, (22)

i.e., the angle is either α0 = 0 (for g < 0) or α0 = π/3 (for
g > 0). In either case, the effective action in terms of |d|
alone assumes the form

Seff [|d|] =
∫

x
{r0|d|2 − |g||d|3 + u|d|4}. (23)

The existence of a negative cubic term implies that, within a
mean-field solution, the isotropic nematic transition is first or-
der. Another important property of the α0 = 0, π/3 solutions
is that they correspond to uniaxial nematic states, i.e., states
that only depend on one eigenvector and for which two eigen-
values are degenerate [97]. This can be seen directly from
Eq. (11): when α = 0, the second term vanishes and we obtain

Qμμ′[α = 0] =
√

3|d|(nμnμ′ − 1
3δμμ′

)
, (24)

which corresponds to a nematic director along n. Correspond-
ingly, for α = π/3, we have

√
3 cos α = sin α = √

3/2; using
the completeness relation (12) we find

Qμμ′[α = π/3] = −
√

3|d|(mμmμ′ − 1
3δμμ′

)
, (25)

corresponding to a nematic director along m. Similarly,
inserting the two α0 values into the nematic order
parameter (14) gives

d[α = 0] = (
√

3/2) |d| nμλ
j=2
μμ′ nμ′ , (26)

d[α = π/3] = −(
√

3/2) |d| mμλ
j=2
μμ′ mμ′ , (27)

where we used, once again, the completeness relation (12)
as well as the fact that tr(λ j=2,i ) = 0. Note that (27) is just
the negative of (26), in accordance with (15). Clearly, the
continuous rotational symmetry of the isotropic system is
spontaneously broken in the nematic ground state, as the
nematic director n (or m) can point in any direction.

In the case of a metallic system, these distortion patterns
are manifested in the Fermi surface of the nematic state, and
the nematic instability is nothing but an l = 2 Pomeranchuk
instability in the charge channel. The corresponding electronic
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dispersion (4) can be conveniently rewritten in the (nml )
representation. Using Eq. (13), we find

εk = k2

2m
− μ0 + 1

2
tr[QdU TF (k)U ]. (28)

The transformed matrix U TF (k)U is given by

U TF (k)U =
⎛
⎝nT

mT

lT

⎞
⎠F (k)(n, m, l )

=

⎛
⎜⎝

nTF (k)n nTF (k)m nTF (k)l

mTF (k)n mTF (k)m mTF (k)l

lTF (k)n lTF (k)m lTF (k)l

⎞
⎟⎠. (29)

Using the fact that

vTF (k)w = 2(k · v)(k · w) − 2
3 k2(v · w), (30)

and performing the matrix product, we find

εk = k2

2m
− μ0 + 2|d|k2

√
3

[
(k̂ · n)2 cos (α)

+ (k̂ · m)2 cos

(
α + 2π

3

)
+ (k̂ · l )2 cos

(
α + 4π

3

)]
,

(31)

with k̂ = k/|k|. Here, we used
∑2

ν=0 cos(α + ν 2π
3 ) = 0.

The Fermi wave vector of the dispersion (31) can be readily
obtained as a function of k̂:

kF (k̂) = kF,0

{
1 + 4m|d|√

3

[
(k̂ · m)2 cos

(
α + 2π

3

)

+(k̂ · l )2 cos

(
α + 4π

3

)
+ (k̂ · n)2 cos (α)

]}− 1
2

,

(32)

where we defined the isotropic Fermi momentum kF,0 =√
2mμ0. Using the results of Fig. 2(a), we conclude that

the Fermi wave vector is longest along the m axis, kF,max =
kF (k̂ = ±m), and shortest along the n directions, kF,min =
kF (k̂ = ±n). Therefore, we identify m and n as the long and
short nematic axes of the distorted Fermi surface, respectively.
Moreover, when α = 0 (g < 0), the Fermi momentum along
the l direction is as large as the Fermi momentum along
m, resulting in a Fermi surface with the shape of an oblate
spheroid; we dub this a “compressive” nematic deformation,
and associate the nematic director to n. In contrast, when
α = π/3 (g > 0), the Fermi momenta along l and along the
short axes n are equivalent, resulting in a Fermi surface with
the shape of a prolate spheroid, which we associate with a
“tensile” nematic deformation. The nematic director in this
case is parallel to m.

We plot the Fermi surface (32) associated with the two
mean-field nematic ground states α = π/3, 0 in Figs. 2(c)
and 2(d) with nematic magnitude |d| = 1/(3m), together with
the undistorted Fermi surface in Fig. 2(b). The same nematic
magnitude is employed in all figures in this work. Addition-
ally, we also plot the corresponding eigenvectors n, m, l

rescaled by 2.25 kF (n), 2.25 kF (m), 2.25 kF (l ), respectively,
to better visualize the long and short axes in each case.
Regardless of the value of g, the resulting Fermi surface is
always a uniaxial ellipsoid, which has the shape of either an
oblate spheroid [α = 0, g < 0, resulting in the compressive
distortion of Fig. 2(d)] or a prolate spheroid [α = π/3, g > 0,
resulting in the tensile distortion of Fig. 2(c)]. Importantly, the
uniaxial vector n or m can point in any direction, reflecting the
spontaneous breaking of the continuous rotational symmetry
below the nematic transition.

III. ELECTRONIC NEMATICITY IN POLYHEDRAL
POINT GROUPS

Once full rotational symmetry is explicitly broken, the sys-
tem is described in terms of point groups, which, in contrast
with the continuous orthogonal group O(3), are finite groups.
When investigating electronically ordered states, it is custom-
ary to focus on the 32 crystallographic point groups, which
have at most twofold, threefold, fourfold, or sixfold rotation
symmetry. However, quasicrystals [82,83] have been recently
shown to realize various electronically driven phenomena
observed in periodic crystals [90,91], such as superconduc-
tivity [84,85], magnetism [86], and quantum criticality [87].
While nematicity has not yet been observed in quasicrystalline
environments, it is interesting to analyze this possibility not
only to establish valuable predictions for future experiments,
but also to gain deep insights about the structure of electronic
nematicity as the symmetries of the nonisotropic system are
systematically reduced. Therefore, in this paper, we will not
restrict our analysis to crystallographic point groups only, but
will also consider electronic nematicity in point groups that
describe icosahedral, dodecagonal, decagonal, and octagonal
quasicrystals, as well as twisted quasicrystals [85,92–96].

There are two different classes of point groups, namely,
polyhedral groups (which do not have axial symmetry) and
axial groups (which, as the name implies, have cylindrical
symmetry). As we show below, in what concerns nematic-
ity, the polyhedral groups are special, since none of the five
elements of the vector d transform as a trivial IR. In fact,
they always transform as multidimensional IRs, which can
be either two dimensional, three dimensional, or five dimen-
sional. This makes a description of electronic nematicity in the
(nml ) representation particularly insightful and convenient.
In contrast, in the axial groups, at least one of the elements
of d transforms trivially, and the other components transform
either as two-dimensional IRs or as one-dimensional IRs. As
we see, this does not preclude a description in terms of the
(nml ) representation.

The seven existing polyhedral groups, which are the focus
of this section, are depicted in Fig. 1 and include two octa-
hedral, three tetrahedral, and two icosahedral point groups.
The octahedral and tetrahedral groups define the cubic crystal
system, whereas the icosahedral groups describe a large class
of quasicrystals [89].

The two icosahedral groups I and Ih = I×{E , I} have a
total of 60 and 120 symmetry elements. Those are constructed
from twofold (15 axes), threefold (10 axes), and fivefold (6
axes) rotations. For later convenience, we explicitly list the
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sets of six fivefold and the ten threefold rotation axes:

V ico
5 =

⎧⎪⎨
⎪⎩
⎛
⎜⎝±α

(5)
+

α
(5)
−
0

⎞
⎟⎠,

⎛
⎜⎝

0

±α
(5)
+

α
(5)
−

⎞
⎟⎠,

⎛
⎜⎝

α
(5)
−
0

±α
(5)
+

⎞
⎟⎠
⎫⎪⎬
⎪⎭, (33)

V ico
3 =

⎧⎪⎨
⎪⎩
⎛
⎜⎝±α

(3)
−

α
(3)
+
0

⎞
⎟⎠,

⎛
⎜⎝

0

±α
(3)
−

α
(3)
+

⎞
⎟⎠,

⎛
⎜⎝

α
(3)
+
0

±α
(3)
−

⎞
⎟⎠,V111

⎫⎪⎬
⎪⎭. (34)

Here, we defined α
(3)
± = 1√

6

√
3 ± √

5, α
(5)
± = 1√

10

√
5 ± √

5,
as well as the set

V111 = 1√
3

⎧⎨
⎩
⎛
⎝1

1
1

⎞
⎠,

⎛
⎝−1

−1
1

⎞
⎠,

⎛
⎝ 1

−1
−1

⎞
⎠,

⎛
⎝−1

1
−1

⎞
⎠
⎫⎬
⎭, (35)

containing the four corners of a tetrahedron. The five octahe-
dral and tetrahedral point groups, which form the cubic crystal
system, have much fewer elements, and can be conveniently
expressed as

T = {E ,C±1
3α

}× {E ,C2z} × {E ,C2x}, (36)

Th = T × {E , I}, (37)

Td = T × {E , IC4z}, (38)

O = T × {E ,C4z}, (39)

Oh = T × {E ,C4z} × {E , I}. (40)

Within the cubic crystal system (36)–(39), Oh is the super-
group, since all the other ones are subgroups to Oh. The
characteristic elements of the T group comprise four threefold
rotation axes �̂ ∈ V111, see Eq. (35), as well as three twofold
rotation axes �̂ ∈ V100, where

V100 = {êx, êy, êz}. (41)

For instance, the element C±1
3α denotes a rotation by an angle

ϑ = ±2π/3 about the axis �̂ = (1, 1, 1)/
√

3. Similarly, C2z

corresponds to a ϑ = 2π/2 rotation about �̂ = êz.

A. Icosahedral quasicrystals

Within the polyhedral point groups, the icosahedral class
contains the largest number of symmetry elements. In
fact, the large number of symmetry elements forces the
five-component order parameter d to still transform as a five-
dimensional IR. In other words, in an icosahedral environment
the nematic order parameter is not symmetry-decomposed but
remains the five-dimensional expression (7), i.e.,

d
icosahedral−→ d. (42)

This property is unique to icosahedral quasicrystals as no
other crystallographic or noncrystallographic point group al-
lows for a five-component IR. For concreteness, in this
section we focus on the larger group Ih, but our results also
apply to the group I. Within Ih, the order parameter trans-
forms according to the five-dimensional IR Hg. While both the
isotropic O(3) and the icosahedral Ih environments host five-
component nematic order parameters, the preferred directions
of the nematic director in the latter should be severely re-
stricted due to the finite number of symmetry axes. Therefore,

because the system lacks a continuous rotational symmetry,
the nematic ground state of an icosahedral quasicrystal should
be qualitatively different from the isotropic case. Mathemati-
cally, this difference should be reflected in the corresponding
nematic Landau expansion, which we now derive.

Here, and in all subsequent sections of this paper, we fol-
low the same strategy to derive the Landau expansion. First,
we compute the decomposition, for each expansion order, of
the symmetrized products of the IR according to which the
nematic order parameter transforms (see Appendix B). We
find [⊗2

j=1Hg
]

s
= Ag ⊕ Gg ⊕ 2Hg, (43)[⊗3

j=1Hg
]

s
= 2Ag ⊕ T1g ⊕ T2g ⊕ 3Gg ⊕ 3Hg, (44)[⊗4

j=1Hg
]

s
= 2Ag ⊕ 2T1g ⊕ 2T2g ⊕ 4Gg ⊕ 8Hg. (45)

Therefore, the Landau expansion up to fourth order contains
a total of five invariants (i.e., five terms that transform as
the trivial IR Ag), in contrast with the three invariants of
the isotropic case, see Eqs. (16)–(18). To construct these five
invariants it is convenient to determine the bilinear combina-
tions associated with Eq. (43), which we denote by DAg =
|d|2, DGg , DHg,1, and DHg,2. Note that the two Hg bilinears
are degenerate. As explained in Appendix C, we choose a
representation where DHg,1 = D j=2, as defined in Eq. (19),
and

DHg,2 = R5(−φ0)

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

d̃2
1 − d̃2

2 + 1
2

(
d̃2

3 + d̃2
4 − 2d̃2

5

)
−2d̃1d̃2 −

√
3

2

(
d̃2

3 − d̃2
4

)
(
d̃1 − √

3d̃2
)
d̃3 + √

3d̃4d̃5(
d̃1 + √

3d̃2
)
d̃4 + √

3d̃3d̃5

−2d̃1d̃5 + √
3d̃3d̃4

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (46)

Here, we introduced d̃ = R5(φ0)d with angle φ0 =
arccos(−1/4) and the particular rotation matrix

R5(φ) =

⎛
⎜⎜⎜⎜⎝

cos φ sin φ 0 0 0
− sin φ cos φ 0 0 0

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠. (47)

Correspondingly, the two Hg bilinears are related through the
equation DHg,2 = R5(−φ0)DHg,1|d→d̃ , and thus have the same
magnitude |DHg,1| = |DHg,2| = |d|2. For our purposes, we do
not need DGg , although it can be derived in a straightforward
way. With the aid of the two Hg bilinears, the five Ag invariants
in Eqs. (43)–(45) can be constructed as |d|2, |d|4, d · DHg,1, d ·
DHg,2, and DHg,1 · DHg,2. The resulting nematic Landau action
becomes

S =
∫

x

{
r0|d|2 + |d|3(g1d̂ · D̂

Hg,1 + g2d̂ · D̂
Hg,2)

+ |d|4(u1 + u2 D̂
Hg,1 · D̂

Hg,2)}
, (48)

with the unit vectors d̂ = d/|d| and D̂
Hg,1/2 = DHg,1/2/|d|2,

the cubic coefficients g1 and g2, and the quartic coefficients
u1 and u2, which are restricted to 0 � |u2| < u1 in order
for the action to be bounded. Since the action (48) has not
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FIG. 3. Nematic mean-field phase diagram of an icosahedral
quasicrystal obtained by a mean-field minimization of the ac-
tion (48). The parameters u1, u2 and g1, g2 are the quartic and
cubic Landau coefficients, respectively. Each state is characterized
by the angle α denoting either a tensile nematic state (α = π/3) or
a compressive nematic state (α = 0), see Eq. (14). In this figure, we
set g1 > 0. The case g1 < 0 is recovered by switching (α = 0) ↔
(α = π/3).

been explored in the literature, we first establish the corre-
sponding mean-field ground-state phase diagram. The details
of the derivation are given in Appendix C; here, we focus
on the numerically obtained phase diagram shown in Fig. 3
in the (g2/g1, u2/u1) parameter space. Clearly, the Landau
expansion (48) has two distinct ground-state phases, which
we dub C3 nematic and C5 nematic, based on the residual
rotational symmetry of each state. Note that in this projected
phase diagram, we implicitly assume that the value of the
quadratic coefficient r0 is small enough such that the system
is in the nematic phase. In other words, this phase diagram
does not determine when the nematic transition takes place.
Instead, it expresses which nematic state is selected below the
nematic transition temperature for a given set of higher-order
Landau coefficients.

We first discuss the C3 nematic phase, by focusing on the
parameter regime sign g1 = sign g2 and u2 < 0 (bottom-right
quadrant in Fig. 3). In this region, the condition D̂

Hg,1 =
D̂

Hg,2 = −sign g1d̂ minimizes not only the two cubic terms
of Eq. (48), but also the anisotropic quartic term, i.e., all
three direction-dependent terms are simultaneously mini-
mized. This condition is satisfied for 10 directions of the
nematic order parameter d̂, which are associated with the ten
threefold symmetry axes V ico

3 in Eq. (34). Indeed, in the (nml )
representation (14), the C3 nematic ground state is given by

g1 > 0: d ico
3,i = d

[|d|, α = π/3, ni, mi = V ico
3,i , l i

]
, (49)

g1 < 0: d ico
3,i = d

[|d|, α = 0, ni = V ico
3,i , mi, l i

]
, (50)

with i = 1, . . . , 10. Since α = π/3 or α = 0, both ground
states are uniaxial, see Eqs. (26) and (27), with the state
described by Eq. (49) being a tensile nematic state (α = π/3)
and the state described by Eq. (50) being a compressive ne-
matic state (α = 0). In Fig. 4(a), we plot the Fermi-surface
distortion associated with the tensile C3 nematic ground
state (49) using Eq. (31). Note that, while strictly speaking,

FIG. 4. Distorted Fermi surface in the nematic phase, as given
by Eq. (32), plotted together with the nematic axes n, m, l . (a) Icosa-
hedral C3 nematic state (49); (b) icosahedral C5 nematic state (51);
(c) cubic triplet (T2g) state (62); (d) cubic doublet (Eg) state (70).
In all cases, the α = π/3 (tensile) state is plotted, and the nematic
director is parallel to m. The unit vectors {n, m, l} are rescaled by
2.2 kF ({n, m, l}), respectively.

the crystal momentum is not a good quantum number for a
quasicrystal, plotting Eq. (32) is useful to visualize, even if
perturbatively only, the effect of the broken rotational symme-
try on the otherwise spherically symmetric electronic charge
distribution. To visualize the allowed directions of the nematic
director m, we draw in the same figure an icosahedron con-
centric to the Fermi surface, which consists of 20 identical
equilateral triangles. Clearly, the long axis m points towards
the center of one these equilateral triangles. Since there are 20
such triangles, and because ±m are identical nematic states,
there are indeed ten degenerate states. Because ni or mi can
only point along ten symmetry-related directions, the broken
symmetry is discrete. Note that the resulting point group in
this case is D3d. While it belongs to the crystallographic
trigonal system, this does not imply that the quasicrystal will
become a crystal rather than an incommensurate crystal. Nev-
ertheless, it is interesting that a nematic transition changes the
point group from noncrystallographic to crystallographic.

To discuss the C5 nematic phase, we consider the param-
eter range sign g1 = −sign g2 and u2 > 0, corresponding to
the top-left quadrant in the phase diagram of Fig. 3. In this
case, the simultaneous minimization of the three anisotropic
terms of the action (48) is achieved by the condition D̂

Hg,1 =
−D̂

Hg,2 = −sign g1d̂. This condition, in turn, is satisfied for
six directions of d̂ that are associated with the six fivefold
symmetry axes V ico

5 in Eq. (33). In analogy to the C3 ne-
matic phase, the C5 nematic ground state is uniaxial and
parametrized as

g1 > 0: d ico
5,i = d

[|d|, α = π/3, ni, mi = V ico
5,i , l i

]
, (51)

g1 < 0: d ico
5,i = d

[|d|, α = 0, ni = V ico
5,i , mi, l i

]
, (52)

where i = 1, . . . , 6. We visualize the tensile Fermi-surface
distortion associated with the tensile state (51) in Fig. 4(b).
In the C5 nematic phase, the nematic director m aligns with
the corners of the icosahedron. Since there are twelve such
corners, we find indeed six degenerate C5 nematic states. The
residual symmetries inside the nematic phase result in the
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point group D5d, which is also a noncrystallographic point
group.

The nematic phase diagram in Fig. 3 shows that the C3 ne-
matic state (49) and the C5 nematic state (51) actually occupy
the entire phase space, including regions where not all three
anisotropic terms in (48) can be satisfied simultaneously. As
shown in the top-right and bottom-left corner, a tensile ground
state can become a compressive one upon traversing the phase
diagram.

B. Cubic crystals

Candidate nematic materials with cubic symmetry include
the colossal magnetoresistance compound EuB6 [26] and the
topological semimetal CaSn3 [32]. The cubic crystal system
consists of two octahedral point groups (Oh, O) and three
tetrahedral point groups (Th, Td, T). In all five cases, the
reduced symmetry with respect to the icosahedral point group
leads to a symmetry decomposition of the five-component
nematic order parameter d (7) according to

d
cubic−→ (de, dt )T , (53)

where the doublet de and the triplet dt nematic vectors are
given by

de =
(

d1

d2

)
=
(

d 1√
3

(2z2−x2−y2 )

dx2−y2

)
= |de|

(
cos γe

sin γe

)
, (54)

dt = (d3, d4, d5)T = (d2yz, d2xz, d2xy)T . (55)

In terms of the IRs of the five groups (Oh, O, Th, Td, T),
dt always transforms as a three-dimensional IR (T2g, T2, Tg,
T2, and T , respectively) whereas de transforms as a two-
dimensional IR (Eg, E , Eg ⊕ Ēg, E , and E ⊕ Ē , respectively).
Our goal is to derive the Landau expansions for both types
of nematics and then determine the mean-field ground states
in the (nml ) representation (14). For concreteness, we focus
on the most symmetric cubic point group Oh and comment on
the extension to the other four cubic point groups in the end
of this section.

We begin with the nematic triplet order parameter dt (55),
which transforms as the T2g IR of Oh. The decomposition of
the symmetrized product for each expansion order gives[⊗2

j=1T2g
]

s
= A1g ⊕ Eg ⊕ T2g, (56)

[⊗3
j=1T2g

]
s
= A1g ⊕ T1g ⊕ 2T2g, (57)

[⊗4
j=1T2g

]
s
= 2A1g ⊕ 2Eg ⊕ T1g ⊕ 2T2g, (58)

which implies the existence of four invariants in the Lan-
dau expansion up to fourth order. To systematically construct
them, it is convenient to exploit the bilinears associated
with the quadratic decomposition, Eq. (56). We find that
DA1g = |dt |2 and

DEg =
(

1√
3

(
2d2

5 − d2
3 − d2

4

)(
d2

3 − d2
4

)
)

, DT2g =
⎛
⎝2d4d5

2d3d5

2d3d4

⎞
⎠. (59)

In terms of these bilinears, the four invariants become |dt |2 to
quadratic order, dt · DT2g to cubic order, and |dt |4 and DT2g ·

DT2g to quartic order. Note that the quartic term could equally
be written in terms of DEg · DEg by using the Fierz identity
DEg · DEg = 4

3 |dt |4 − DT2g · DT2g . Therefore, the resulting Lan-
dau expansion is

S =
∫

x

{
r0|dt |2 + gd3d4d5 + u1|dt |4

+ u2
(
d2

3 d2
4 + d2

3 d2
5 + d2

4 d2
5

)}
, (60)

with the cubic and quartic Landau coefficients g, u1, u2.
The Landau expansion (60) is the same as that of the four-
state Potts model (Z4 Potts) [103]. It is well established
that the upper critical dimension of this model is below
three, du < 3 [104]. Consequently, a mean-field solution of
Eq. (60) is appropriate, resulting in a first-order transition
and in a fourfold degenerate ground-state manifold given by
dt

0,i = sign(−g)|dt |VZ4
i with i = 1, . . . , 4 and

VZ4 = 1√
3

⎧⎨
⎩
⎛
⎝1

1
1

⎞
⎠,

⎛
⎝−1

−1
1

⎞
⎠,

⎛
⎝ 1

−1
−1

⎞
⎠,

⎛
⎝−1

1
−1

⎞
⎠
⎫⎬
⎭. (61)

This fourfold degeneracy is associated with the four threefold
symmetry axes V111 defined in Eq. (35). Indeed, in the (nml )
representation of Eq. (14), these four states are given by

g > 0: dt
0,i = d

[|dt |, α = π/3, ni, mi = V111
i , l i

]
, (62)

g < 0: dt
0,i = d

[|dt |, α = 0, ni = V111
i , mi, l i

]
. (63)

Since α = π/3 or α = 0, the nematic states (62) and (63) are
uniaxial [recall Eqs. (26) and (27)], and the nematic director
is determined by either m or n, respectively. In Fig. 4(c), we
show the distorted Fermi surface associated with the tensile
(i.e., α = π/3) nematic state, Eq. (62). Note that the nematic
director m points towards the corners of the cube that is
concentric to the Fermi surface. Since there are eight such
corners, the number of degenerate states is four, since ±m
correspond to the same state.

Next, we consider the nematic doublet order parameter
de (54), which transforms as the Eg IR of Oh. Following the
same procedure as above, we first perform the decomposition
of the symmetrized product for each Landau-expansion order:[⊗2

j=1Eg
]

s
= A1g ⊕ Eg, (64)

[⊗3
j=1Eg

]
s
= A1g ⊕ A2g ⊕ Eg, (65)

[⊗4
j=1Eg

]
s
= A1g ⊕ 2Eg, (66)

which reveals the existence of one A1g invariant per expansion
order. The bilinear combinations in Eq. (64) can be readily
obtained:

DA1g = |de|2, DEg = |de|2
(

cos 2γe

− sin 2γe

)
. (67)

Using these bilinears, we can express the three invariants
as |de|2, |de|4, and de · DEg , such that the nematic Landau
expansion becomes:

S =
∫

x
{r0|de|2 + g|de|3 cos (3γe) + u|de|4}. (68)
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The nematic action (68) has the same Landau expansion as
the three-state Potts model (Z3 Potts) [104]. We note that the
three-state Potts model is in the same universality class as
the three-state clock model (Z3 clock), so we use these terms
interchangeably in the remainder of the paper. We discuss
further the differences between Zq Potts and Zq clock models
in Sec. IV. The key point is that the upper critical dimension
of the Z3 Potts (which is equivalent to the Z3 clock) model
is du < 3. Therefore, as in the case of the triplet nematic,
a mean-field solution of Eq. (68) is appropriate. We find a
threefold degenerate ground-state manifold given by de

0,i =
sign(−g)|de|VZ3

i with i = 1, 2, 3 and

VZ3 =
{(

1
0

)
,

1

2

(−1√
3

)
,

1

2

( −1
−√

3

)}
. (69)

This threefold degeneracy is related to the three fourfold ro-
tation axes V100 in Eq. (41), which are parallel to the three
coordinate axes. This can be directly seen upon writing the
nematic ground state in the (nml ) representation (14):

g > 0: de
0,i = d

[|de|, α = π/3, ni, mi = V100
i , l i

]
, (70)

g < 0: de
0,i = d

[|de|, α = 0, ni = V100
i , mi, l i

]
. (71)

As in the case of the T2g (triplet) nematic, the Eg (dou-
blet) nematic state is uniaxial with the nematic director m
or n pointing along one of the three coordinate axes. This
is illustrated in Fig. 4(d), where we plot the Fermi-surface
distortion associated with the tensile (i.e. α = π/3) state given
by Eq. (70).

While the analysis performed above focused on the Oh

group, the same general results hold for the doublet and triplet
nematics of the other four cubic point groups, as shown in
Table I. It is important to note, however, that the case of the
nematic doublet order parameter de in the tetrahedral point
groups Th and T needs to be treated slightly differently, be-
cause de transforms according to a complex IR, which allows
for additional invariants in the Landau expansion, which in
turn make the nematic state biaxial rather than uniaxial. A
detailed derivation of this case is presented in Appendix D.

IV. ELECTRONIC NEMATICITY IN
CRYSTALLOGRAPHIC AXIAL POINT GROUPS

In contrast with the family of polyhedral point groups,
which encompasses the seven point groups discussed in
Sec. III, there is an infinite number of axial groups. Their
defining property, as the name indicates, is their underlying
cylindrical symmetry, which implies that the system is invari-
ant under some n-fold proper or improper rotation with respect
to the z axis. This symmetry can be accompanied by additional
symmetries related to inversion or twofold rotations with re-
spect to in-plane axes, resulting in a total of seven series of
axial groups, as shown in Fig. 1. They can be constructed from
two axial group series corresponding to the cyclic group Cn

and the group S2n:

Cn = {E ,Cnz,C2
nz, . . . ,Cn−1

nz

}
, n ∈ [2, 3, . . . ,∞], (72)

S2n = {E , S2nz, S2
2nz, . . . , S2n−1

2nz

}
, n ∈ [2, 3, . . . ,∞]. (73)

Here, E is the identity operation, Cnz corresponds to an n-fold
rotation with respect to the z axis, and the improper rotation
(or rotoinversion) operation Snz is defined as a proper rotation
Cnz followed by a reflection with respect to the horizontal
mirror, Snz = IC2zCnz. Note that we can also extend these defi-
nitions to include the groups C1 = {E} and S2 = Ci = {E , I}.
The remaining five infinite series of axial groups are obtained
from Cn or S2n in the following way:

Dn = Cn × {E ,C2x}, (74)

Cnv = Cn × {E , IC2x}, (75)

Cnh = Cn × {E , IC2z}, (76)

Dnd = S2n × {E ,C2x}, (77)

Dnh = Cn × {E , IC2z} × {E ,C2x}, (78)

where I denotes inversion and C2x, twofold rotation with
respect to the in-plane x axis. Note that the compositions
IC2z and IC2x correspond to reflections with respect to the
horizontal and vertical mirrors (denoted σh and σv), whereas
IC2yC4z = S4zC2x corresponds to a reflection with respect to
the diagonal mirror (denoted σd ).

Upon imposing the crystallographic restriction theorem,
one finds 27 crystallographic axial point groups correspond-
ing to the following six crystal systems: hexagonal, trigonal,
tetragonal, orthorhombic, monoclinic, and triclinic. Together
with the five crystallographic polyhedral point groups dis-
cussed in Sec. III that form the cubic crystal system, one finds
32 crystallographic point groups. While this section focuses
on the 27 crystallographic axial groups, we discuss noncrys-
tallographic axial point groups that are relevant to quasicrys-
talline materials [86,88,89,91,105] (octagonal, decagonal, and
dodecagonal) and to twisted quasicrystals [93–95,106] in
Sec. V.

A. Two-dimensional isotropic systems

To set the stage for the analysis of electronic nematicity in
axial groups, it is instructive to analyze the case in which the
system has full in-plane rotational symmetry. To describe such
a system, one possibility would be to consider the continuous
SO(2) group, which describes 2D rotations and is equivalent
to C∞ defined in Eq. (72). However, for our purposes, it is
more convenient to consider the continuous dihedral group
D∞h, since all other axial groups are subgroups of D∞h. For-
mally, the elements of this group include continuous proper
and improper 2D rotations as well as a horizontal mirror, i.e.,
D∞h = SO(2) × {E , I} × {E ,C2x}. Hereafter, we simply refer
to such a system as a 2D isotropic system.

In the 2D isotropic case, the five-dimensional nematic or-
der parameter d (7) decomposes into three separate channels,

d
in-planeisotropic−→ ( d1, d ip, dop)T . (79)

The first component d1 = d 1√
3

(2z2−x2−y2 ) transforms as the triv-

ial IR A1g of D∞h, which we indicate by the underline in
the expression above. The other components d ip and dop are
two-component “vectors” (i.e., doublets) that transform as dif-
ferent two-dimensional IRs of D∞h, E2g, and E1g, respectively.
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They are given by

d ip =
(

d2

d5

)
=
(

dx2−y2

d2xy

)
= |d ip|

(
cos γip

sin γip

)
, (80)

dop =
(

d3

d4

)
=
(

d2yz

d2xz

)
= |dop|

(
cos γop

sin γop

)
, (81)

where we introduced a polar parametrization in terms of the
angles γip and γop. The superscripts ip and op are used to
indicate that the condensation of the order parameter promotes
an in-plane or out-of-plane distortion of the Fermi surface,
respectively. Importantly, as explained in Sec. II, we are us-
ing the transformation rule in Eq. (10) to define the nematic
order parameter for all point groups, which results in the
definitions (80), (81). In the literature, one often uses a point-
group-specific basis to define the nematic order parameter,
resulting in definitions such as d̃

ip = (dx2−y2 , −d2xy)T and
d̃

op = (d2yz, −d2xz )T [107]. Further implications arising from
different definitions are discussed in Sec. VI. Of course, the
final results do not depend on the basis used to express the
nematic order parameter.

We emphasize that, because the nematic component d1

transforms trivially in D∞h, it will do so for all axial groups.
Therefore, d 1√

3
(2z2−x2−y2 ) should not be interpreted as a ne-

matic order parameter, since it is generically nonzero for any
temperature or tuning parameter. Physically, from Eq. (32),
d1 �= 0 corresponds to a distortion of the isotropic Fermi sur-
face along the kz axis, lowering its symmetry from spherical
to cylindrical—as expected for an axial group. As we argue
below, while d1 does not impact the critical properties of the
nematic instability, it needs to be included if one chooses to
express the nematic order parameter d in the (nml ) represen-
tation of Eq. (14).

We now proceed to derive the Landau expansions for d ip

and dop. Since they transform according to the IRs E2g and E1g

of the infinite dihedral group D∞h, respectively, the number of
invariants for each expansion order can be read off from the
symmetrized-product decomposition:[⊗2N

j=1E2g
]

s
= A1g ⊕N

n=1 E(4n)g, (82)

[⊗2N−1
j=1 E2g

]
s
= ⊕N

n=1E(4n−2)g, (83)

[⊗2N
j=1E1g

]
s
= A1g ⊕N

n=1 E(2n)g, (84)

[⊗2N−1
j=1 E1g

]
s
= ⊕N

n=1E(2n−1)g, (85)

with N = 1, 2, 3 and where we used a tensor summation nota-
tion, e.g., ⊕2

n=1E(4n)g = E4g ⊕ E8g. The decompositions (82)–
(85) are carried out up to sixth order in order to emphasize
that no A1g invariants occur other than |d ip|2N and |dop|2N ,
i.e., the invariants only occur at even order. Consequently, the
Landau expansions for the in-plane and out-of-plane nematic
order parameters become

Sip =
∫

x
{r0|d ip|2 + u|d ip|4},

Sop =
∫

x
{r̃0|dop|2 + ũ|dop|4}. (86)

Therefore, since d ip and dop are two-component order param-
eters, their actions have the same Landau expansion as the
well-known XY model. Their condensation leads to a contin-
uous symmetry breaking, since the nematic angles γip, γop ∈
[0, 2π ] are not constrained by symmetry and can point in any
direction.

It is illustrative to rewrite the fully isotropic nematic or-
der parameters (80) and (81) in the (nml ) representation of
Eq. (14). For the description of the in-plane nematic order pa-
rameter d ip, it is convenient to introduce the three orthonormal
vectors in cylindrical coordinates

eA
‖ =

⎛
⎝cos(γip/2)

sin
(
γip/2

)
0

⎞
⎠, eB

‖ =
⎛
⎝− sin(γip/2)

cos(γip/2)
0

⎞
⎠, ez =

⎛
⎝0

0
1

⎞
⎠.

(87)

The magnitude of the nematic order parameter is given by
|d| = [|d ip|2 + (d1)2]1/2, where d1, as explained above, is al-
ways nonzero, and can thus be considered as an intrinsic
parameter characterizing the 2D isotropic system even in the
absence of symmetry-breaking nematic order. Depending on
the value of the ratio −1 < d1/|d| < 1, we find three differ-
ent regimes of parameters that characterize d in the (nml )
representation:

|d1|
|d| � 1

2
: α = π

6
+ arcsin

(
d1

|d|
)

,

n = eA
‖ , m = eB

‖ , l = ez,

d1

|d| <
−1

2
: α = arcsin

( |d1|
|d|
)

− π

6
,

n = eA
‖ , m = ez, l = eB

‖ ,

d1

|d| >
1

2
: α = π

2
− arcsin

( |d1|
|d|
)

,

n = ez, m = eB
‖ , l = eA

‖ . (88)

As for the out-of-plane nematic order parameter, we have
|d| = [|dop|2 + (d1)2]1/2 and

α = π

6
− arcsin [d1/(2|d|)],

n =
⎛
⎝sin γop cos ηop

cos γop cos ηop

sin ηop

⎞
⎠, m =

⎛
⎝sin γop sin ηop

cos γop sin ηop

− cos ηop

⎞
⎠, (89)

l =
⎛
⎝ cos γop

− sin γop

0

⎞
⎠,

where we defined the polar angle:

ηop = −1

2
sign(d1) arcsin

(
|dop|

/√
|dop|2 + 3

4
(d1)2

)

+ π

2

1 + sign(d1)

2
. (90)

Both the in-plane (88) and the out-of-plane (89) nematic states
are generically biaxial, since α �= 0, π/3. Note that, if the
contribution from the trivial nematic component is negligible,
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|d1| � |d ip|, |dop|, both states are “maximally” biaxial with
α = π/6 [cf. Fig. 2(a)]. In this regard, a nonzero d1 brings
the states (88) and (89) closer to the uniaxial regime. Indeed,
in the limit |d1| � |d ip|, |dop|, α → 0, π/3 in both cases,
with the nematic director n or m pointing along the kz axis.
Interestingly, the nematic in-plane order parameter (88) also
establishes a uniaxial state when |d1| = |d ip|/√3, correspond-
ing to |d1|/|d| = 1/2. In this fine-tuned parameter regime,
there is a swap between the nematic axes that point along the
kz axis, since for |d1| > |d ip|/√3 either the long or the short
nematic axis (m or n) points out of plane, while for |d1| <

|d ip|/√3 the long and short nematic axes both lie within the
plane. Since d ip and dop also emerge in the description of
hexagonal and tetragonal lattices, we defer plotting the Fermi-
surface distortion patterns triggered by the condensation of
these nematic order parameters to the subsequent sections.

An alternative representation of the 2D isotropic in-plane
nematic order parameter d ip has also been widely employed in
the literature [37,48–51,61–63], building on the analogy with
the classical two-dimensional tensorial nematic order param-
eter Qμμ′ = 〈aμaμ′ − 1

2δμμ′a2〉, with director a = (ax, ay). In
terms of the quadrupolar order parameters, the electronic ne-
matic order parameter is given by

Q =
(

dx2−y2 d2xy

d2xy −dx2−y2

)
= d ip · τ ip, (91)

where τ ip = (τ 3, τ 1) with Pauli matrices τ i. This form
establishes a straightforward connection between the two-
component “vector” d ip = (d2, d5)T = (dx2−y2 , d2xy)T and Q
similar to the 3D case in Eq. (8), with the symmetric Pauli
matrices replacing the symmetric Gell-Mann matrices. To
preserve rotational invariance, the Landau expansion can only
depend on traces of powers of Q:

Sip =
∫

x

∑
n

κn

2
tr(Qn), (92)

where κn are Landau coefficients. Using the facts that (d ip ·
τ ip)2n = |d ip|2nτ 0, and thus tr[(d ip · τ ip)2n+1] = |d ip|2ntr[d ip ·
τ ip] = 0, we find

Sip =
∫

x

∑
n

κ2n |d ip|2n =
∫

x
{r0|d ip|2+ u|d ip|4 + O(|d ip|6)},

(93)

which is identical to Eq. (86). When comparing with the
Landau expansion of the 3D isotropic case, Eq. (21), the
main difference is the absence of the cubic term. Ultimately,
this can be traced back to the fundamental differences in the
SU(2) and SU(3) Lie algebras, reflected in the fact that differ-
ent Pauli matrices necessarily anticommute whereas different
Gell-Mann matrices do not necessarily anticommute.

As discussed above in the context of Eq. (86), electronic
nematicity in the 2D isotropic system (either in plane or out
of plane) belongs to the XY universality class, implying the
existence of a Goldstone mode in the nematically ordered
state. As discussed in Refs. [48,108], the coupling between
this Goldstone mode and low-energy electronic degrees of
freedom can promote interesting phenomena, such as non-
Fermi-liquid behavior. As we see below, the main effect of the
explicit breaking of the full rotational symmetry in a lattice

described by an axial point group is the emergence of an
anisotropic term in the Landau expansion:

Saxial =
∫

x
{r0|dα|2 + u|dα|4 + hq|dα|q cos (qγα )}, (94)

where q is a positive integer that is the same within the same
crystal system (hexagonal, trigonal, tetragonal, orthorhombic,
monoclinic, and triclinic), α can refer to ip or op, and hq

is a Landau coefficient. For the (crystallographic and non-
crystallographic) axial groups that we investigated here, we
found the following general result: if the group has (2n)-fold
symmetry, then q = n for α = ip and q = 2n for α = op. On
the other hand, if the axial group has (2n + 1)-fold symmetry,
q = 2n + 1 for both α = ip and α = op.

We note that Eq. (94) corresponds to the Landau expansion
of the q state “soft” clock model (Zq clock), whose classical
critical properties are well understood [109]. In three dimen-
sions (and nonzero temperatures), which is the case of most
relevance here, the character of the transition is (of course,
q=1 implies explicitly broken symmetry): 3D-Ising for q=2,
first-order for q = 3, and 3D XY for q � 4. The latter result
is a consequence of the fact that hq is a dangerously irrelevant
perturbation (in the renormalization-group sense) for q � 4,
i.e., it is irrelevant at the nematic critical point but relevant
inside the nematically ordered state [110–112]. Thus, even
though the transition is XY -like, the ordered state does not
display a Goldstone mode, but a gapped pseudo-Goldstone
mode.

It is important to point out that crystals described by an
axial point group can be very anisotropic and display behavior
intermediate between 2D and 3D. Moreover, as we discuss
in Sec. V D, twisted quasicrystals are 2D systems. In this
regard, it is interesting to note that the Zq clock model has
rather unique properties in 2D [109]. While the q = 2 model
undergoes a standard 2D-Ising transition, the q = 3 model
undergoes a second-order transition despite the existence of
a cubic term in the Landau expansion. More surprisingly, for
q � 5, the 2D Zq clock model undergoes two Berezinskii-
Kosterlitz-Thouless (BKT) transitions: a higher-temperature
BKT transition towards a critical phase with quasi-long-range
order, analogous to that displayed by the XY model at nonzero
temperatures, and a lower-temperature BKT transition to-
wards a state with long-range order where the discrete clock
symmetry is broken. Interestingly, for q = 4, these two BKT
transitions merge into a single line. As a result, the critical
behavior of the 2D Z4 clock model, which maps onto the 2D
Ashkin-Teller model, is only weakly universal [113], since
while the anomalous critical exponent is fixed to η = 1/4,
the other exponents depend on the value of h4 [114]. The
crossover from 2D to 3D Zq clock behavior has been recently
discussed numerically in Ref. [112] and also indirectly in
the context of quantum critical points in 2D Zq clock sys-
tems [57–59,115,116]. Finally, we emphasize that the critical
properties of the Zq clock model are generically different from
those of the Zq Potts model, except for the special case q = 3,
where they share the same universality class [104]. For this
reason, as explained in the previous section, we use the terms
Z3 clock and Z3 Potts interchangeably.

Finally, we show in Appendixes E–G that, in the cases
where the nematic order parameter transforms as a complex
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IR, which reflects the lack of twofold in-plane rotation axes in
the crystal, the clock term in the action (94) acquires an offset
angle, which can be traced back to the existence of another
anisotropic term in the Landau expansion, h̃q|dα|q sin(qγα )
(see also Ref. [102]):

Saxial=
∫

x
{r0|dα|2 + u|dα|4 + hq|dα|q cos (qγα − δ0)}. (95)

To distinguish it from Eq. (95), we denote the Landau expan-
sion above a Z∗

q clock model. An offset angle is also found
when the two nematic doublets are “degenerate,” i.e., trans-
form as the same IR, as is the case in trigonal point groups.

B. Hexagonal crystals

Candidate nematic systems with underlying hexago-
nal symmetry include Fe1/3NbS2 [27], the kagome metal
CoSn [25], twisted bilayer graphene [17,18], and hexagonal
sp2 optical lattices [33]. The hexagonal crystal system con-
sists of seven crystallographic axial point groups: D6h, D6,
D3h, C6v, C6h, C3h, and C6. In all cases, the nematic order
parameter d in Eq. (7) decomposes into the three channels in
the same way as in the 2D isotropic case,

d
hexagonal−→ ( d1, d ip, dop )T . (96)

We recall that an underline means that the correspond-
ing nematic component transforms as the trivial IR of the
point group. The most notable difference with respect to the
isotropic case is, of course, the limited number of Cnz or
ICnz symmetry elements, which reduces the continuous XY
degeneracy of the nematic angles γip and γop down to either
threefold or sixfold degeneracies, as we demonstrate below.
Within the hexagonal crystal system, one needs to distinguish
between the sets of point groups {D6h, D6, D3h, C6v} and {C6h,
C3h, C6}, since only the former possess the characteristic six
in-plane symmetry axes

Vhex
1 =

⎧⎪⎨
⎪⎩
⎛
⎝1

0
0

⎞
⎠,

⎛
⎜⎝

− 1
2√
3

2

0

⎞
⎟⎠,

⎛
⎜⎝

− 1
2

−
√

3
2

0

⎞
⎟⎠
⎫⎪⎬
⎪⎭,

Vhex
2 =

⎧⎪⎨
⎪⎩
⎛
⎝0

1
0

⎞
⎠,

⎛
⎜⎝−

√
3

2

− 1
2

0

⎞
⎟⎠,

⎛
⎜⎝

√
3

2

− 1
2

0

⎞
⎟⎠
⎫⎪⎬
⎪⎭, (97)

see Eqs. (72) and (76). Mathematically, the absence of in-
plane symmetry axes is manifested in the nematic doublets d ip

and dop transforming according to complex IRs, which causes
additional Landau invariants to emerge when compared with
the generic Zq clock Landau expansion of Eq. (94). As we
show in detail in Appendix E, this additional Landau invariant
for the groups {C6h, C3h, C6} can be recast as an offset angle
in the clock term, see Eq. (95). In this section, we focus
instead on the first set of groups, {D6h, D6, D3h, C6v}, for
which the nematic doublets d ip and dop transform as real two-
dimensional IRs. For concreteness, we show the derivation for
the point group D6h, where d ip and dop transform according to
the IRs E2g and E1g, respectively. The results equally apply to
the other groups of the set, {D6, D3h, C6v}.

Consider first the in-plane nematic order parameter
d ip = (d2, d5)T = (dx2−y2 , d2xy)T . The symmetrized product
decomposition for each expansion order is given by[⊗2

j=1E2g
]

s
= A1g ⊕ E2g, (98)

[⊗3
j=1E2g

]
s
= A1g ⊕ A2g ⊕ E2g, (99)

[⊗4
j=1E2g

]
s
= A1g ⊕ 2E2g. (100)

To construct the three A1g Landau invariants, we derive the
bilinear combinations associated with Eq. (98):

D
A1g

ip = |d ip|2, DE2g

ip = |d ip|2( cos
(
2γip
)
,− sin

(
2γip
))T

.

(101)

Then, the three invariants become |d ip|2, |d ip|4, and d ip · DE2g

ip ,

since both d ip and DE2g

ip transform as E2g. The corresponding
Landau expansion,

Sip =
∫

x

{
r0|d ip|2 + gip|d ip|3 cos

(
3γip
)+ u|d ip|4}, (102)

has the same form as that of the Z3 clock model, Eq. (94),
as derived elsewhere [41,57,74,79]. Correspondingly, the
threefold-degenerate mean-field ground state is given by

γ 0
ip = π

3

(
1 + sign gip

2

)
+ 2π

3
n, n = {0, 1, 2}. (103)

In the (nml ) representation (14), this ground state is
parametrized according to Eq. (88); recall that d1 is the
symmetry-conforming nematic component, which is nonzero
at any temperature or tuning parameter range. We plot the cor-
responding Fermi-surface distortion in Fig. 5(a) by using the
general expression (32). In this figure, we chose gip < 0 and
three values of the trivial component d1/|d| = {0.1, 0.5, 0.9}.
In the top panel where |d1| < |d ip|/√3, the short and long
nematic axes n and m align, respectively, with the in-plane
symmetry axes Vhex

1 and Vhex
2 of Eq. (97), highlighted in

purple and light-blue in the figure. The three degenerate states
correspond to m being aligned with one of the three light-blue
axes, corresponding to Vhex

2 in Eq. (97). For the opposite sign
gip > 0, the long nematic axis m aligns with the purple axes,
which correspond to Vhex

1 in Eq. (97). The biaxial nature of
the nematic order parameter is clear from the shape of the
distorted Fermi surface. To see this in a transparent way, we
rescaled the vectors in the figure by 2.5 kF ({n, m, l}) such that
their length reflects the extension of the Fermi surface along
the respective direction. A uniaxial nematic requires two
of the vectors to have the same length, which is generally
not the case here. Upon increasing |d1|/|d|, we demonstrate
in the second panel of Fig. 5(a) how the nematic state passes
through a fine-tuned uniaxial point at |d1| = |d|/2, according
to Eq. (88). In the parameter range |d1| > |d|/2 [third panel of
Fig. 5(a)], two nematic axes are interchanged, and the nematic
state becomes gradually more in-plane isotropic.

We now discuss the case of the out-of-plane nematic dou-
blet dop = (d3, d4)T = (d2yz, d2xz )T , which transforms as the
E1g IR of D6h. The decomposition of the symmetrized product
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FIG. 5. Distorted Fermi surface in the nematic phase, as given
by Eq. (32), plotted together with the nematic axes n, m, l for the
cases of (a) hexagonal in-plane doublet state (103) for three values
of d1/|d|, and (b) out-of-plane doublet state (111). (c)–(e) trigonal
nematic state (139) for three values of Kr (135). The unit vectors
{n, m, l} are rescaled by 2.5 kF ({n, m, l}), respectively. Unless spec-
ified otherwise, we chose d1/|d| = 0.1.

gives [⊗2
j=1E1g

]
s
= A1g ⊕ E2g, (104)

[⊗3
j=1E1g

]
s
= B1g ⊕ B2g ⊕ E1g, (105)

[⊗4
j=1E1g

]
s
= A1g ⊕ 2E2g, (106)

[⊗5
j=1E1g

]
s
= B1g ⊕ B2g ⊕ 2E1g, (107)

[⊗6
j=1E1g

]
s
= 2A1g ⊕ A2g ⊕ 2E2g. (108)

Here, we extended the expansion to sixth-order to include the
leading anisotropic invariant, i.e., the leading-order invariant
that depends on the angle γop. Using the bilinears associated
with Eq. (104),

D
A1g
op = |dop|2, DE2g

op = |dop|2( cos
(
2γop

)
,− sin

(
2γop

))T
,

(109)

the four invariants can be constructed as |dop|2, |dop|4, |dop|6,
(dop · DE2g

op )2, where we used the fact that dop · DE2g
op transforms

as B1g. The resulting nematic Landau expansion can be written
as

Sop =
∫

x

{
r0|dop|2+ u|dop|4+ u6|dop|6 + v6|dop|6 cos

(
6γop

)}
(110)

and corresponds to the Z6 clock model of Eq. (94). Thus,
we find an important difference between the in-plane d ip and
out-of-plane dop nematic order parameters in the hexagonal
lattice: whereas the former undergoes a first-order transition,

the latter is expected to undergo a continuous 3D XY tran-
sition, at which the discrete nature of the nematic angle is
irrelevant (in the renormalization-group sense).

The mean-field ground state of dop is therefore sixfold
degenerate and characterized by the nematic angles

γ 0
op = π

6

(
1 + sign v6

2

)
+ 2π

6
n, n ∈ {0, 1, . . . , 5}. (111)

The distorted Fermi surface associated with this ground state
is shown in Fig. 5(b). In terms of the (nml ) representation
derived in Eq. (89), we see that, regardless of the value of
the trivial nematic component d1, the nematic axis l is al-
ways in-plane and aligned with either Vhex

1 (purple) or Vhex
2

(light-blue) defined in Eq. (97), depending on the sign of the
Landau coefficient v6. The long (m) and short (n) nematic
axes are rotated out of the plane by the tilt angle ηop (90),
which is exactly ±45◦ in the limiting case d1 = 0. To visualize
the sixfold degeneracy of this state, it is useful to invoke the
symmetry elements C2z or IC2z, one of which is present in
every hexagonal point group. They imply the existence of
a nonidentical ground-state configuration that emerges from
Fig. 5(b) through a 180◦ rotation about the kz axis. The key
point is that, under such a rotation, l → −l but m, n are not
mapped onto −m, −n. This implies that, for each of the three
choices for the l axis in Vhex

1 or Vhex
2 , there are two different

sets of possible m, n values, resulting in a sixfold degeneracy.
In contrast, such a sixfold degeneracy is absent for the in-
plane state d ip of Fig. 5(a), since l remains invariant and m,
n are mapped onto −m, −n under a C2z or IC2z operation.

As we mentioned earlier, the same results derived here for
D6h hold for {D6, D3h, C6v} and {C6h, C3h, C6}, as shown in
Table I. The main difference in the latter set is that an offset
angle appears in the anisotropic terms of Eqs. (102) and (110),
see Appendix E, which we indicate as Z∗

3 clock and Z∗
6 clock

models in Table I.

C. Trigonal crystals

Nematic candidate materials with an underlying trigonal
structure include doped Bi2Se3 [15,16], van der Waals anti-
ferromagnets FePSe3 [28,30] and NiPS3 [29,31], as well as
twisted double-bilayer graphene [19]. The axial point groups
D3, D3d, C3v, S6 and C3 form the trigonal crystal system.
In what concerns nematicity, its key distinction with respect
to the hexagonal crystal system, Eq. (96), is that the two
nematic doublets, in-plane d ip = (d2, d5)T = (dx2−y2 , d2xy)T

and out of plane dop = (d3, d4)T = (d2yz, d2xz )T , transform as
the same two-dimensional IR. We thus represent the decom-
position of the five-component nematic order parameter d (7)
as

d
trigonal−→ (d1, {d ip, dop})T , (112)

where the curly brackets are used to indicate degeneracy, i.e.,
nematic components that transform as the same IR. Analo-
gously to the hexagonal case, we must also distinguish the
trigonal group sets {D3, D3d, C3v} and {S6, C3}, as the latter
lacks the in-plane symmetry directions encompassed by Vhex

1 ,
Vhex

2 in Eq. (97). This case, for which d ip and dop transform as
a complex IR, is discussed in Appendix F. Here, as a represen-
tative of the group set {D3, D3d, C3v}, we focus our analysis
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on the point group C3v, for which d ip and dop transform as the
IR E . Repeating the same steps as in the other sections, we
perform the symmetrized product decomposition:[⊗2

j=1E
]

s
= A1 ⊕ E ,

[⊗3
j=1E

]
s
A1 ⊕ A2 ⊕ E , (113)

[⊗4
j=1E

]
s
= A1 ⊕ 2E . (114)

Clearly, this decomposition is analogous to that of the E2g

IR in the hexagonal case, see Eqs. (98)–(102). This suggests
that, individually, each doublet d ip and dop would behave as
a Z3 clock order parameter. Here, however, we must focus on
the combined four-component vector dE = (d ip, dop), which
transforms as (E ⊕ E ). Its symmetrized decomposition, in
turn, gives 13 invariants up to fourth-order in the Landau
expansion: [⊗2

j=1(E ⊕ E )
]

s
= 3A1 ⊕ A2 ⊕ 3E , (115)

[⊗3
j=1(E ⊕ E )

]
s
= 4A1 ⊕ 4A2 ⊕ 6E , (116)

[⊗4
j=1(E ⊕ E )

]
s
= 6A1 ⊕ 3A2 ⊕ 13E . (117)

To systematically construct them, we use the seven bilinears
that appear in the decomposition (115). These include the four
bilinears that transform as one-dimensional IRs

DA1
ip = |d ip|2, DA1

io = |d ip||dop| cos(γip − γop),

DA1
op = |dop|2, DA2

io = |d ip||dop| sin
(
γip − γop

)
, (118)

and the three bilinears that transform as two-dimensional IRs

DE
ip = |d ip|2

(
cos
(
2γip
)

− sin
(
2γip
)),

DE
io = |d ip||dop|

(
cos
(
γip + γop

)
− sin

(
γip + γop

)), (119)

DE
op = |dop|2

(
cos
(
2γop

)
− sin

(
2γop

)).

It is now straightforward to construct the 13 invariants, each
associated with a Landau coefficient. The three quadratic bi-
linears are given by DA1

ip , DA1
op , and DA1

io , whereas the four cubic

invariants are d ip · DE
ip, dop · DE

op, d ip · DE
io, and dop · DE

io. As
for the quartic invariants, they are given by the squares of
the quadratic invariants (DA1

ip )2 and (DA1
op )2, the cross terms

DA1
ip DA1

op , DA1
ip DA1

io and DA1
opDA1

io , as well as (DA1
io )2 − (DA2

io )2.
Writing the action as S = S2 + S3 + S4, we thus have

S2 =
∫

x
{rip(d ip )2 + rop(dop)2 + rio(d ip · dop)}, (120)

S3 =
∫

x

{
gip|d ip|3c3γip + g1|d ip|2|dop|c2γip+γop

+gop|dop|3c3γop + g2|d ip||dop|2cγip+2γop

}
, (121)

S4 =
∫

x

{
uip|d ip|4 + |d ip||dop|[u1|d ip|2 + u2|dop|2]cγip−γop

+uop|dop|4 + |d ip|2|dop|2[u0
io + uc

ioc2γip−2γop

]}
. (122)

To avoid cumbersome notations, we define cγ ≡ cos γ . As
expected, the degeneracy between d ip and dop is manifested
in the quadratic mixing term d ip · dop.

To determine the mean-field ground state, we first di-
agonalize the quadratic part S2 (120) to determine the
combination of (d ip, dop) that orders first. We find

S2 =
∫

x
{λ+|d+|2 + λ−|d−|2}, (123)

with the eigenvalues

λ± = 1
2

(
rip + rop ±

√
(rip − rop)2 + r2

io

)
, (124)

and the eigenvectors(
d+

d−

)
= U T

(
d ip

dop

)
=
(

sign(rio)β+d ip + β−dop

−sign(rio)β−d ip + β+dop

)
. (125)

In these expressions, we defined

β± = 1√
2

√√√√1 ± rip − rop√
(rip − rop)2 + r2

io

, (126)

and the unitary matrix

U =

⎛
⎜⎜⎝

β+signrio 0 −β−signrio 0
0 β+signrio 0 −β−signrio

β− 0 β+ 0
0 β− 0 β+

⎞
⎟⎟⎠.

(127)

By construction, λ− < λ+, which implies that the order pa-
rameter combination d− is the one that condenses. The order
parameter combination d+, on the other hand, is a fluctuating
field that primarily renormalizes the action for d−. Therefore,
to proceed, we consider only terms that are quadratic or linear
in d+ (Gaussian approximation). Introducing the parametriza-
tion d± = |d±|(cos γ±, sin γ±), we can rewrite the action as
S = S− + S+− with

S− =
∫

x
{λ−|d−|2 + g−|d−|3 cos (3γ−) + u−|d−|4}, (128)

S+− =
∫

x
{λ+|d+|2 + g̃2|d+||d−|2 cos (γ+ + 2γ−)}. (129)

Here, the Landau coefficients g−, g̃2, and u− can in principle
be expressed in terms of the original Landau coefficients of
Eqs. (120)–(122) by applying the unitary transformation U of
Eq. (127). Since the d+ action is Gaussian, the minimization
of S+ is straightforward and gives d+ in terms of d−:

|d+| = |g̃2|
2λ+

|d−|2, γ+ = −2γ− +
(

1 + sign g̃2

2

)
π.

(130)

Substituting it back in S , we find the Landau expansion in
terms of the ordering field d− alone:

S =
∫

x
{λ−|d−|2 + g−|d−|3 cos (3γ−) + ũ−|d−|4}, (131)

with the reduced quartic coefficient ũ− = u− − g̃2
2/4λ+.

The central result is that the nematic action (131) has the
same form as the Landau expansion of the Z3 clock model,
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see Eq. (94) and Ref. [107]. Therefore, in all trigonal crys-
tals, the nematic transition belongs to the 3D Z3 Potts/clock
“universality class”, which actually corresponds to a mean-
field first-order transition. Indeed, minimization of Eq. (131)
reveals three degenerate ground states:

γ 0
− = π

3

(
1 + sign g−

2

)
+ 2π

3
n, n ∈ {0, 1, 2}. (132)

Substitution in Eq. (130) shows that, in the ground state, d+

and d− are collinear:(
cos γ 0

+
sin γ 0

+

)
= sign(g−g̃2)

(
cos γ 0

−
sin γ 0

−

)
. (133)

Therefore, using Eq. (125), we find that the nematic in-plane
and out-of-plane doublets are also collinear, and thus can be
parametrized as

d ip = ∣∣dE
∣∣ cos δE

(
cos γ 0

−
sin γ 0

−

)
, dop = ∣∣dE

∣∣ sin δE

(
cos γ 0

−
sin γ 0

−

)
,

(134)

where δE ∈ [0, π ] and |dE | = (|d ip|2 + |dop|2)1/2 are deter-
mined by the Landau coefficients.

To express the trigonal nematic ground state (134) in the
(nml ) representation (14), it is convenient to define two new
quantities (recall the d1 is the nonzero symmetry-preserving
nematic component)

Kr = −
√

3 sign(g−)

2
cos (δE )

|dE |
|d| − d1

2|d| ∈ [−1, 1], (135)

K ′
r = − sign(g−)

2
cos (δE )

|dE |
|d| +

√
3

2

d1

|d| ∈ [−1, 1], (136)

as well as the tilt angle η0 ∈ [0, π
2 ]

η0 = π

2

1 + signK ′
r

2
− signK ′

r

2
arccos

(
|K ′

r |√
1 − |Kr |2

)
, (137)

and the three orthonormal vectors

e‖ =

⎛
⎜⎝ cos γ 0

−
− sin γ 0

−
0

⎞
⎟⎠, eA

⊥ =

⎛
⎜⎝sin γ 0

− cos η0

cos γ 0
− cos η0

sin η0

⎞
⎟⎠,

eB
⊥ =

⎛
⎜⎝sin γ 0

− sin η0

cos γ 0
− sin η0

− cos η0

⎞
⎟⎠. (138)

Note that e‖ points along one of the six high-symmetry direc-
tions of the hexagonal point groups, given by Vhex

1 and Vhex
2 in

Eq. (97). Indeed, the trigonal nematic angle γ 0
− in Eq. (132)

assumes the same values as the in-plane hexagonal nematic
angles γ 0

ip in Eq. (103).
In terms of these quantities, the trigonal nematic state (134)

can be conveniently expressed in the (nml ) notation via

|Kr | � 1

2
: α = π

6
+ arcsin (Kr ),

n = eA
⊥, m = eB

⊥, l = e‖,

Kr <
−1

2
: α = arcsin (|Kr |) − π

6
,

n = eA
⊥, m = e‖, l = eB

⊥,

Kr >
1

2
: α = π

2
− arcsin (|Kr |),

n = e‖, m = eB
⊥, l = eA

⊥. (139)

The similarity to the in-plane nematic state of the 2D isotropic
system, Eq. (88), is apparent—indeed, one can verify that
upon setting δE = 0 (pure in-plane nematicity) one recov-
ers the exact same equations. Conversely, upon setting δE =
π/2 (pure out-of-plane nematicity), the out-of-plane isotropic
nematic solution (89) is recovered. Therefore, the trigonal
nematic state is generally biaxial with α �= 0, π/3, except for
the special point |Kr | = 1/2, where it becomes uniaxial. In
Figs. 5(c)–5(e), we plot the Fermi surface distortion in the
trigonal nematic state (139) for three representative values
of Kr , encompassing each of the three regimes above. For
|Kr | < 1

2 , shown in Fig. 5(e), the nematic distortion is qual-
itatively similar to that caused by an out-of-plane hexagonal
order parameter dop [Fig. 5(b)], since the nematic axis l = e‖
aligns with one of the three in-plane symmetry axes, repre-
sented by the purple lines in the figure [corresponding to Vhex

1
in Eq. (97)]. The key difference is that the trigonal groups
do not possess the symmetry elements C2z or IC2z, such that
a 180◦ degree rotation about the kz axis does not lead to a
degenerate state. As a result, what used to be a Z6 degenerate
state in the hexagonal case [Fig. 5(b)] splits into two sets of
Z3 degenerate states in the trigonal case, one for each sign of
g− [Eq. (132)]. In the regime |Kr | > 1/2, plotted in Fig. 5(c),
the trigonal nematic state has either the long (m) or the short
(n) nematic axis aligned with an in-plane symmetry axis e‖,
which for g− < 0 corresponds to Vhex

1 . This state resembles
the in-plane nematic state of the hexagonal lattice depicted
in Fig. 5(a), albeit slightly rotated out of plane. Exactly at
|Kr | = 1/2, α = 0, π/3 and the nematic state is uniaxial, as
shown in Fig. 5(d). The properties of the nematic state of all
trigonal groups are summarized in Table I.

D. Tetragonal crystals

Most nematic materials studied in the literature
have tetragonal symmetry, namely: the iron pnictides
[6–11,65,66,68,72,73], the cuprates [1–5,39,64,70], the
correlated oxide Sr3Ru2O7 [14,67], as well as the f -electron
materials YbRu2Ge2 [22], CeRhIn5 [21], TmVO4 [24], and
CeAuSb2 [23]. In any of the seven tetragonal point groups, the
five-component nematic order parameter d (7) is decomposed
as

d
tetragonal−→ ( d1, d2, d5, dop )T . (140)

Hence, in contrast to the 2D isotropic system (79), as well as
to the hexagonal and trigonal lattices, in tetragonal crystals
the nematic in-plane doublet d ip = (d2, d5)T is further
decomposed into the two channels d2 = dx2−y2 and d5 = d2xy,
which transform as nontrivial one-dimensional IRs. Thus, the
tetragonal crystal system is the highest-symmetry crystal for
which a nontrivial nematic component exists that does not
transform as a multidimensional IR.
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There are seven different axial point groups in the
tetragonal crystal system: {D4h, D4, C4v, D2d}, which
possess in-plane twofold rotational symmetry axes, and {C4h,
C4, S4}, which do not possess such axes. As in the previous
subsections, the two sets need to be treated slightly differently,
since in the latter the out-of-plane nematic order parameter
dop transforms as a complex IR and {d2, d5} transform as the
same one-dimensional IR. In this section we will focus on the
first set, illustrating the results for the point group D4h, while
leaving the discussion of the second set of point groups to
Appendix G.

In D4h, the single-component order parameters d2 = dx2−y2

and d5 = d2xy transform according to the IRs B1g and B2g, re-
spectively, while the out-of-plane doublet dop = (d3, d4)T =
(d2yz, d2xz )T transforms as the IR Eg. As single-component
real-valued order parameters, both d2 and d5 are Ising vari-
ables that undergo a Z2 Ising transition described by the action

Sν =
∫

x
{rν |dν |2 + uν |dν |4}, (141)

with ν = {2, 5}. We note that this Landau expansion could
also be recast in terms of the in-plane nematic doublet d ip =
(d2, d5)T = (dx2−y2 , d2xy)T as an effective Z2 clock model,
see Eq. (94):

Sip =
∫

x
{r0|d ip|2 + h2|d ip|2 cos(2γip) + O(|d ip|4)}. (142)

The second term is nothing but h2(d2
2 − d2

5 ), which implies
that the transitions toward d2 and d5 electronic nematic order
take place at different values of the control parameter, r0 =
−h2 for d2 and r0 = h2 for d5. The symmetry here also allows
for an additional biquadratic term d2

2 d2
5 . One could in principle

integrate out the fluctuations of the subleading channel, whose
effect on the leading channel will only be important if h2 is
small. Thus, the Landau coefficients rν and uν in Eq. (141)
should be understood as renormalized Landau coefficients of
the “original” in-plane nematic action.

The d2 = dx2−y2 and d5 = d2xy Ising-nematic order param-
eters are the types of nematic order most widely studied in
the literature [39,64–73]. Whereas one often describes them in
terms of an effective 2D nematic order parameter, see Eq. (91),
it is straightforward to describe them in the (nml ) represen-
tation by employing Eq. (88) with the additional constraint
of γip = {0, π} for d2 [corresponding to h2 < 0 in Eq. (142)]
and γip = {π/2, 3π/2} for d5 [corresponding to h2 > 0 in
Eq. (142)]. The corresponding Fermi surface distortions are
shown in Figs. 6(a) and 6(b). For the d2 = dx2−y2 state, the in-
plane nematic axes align with the in-plane principal axes V tet

1
(light-blue) while for d5 = d2xy they align with the in-plane
diagonal axes V tet

2 (purple), with

V tet
1 =

⎧⎨
⎩
⎛
⎝1

0
0

⎞
⎠,

⎛
⎝0

1
0

⎞
⎠
⎫⎬
⎭, V tet

2 =
⎧⎨
⎩ 1√

2

⎛
⎝1

1
0

⎞
⎠,

1√
2

⎛
⎝ 1

−1
0

⎞
⎠
⎫⎬
⎭.

(143)
Therefore, the Z2 character of the Ising-nematic order pa-

rameter is associated with the C4z operation (90◦ rotation
about the kz axis). Recall that the alignment of the n, m, l
axes in Eq. (88), which determines which nematic axes are
in-plane, depends on the ratio d1/|d| between the trivial (i.e.

FIG. 6. Distorted Fermi surface in the nematic phase, as given
by Eq. (32), plotted together with the nematic axes n, m, l for
the cases of (a), (b) tetragonal in-plane d2 = dx2−y2 and d5 = d2xy

states (141), (c) tetragonal out-of-plane doublet state dop (149), (d)–
(f) orthorhombic nematic states d5 = d2xy, d3 = d2yz and d4 = d2xz.
The unit vectors {n, m, l} are rescaled by 2.25 kF ({n, m, l}), re-
spectively. For the tetragonal and orthorhombic cases we chose the
trivial components as d1/|d| = 0.1 and (|de|/|d|, γe) = (0.3, 1.1),
respectively.

symmetry-preserving) nematic component d1 = d 1√
3

(2z2−x2−y2 )

and |d| = (d2
ν + d2

1 )1/2, with ν = {2, 5}.
To derive the Landau invariants for the out-of-plane ne-

matic order parameter dop we compute, once again, the
decomposition of the symmetrized product for each expansion
order, [⊗2

j=1Eg
]

s
= A1g ⊕ B1g ⊕ B2g, (144)

[⊗3
j=1Eg

]
s
= 2Eg, (145)

[⊗4
j=1Eg

]
s
= 2A1g⊕ A2g ⊕ B1g ⊕ B2g. (146)

From the bilinears associated with Eq. (144), D
A1g
op = |dop|2,

and

D
B1g
op = |dop|2 cos

(
2γop

)
, D

B2g
op = |dop|2 sin

(
2γop

)
, (147)

we can readily identify the three Landau invariants as |dop|2,
|dop|4, and (DB1g

op )2 − (DB2g
op )2. We then obtain the Landau ex-

pansion

Sop =
∫

x

{
r0|dop|2 + u|dop|4 + v4|dop|4 cos

(
4γop

)}
, (148)

which corresponds to the Z4 clock model of Eq. (94). The
fourfold degenerate ground-state is parametrized by

γ 0
op = π

4

(
1 + signv4

2

)
+ 2π

4
n, n ∈ {0, 1, 2, 3}. (149)

Therefore, the out-of-plane nematic transition in a tetragonal
crystal belongs to the 3D XY universality class; we emphasize
that such a critical behavior may only emerge very close to the
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transition, depending on the degree of out-of-plane anisotropy
of the system.

The corresponding representation of Eq. (149) in the (nml )
formalism can be directly read off from Eq. (89). Figure 6(c)
shows the corresponding Fermi surface distortion, with the
nematic axis l aligned with the in-plane high-symmetry axes
of either V tet

1 (light-blue) or V tet
2 (purple) [see Eq. (143)], de-

pending on the sign of v4. The fourfold degeneracy of the
ground state arises from the two axes in either V tet

1 or V tet
2 with

each l can align, combined with the two sets of directions of
n, m that are related by a C2z symmetry operation (which is
present in all tetragonal groups). A summary of the results for
all tetragonal crystal groups is presented in Table I, combining
the analysis of this section with that of Appendix G.

E. Orthorhombic, monoclinic, and triclinic crystals

In the remaining three crystal systems—orthorhombic,
monoclinic, and triclinic—all the point groups are Abelian,
and as such do not admit multidimensional IRs (real or
complex). As a result, all nematic components transform as
one-dimensional IRs, implying that the nontrivial nematic
components behave as Z2 Ising order parameters. Another
key difference between these axial groups and the other ones
previously analyzed in this section is that at least one of the
components of d ip = (d2, d5)T = (dx2−y2 , d2xy)T and dop =
(d3, d4)T = (d2yz, d2xz )T transform as the trivial IR, like d1 =
d 1√

3
(2z2−x2−y2 ).

We start with the orthorhombic crystal system, described
by the three point groups {D2h, D2, C2v}. In terms of the
IR of these groups, the five nematic components d (7) are
decomposed according to

d
orthorombic−→ (d1, d2, d3, d4, d5)T . (150)

The first two components {d1, d2}, highlighted by the under-
line, transform trivially under the groups symmetry operations
and thus are generically nonzero. The remaining three compo-
nents d3 = d2yz, d4 = d2xz, and d5 = d2xy correspond to shear
distortions of the Fermi surface, and transform according to
three different one-dimensional IRs, as shown explicitly in Ta-
ble I. As such, they all undergo a Z2 Ising transition described
by an action analogous to Eq. (141).

These three Ising-nematic states can be expressed
in the (nml ) representation provided that one also in-
cludes the nonzero trivial components de = (d1, d2) =
|de|(cos γe, sin γe). In the case of the nematic order param-
eter d5 = d2xy, one can directly apply the in-plane isotropic
parametrization of Eq. (88) with |d| = (d2

5 + |de|2)1/2 and
tan γip = d5/d2. The resulting Fermi surface distortion, calcu-
lated via Eq. (32), is shown in Fig. 6(d). Since d2 is always
nonzero, the in-plane nematic axes eA

‖ and eB
‖ defined in

Eq. (87) are never aligned with V tet
2 in Eq. (143), which is

consistent with the fact that V tet
2 are not high-symmetry direc-

tions in orthorhombic crystals. Note that one of the nematic
axes is aligned with the kz axis. The Z2 degeneracy is asso-
ciated with the C2x (C2y) or IC2x (IC2y) symmetry operations,
corresponding to in-plane twofold rotations or vertical mirror
reflections of the nematic axes in Fig. 6(d).

As for the nematic order parameters d3 and d4, one cannot
just apply the out-of-plane parametrization of Eq. (89), since
d2, which is a component of d ip, is always nonzero. To express
d3 and d4 in the (nml ) representation, it is convenient to define
the auxiliary variables

ce
k = |de|

|d| cos

(
γe − kπ

3

)
, se

k = |de|
|d| sin

(
γe − kπ

3

)
,

(151)

with k = {2, 4} and |d| = [|de|2 + (d3)2 + (d4)2]1/2. We then
define the angles

η±
3 = 1

2

d3

|d3| arccos

( ∣∣se
2

∣∣√
1 − (ce

2

)2
)

± 1+sign
(
se

2

)
2

π

2
, (152)

η±
4 = 1

2

d4

|d4| arccos

( ∣∣se
4

∣∣√
1 − (ce

4

)2
)

± 1+sign
(
se

4

)
2

π

2
, (153)

and, from them, the four unit vectors

eyz
A = (0, sin η+

3 , cos η−
3 )T , eyz

B = (0, cos η−
3 ,− sin η+

3 )T ,

ezx
A = (cos η−

4 , 0, sin η+
4 )T , ezx

B = (− sin η+
4 , 0, cos η−

4 )T .

(154)

Now, the nematic order parameter d3 = d2yz can be conve-
niently expressed in the (nml ) representation via

|ce
2| �

1

2
: α = π

6
+ arcsin

(
ce

2

)
,

n = eyz
A , m = eyz

B , l = ex,

ce
2 <

−1

2
: α = arcsin

(∣∣ce
2

∣∣)− π

6
,

n = eyz
A , m = ex, l = eyz

B ,

ce
2 >

1

2
: α = π

2
− arcsin

(∣∣ce
2

∣∣),
n = ex, m = eyz

B , l = eyz
A . (155)

Analogously, the nematic order parameter d4 = d2xz becomes

|ce
4| �

1

2
: α = π

6
+ arcsin

(
ce

4

)
,

n = ezx
A , m = ezx

B , l = ey,

ce
4 <

−1

2
: α = arcsin

(∣∣ce
4

∣∣)− π

6
,

n = ezx
A , m = ey, l = ezx

B ,

ce
4 >

1

2
: α = π

2
− arcsin

(∣∣ce
4

∣∣),
n = ey, m = ezx

B , l = ezx
A . (156)

Note that the (nml ) representations (155) and (156) are
very similar to the in-plane isotropic (nml ) representation,
Eq. (88). In fact, the latter can be recovered from Eq. (151)
by setting k = 0 as ce

0 = d1/|d|, and the three cases support a
fine-tuned uniaxial nematic order parameter for |ce

4| = |ce
2| =

|ce
0| = 1/2. In Figs. 6(e) and 6(f), we show the Fermi surface

distortions corresponding, respectively, to the condensation of
the nematic order parameters d3 = d2yz and d4 = d2xz. In the
former, one of the nematic in-plane axis always aligns with
ex while for d4 = d2xz, it aligns with ey, in accordance with
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Eqs. (155) and (156). In both cases, the twofold degeneracy is
associated with the symmetry element C2z, i.e. a 180◦ rotation
about the kz axis.

We now analyze the case of the monoclinic crystal system,
encompassed by the three axial point groups {C2h, C1h = Cs,
C2}. In all cases, the decomposition of the five nematic com-
ponents d (7) is

d
monoclinic−→ (d1, d2, d5, {d3, d4})T . (157)

As indicated by the underline, the three components d1 =
d 1√

3
(2z2−x2−y2 ), d2 = dx2−y2 , and d5 = d2xy transform as the triv-

ial IR and are thus always nonzero. On the other hand, the
nematic order parameters d3 = d2yz and d4 = d2xz transform
according to the same one-dimensional IR, as indicated by
the curly brackets. Consequently, the analysis of the Landau
expansion is analogous to that performed in Appendix G for
the tetragonal groups {C4h, C4, S4}. Indeed, we obtain the
same form of the nematic action S = S2 + S4:

S2 =
∫

x
{r1(d3)2 + r2(d4)2 + r3d3d4}, (158)

S4 =
∫

x
{u1(d3)4 + u2(d4)4 + u3(d3)2(d4)2

+u4d3(d4)3 + u5(d3)3d4}. (159)

The outcome, as explained in Appendix G, is that a linear
combination of d3 and d4, which is enforced by the Landau
coefficients, undergoes a Z2 Ising transition. The visualization
of this nematic order parameter in the (nml ) representation
offers little insight, as the nematic axes n, m, l can point
anywhere in space.

The last crystal system is the triclinic one, described by the
two axial point groups {C1, Ci = S2}. The symmetry of these
crystals is so low that all five nematic components d transform
as the trivial IR, which is a direct consequence of the absence
of rotational symmetry axes:

d
triclinic−→ (d1, d2, d3, d4, d5)T . (160)

Therefore, nematic phase transitions cannot occur in triclinic
crystals.

V. ELECTRONIC NEMATICITY IN QUASICRYSTALLINE
AXIAL POINT GROUPS

While a large number of known quasicrystals is de-
scribed by the icosahedral (i.e., polyhedral) point groups
{Ih, I}, whose electronic nematic properties were analyzed
in Sec. III A, there are also quasicrystalline materials with
eightfold, tenfold, and twelvefold symmetry [86]. In contrast
to the icosahedral quasicrystals, the latter are quasiperiodic in
two directions and periodic along an axial direction; conse-
quently, they are described by noncrystallographic axial point
groups [88,89,91,105]. In this subsection, we investigate the
properties of the electronic nematic order parameter in the
class of octagonal, decagonal, and dodecagonal point groups.
Importantly, these point groups describe not only quasicrys-
talline materials, but also artificial quasicrystals obtained from
twisting two crystalline 2D materials. The latter will be dis-
cussed in more depth in Sec. V D.

In all cases studied here, the symmetry-decomposition of
the five nematic components of d (7) have the same form as
that for 2D isotropic systems:

d
axial quasicrystals−→ (d1, d ip, dop)T . (161)

Following the discussion in Sec. IV A for 2D isotropic sys-
tems, our goal is to obtain the first invariant in the Landau
expansion of dα that is not isotropic, i.e. that is not of the
form |dα|2n with integer n (here, α refers to either ip or op).
To accomplish this in a systematic way, we evaluate the sym-
metrized decomposition of the N th-order product [⊗N

j=1E�]s,
where E� is the two-dimensional IR according to which dα

transforms. The leading-order anisotropic term is obtained
from the product with the smallest N for which the decom-
position gives either two invariants (if N is even) or one
invariant (if N is odd). We note that Ref. [106] performed a
related analysis for the d2xy and dx2−y2 superconducting order
parameters in Dn point groups.

A summary of all the results presented in this section,
as well as in Sec. III A for the icosahedral quasicrystal, is
contained in Table II.

A. Dodecagonal quasicrystals

The noncrystallographic point groups that possess do-
decagonal symmetry are {D12h, D12, C12v, D6d, C12h, C12,
S12}. For concreteness, hereafter we consider D12h, for which
d ip and dop transform as the E2g and E1g IR, respectively.
We will discuss later how the results generalize to the other
dodecagonal groups.

To derive the Landau expansion of the doublets, we fol-
low the procedure outlined in the beginning of this section.
Focusing first on the in-plane doublet d ip, we compute the
symmetrized-product decomposition of the corresponding IR:[⊗2

j=1E2g
]

s
= A1g ⊕ E4g, (162)

[⊗3
j=1E2g

]
s
= B1g ⊕ B2g ⊕ E2g, (163)

[⊗4
j=1E2g

]
s
= A1g⊕ 2E4g, (164)

[⊗5
j=1E2g

]
s = B1g ⊕ B2g ⊕ 2E2g, (165)[⊗6

j=1E2g
]

s
= 2A1g⊕ A2g ⊕ 2E4g. (166)

Therefore, since there are two A1g invariants in (166), whereas
all other even orders have only one invariant, we conclude that
the leading order anisotropic term in the Landau expansion
of d ip appears at sixth order. It can be constructed from the
product of the B1g and B2g trilinears,

B1g: |d ip|3 cos
(
3γip
)
, B2g: |d ip|3 sin

(
3γip
)
, (167)

and thus, it becomes |d ip|6 cos(6γip), resulting in the action

Sip =
∫

x

{
r0|d ip|2 + u|d ip|4 + v6|d ip|6 cos

(
6γip
)}

. (168)

The Landau expansion (168) is equivalent to that of the Z6

clock model, displaying a sixfold-degenerate ground state

γ 0
ip = π

6

(
1 + signv6

2

)
+ 2π

6
n, n ∈ {0, 1, . . . , 5}. (169)
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As for the out-of-plane doublet dop, which transforms as
the E1g IR, the symmetrized-product decomposition up to
sixth-order yields only isotropic invariants of the form |dop|2n:[⊗2

j=1E1g
]

s
= A1g ⊕ E2g, (170)

[⊗3
j=1E1g

]
s
= E1g ⊕ E3g, (171)

[⊗4
j=1E1g

]
s
= A1g ⊕ E2g ⊕ E4g, (172)

[⊗5
j=1E1g

]
s = E1g ⊕ E3g ⊕ E5g, (173)[⊗6

j=1E1g
]

s
= A1g ⊕ B1g ⊕ B2g ⊕ E2g ⊕ E4g. (174)

It turns out that an anisotropic invariant can only be con-
structed at twelfth order, from the product of the B1g and B2g

IRs that appear in the sixth-order product decomposition:

B1g: |dop|6 cos
(
6γop

)
, B2g: |dop|6 sin

(
6γop

)
. (175)

We thus obtain the nematic action:

Sop =
∫

x

{
r0|dop|2 + u|dop|4 + v12|dop|12 cos

(
12γop

)}
,

(176)

which has the same form as the Landau expansion of the Z12

clock model. The ground-state is parametrized by

γ 0
op = π

12

(
1 + signv12

2

)
+ 2π

12
n, n ∈ {0, 1, . . . , 11}.

(177)

The in-plane and out-of-plane nematic states given
by (169) and (177) can be expressed in the (nml ) repre-
sentation in a straightforward way via the relationships (88)
and (89). We show the corresponding Fermi surface distor-
tions in Figs. 7(a) and 7(b). For d ip, both in-plane nematic
axes point along the high-symmetry directions associated with
twofold in-plane rotations, whereas the third axis is parallel to
the kz axis. In contrast, for dop, only the nematic axis l aligns
with a high-symmetry direction.

The same results obtained for D12h also hold for the do-
decagonal groups {D12, C12v, D6d}. On the other hand, for
{C12h, C12, S12}, due to the lack of in-plane symmetry axes,
the nematic doublets transform as complex IRs, resulting in
an offset angle in the clock term of the type (95), similarly to
what is shown in Appendixes E–G for crystalline axial point
groups.

B. Decagonal quasicrystals

There are seven noncrystallographic point groups that pos-
sess tenfold symmetry, {D10h, D10, D5h, C10v, C10h, C5h, C10}.
Similarly to the previous subsection, we need to distinguish
the groups {D10h, D10, D5h, C10v} from the groups {C10h, C5h,
C10}, as the latter do not have in-plane symmetry axes. The
only effect of this lack of in-plane rotational symmetry is that
the clock term of the nematic action acquires an offset angle,
see Eq. (95).

FIG. 7. Distorted Fermi surface in the nematic phase, as given by
Eq. (32), plotted together with the nematic axes n, m, l for the cases
of dodecagonal in-plane and out-of-plane nematicity (169), (177)
[panels (a) and (b)], decagonal in-plane and out-of-plane nematic-
ity (183), (190) [panels (c) and (d)], and octagonal in-plane and
out-of-plane nematicity (196), (202) [panels (e) and (f)]. The unit
vectors {n, m, l} are rescaled by 2.25 kF ({n, m, l}), respectively. We
chose the trivial component such that d1/|d| = 0.1.

We consider here the case of D10h. Starting with the in-
plane doublet d ip, which transforms as the E2g IR, we obtain
the symmetrized-product decomposition:

[⊗2
j=1E2g

]
s
= A1g ⊕ E4g, (178)

[⊗3
j=1E2g

]
s
= E2g ⊕ E4g, (179)

[⊗4
j=1E2g

]
s
= A1g⊕ E2g ⊕ E4g, (180)

[⊗5
j=1E2g

]
s = A1g⊕ A2g ⊕ E2g ⊕ E4g. (181)

According to what was explained in the introduction of this
section, the fifth-order invariant must be the leading-order
term in the Landau expansion that is not proportional to the
square of the doublet. Directly employing a fifth-order trans-
formation condition, as an extension to Eq. (A9), one finds
this invariant to be |d ip|5 cos(5γip), and thus the nematic action
becomes

Sip =
∫

x

{
r0|d ip|2 + u|d ip|4 + v5|d ip|5 cos

(
5γip
)}

, (182)

which maps onto the Z5 clock model. Minimization of the
clock term gives with the fivefold-degenerate ground state

γ 0
ip = π

5

(
1 + signv5

2

)
+ 2π

5
n, n ∈ {0, 1, 2, 3, 4}. (183)

Moving on to the out-of-plane doublet dop, we note that
it transforms as the E1g IR, whose symmetrized product
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decomposition is[⊗2
j=1E1g

]
s
= A1g ⊕ E2g, (184)

[⊗3
j=1E1g

]
s
= E1g ⊕ E3g, (185)

[⊗4
j=1E1g

]
s
= A1g ⊕ E2g ⊕ E4g, (186)

[⊗5
j=1E1g

]
s = B1g ⊕ B2g ⊕ E1g ⊕ E3g, (187)[⊗6

j=1E1g
]

s
= A1g ⊕ E2g ⊕ 2E4g. (188)

Similarly to the case of the dodecagonal point group D12h,
only powers of |dop|2 occur up to sixth-order. Following the
same steps as in that case, we obtain the clock term from the
product of the fifth-order product-decomposition elements B1g

and B2g:

B1g: |dop|5 cos
(
5γop

)
, B2g: |dop|5 sin

(
5γop

)
,

yielding

Sop =
∫

x

{
r0|dop|2 + u|dop|4 + v10|dop|10 cos

(
10γop

)}
.

(189)

We therefore find dop to be a Z10 clock nematic order parame-
ter, whose tenfold degenerate ground states are given by

γ 0
op = π

10

(
1 + signv10

2

)
+ 2π

10
n, n ∈ {0, 1, . . . , 9}.

(190)

In Figs. 7(c) and 7(d), we show the distorted Fermi surfaces
obtained from expressing Eqs. (183) and (190) in the (nml )
representation. The Fermi surface properties are analogous to
the dodecagonal case, except that the in-plane high-symmetry
directions are those associated with tenfold rotational
symmetry.

C. Octagonal quasicrystals

The analysis of the octagonal point groups {D8h, D8, C8v,
D4d, C8h, C8, S8} mirrors the analyses of the previous two
subsections for the dodecagonal and decagonal quasicrystals.
Considering the point group D8h for concreteness, we note
that d ip and dop transform as E2g and E1g, respectively. Per-
forming the symmetrized product decomposition for E2g gives[⊗2

j=1E2g
]

s
= A1g ⊕ B1g ⊕ B2g, (191)

[⊗3
j=1E2g

]
s
= 2E2g, (192)

[⊗4
j=1E2g

]
s
= 2A1g⊕ A2g ⊕ B1g ⊕ B2g. (193)

Using the bilinears

DB1g = |d ip|2 cos
(
2γip
)
, DB2g = |d ip|2 sin

(
2γip
)
, (194)

it is straightforward to construct the three invariants up to
quartic order, |d ip|2, |d ip|4 and (DB1g )2 − (DB2g )2. We therefore
obtain the Landau expansion of the Z4 clock model:

Sip =
∫

x

{
r0|d ip|2 + u|d ip|4 + v4|d ip|4 cos

(
4γip
)}

, (195)

which has the fourfold-degenerate ground state:

γ 0
ip = π

4

(
1 + signv4

2

)
+ 2π

4
n, n ∈ {0, 1, 2, 3}, (196)

see also Eq. (148).
Considering now the out-of-plane doublet dop, the sym-

metrized product decomposition of E1g to sixth-order only
gives invariants that are powers of |dop|2:[⊗2

j=1E1g
]

s
= A1g ⊕ E2g, (197)

[⊗3
j=1E1g

]
s
= E1g ⊕ E3g, (198)

[⊗4
j=1E1g

]
s
= A1g ⊕ B1g ⊕ B2g ⊕ E2g, (199)

[⊗5
j=1E1g

]
s
= E1g ⊕ 2E3g, (200)

[⊗6
j=1E1g

]
s
= A1g ⊕ B1g ⊕ B2g ⊕ 2E2g. (201)

Analogously to the case of the dodecagonal and decagonal
quasicrystals, it is straightforward to find the leading-order
anisotropic term, this time from the product of the quartic
combinations:

B1g: |dop|4 cos
(
4γop

)
, B2g: |dop|4 sin

(
4γop

)
.

Hence, we find the nematic action

Sop =
∫

x

{
r0|dop|2 + u|dop|4 + v8|dop|8 cos

(
8γop

)}
, (202)

corresponding to the Z8 clock model. The directions of dop

that minimize the action are eightfold degenerate:

γ 0
op = π

8

(
1 + signv8

2

)
+ 2π

8
n, n ∈ {0, 1, . . . , 7}. (203)

The same results hold for {D8, C8v, D4d}, whereas in the
groups {C8h, C8, S8}, the clock terms in the nematic actions
of d ip and dop acquire an offset angle of the form (95).

The (nml ) representation of the in-plane and out-of-plane
nematic doublets (196) and (203) is represented in Figs. 7(e)
and 7(f) via the corresponding distortions of the Fermi sur-
face. The high-symmetry in-plane directions associated with
the eightfold symmetry of the quasicrystal are highlighted in
the figure.

D. Twisted quasicrystals

The rapid advances in the field of twistronics opened a
new path to investigate the properties of emergent quasicrys-
tals created by twisting 2D materials. In some cases, the
twisted structure is an incommensurate lattice that, however,
retains a crystallographic point group. This is the case of
twisted bilayer graphene with a noncommensurate twist an-
gle, although the effects of quasiperiodicity are dramatically
enhanced when three graphene layers are twisted by two dif-
ferent angles, as shown recently in Ref. [85]. Interestingly,
this work reported the emergence of robust superconductiv-
ity in this quasiperiodic structure. Most recently, three-fold
rotational symmetry breaking consistent with nematicity was
observed in similar moiré of moiré structures in Ref. [117].
In what concerns electronic nematicity, as long as the point
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group is the same as a crystallographic one, the results derived
in Sec. IV can be directly applied.

An alternative route to realize twisted quasicrystals, as
shown in Refs. [94,95], is to start with two identical 2D ma-
terials described by the (planar) crystallographic point group
Dn (with n = 2, 3, 4, 6). Upon twisting the two crystals by a
relative angle of π/n with respect to their common z axis, the
resulting structure becomes invariant under an n-fold rotation
about z followed by a horizontal mirror reflection (which maps
one layer onto the other). This is nothing but the improper
rotation element S2nz. Comparing Eqs. (74) and (77), we
conclude that the twisted bilayer is actually a quasiperiodic

“lattice” with point group Dnd, i.e. Dn
twist−→ Dnd. Experimen-

tally, both twisted bilayer graphene with a twist angle of 30◦
and twisted bilayer cuprate with a twist angle of 45◦ have been
realized [92,96].

While much of the recent interest in these constructions
have focused on realizing time-reversal symmetry-breaking
superconductivity [93–95], it has been recently pointed out
that electronic nematicity can be strongly impacted by the
enhanced symmetry of the twisted bilayer [59]. Here, we
further explore this idea by discussing the properties of the
in-plane nematic order parameter d ip in the four cases of π/n
twisted bilayers (n = 2, 3, 4, 6).

The point group in the cases n = 2 and n = 3 remain crys-

tallographic, D2
twist−→ D2d and D3

twist−→ D3d. There is, however,
one important difference. While D3 and D3d both belong to
the trigonal crystal system, D2 and D2d belong to different
systems–monoclinic and orthorhombic, respectively. In terms
of the components of d ip = (d2, d5)T , this means that while
in D2 only the shear component d5 transforms nontrivially, in
D2d both components transform nontrivially as two different
one-dimensional IRs—see Table I. Therefore, twisting two
monoclinic layers by 90◦ opens up a new nematic instability
channel.

For two tetragonal layers twisted by 45◦ (n = 4), the
twisted bilayer has a noncrystallographic octagonal point

group, D4
twist−→ D4d [93]. Using the results above, we see

that the two components of the in-plane nematic doublet d ip

change from transforming as the one-dimensional IRs B1

and B2 of D4 in each layer to transforming as a single two-
dimensional IR E2 of D4d in the twisted bilayer. Therefore,
the character of the nematic transition changes from Z2 Ising
for the individual tetragonal layers to Z4 clock for the coupled
45◦ twisted bilayer. As discussed in the end of Sec. IV A, the
2D four-state clock model (which has the same properties as
the 2D Ashkin-Teller model) undergoes a transition from the
disordered to the ordered phase that can be understood as the
merging of the two BKT transitions of the q-state clock model
as q → 4+. Because of its unique character, the exponents of
this transition are nonuniversal and depend on gip, except for
the anomalous exponent η = 1/4. Since electronic nematic-
ity is observed in tetragonal cuprates and iron pnictides or
chalcogenides [43,44], this setting offers an interesting path
to realize Ashkin-Teller nematicity.

Finally, the case of two hexagonal layers twisted by 30◦

(n = 6) corresponds to D6
twist−→ D6d and was investigated in

Ref. [59]. The outcome, which follows from the nematic
properties of dodecagonal quasicrystals, is that while the

uncoupled layers undergo a second-order nematic transition
in the 2D three-state Z3 Potts (which is equivalent to the Z3

clock) universality class (see Table I), the coupled 30◦ twisted
bilayer undergoes two BKT transitions: the higher one from
the disordered to the critical phase (where there is only quasi-
long-range nematic order) and the lower one from the critical
phase to the long-range ordered nematic phase.

VI. DISCUSSION AND SUMMARY

In summary, in this paper we derived the properties of
electronic nematic order in all 32 crystallographic point
groups and in the noncrystallographic point groups associated
with quasicrystals. We expressed the Fermi surface distortion
patterns caused by nematic order in terms of a general three-
dimensional nematic order parameter expressed in tensorial
form in Eq. (11) and in five-component vectorial form in
Eq. (14). We also established the critical properties of the
allowed nematic transitions in these point groups. These latter
results are summarized in two tables: Table I, for crystallo-
graphic point groups, and Table II, for the point groups of
quasicrystals.

The crystallographic point groups shown in Table I are
organized in six blocks corresponding to the cubic, hexago-
nal, trigonal, tetragonal, orthorhombic and monoclinic crystal
systems; we do not show the triclinic crystal system since
it does not support any nematic transition. For each point
group in the first column, we list all nematic order parame-
ters that transform as a nontrivial irreducible representation
(IR, second column), together with the corresponding ba-
sis for that order parameter (third column). The possible
basis are: the full five-component nematic order parameter
d = (d1, d2, d3, d4, d5)T , whose elements correspond, re-
spectively, to the usual charge quadrupolar order parameters
d 1√

3
(2z2−x2−y2 ), dx2−y2 , d2yz, d2xz, and d2xy; the Eg and T2g

cubic bases de = (d1, d2)T and dt = (d3, d4, d5)T ; and the
in-plane and out-of-plane axial bases d ip = (d2, d5)T , and
dop = (d3, d4)T . Curly brackets indicate that the enclosed ne-
matic order parameters transform as the same IR. The fourth
column lists the universality class of the respective nematic
Landau expansion: Z2 Ising [e.g., Eq. (141)]; Z3 clock, which
is equivalent to Z3 Potts [e.g., Eq. (68) and (102)]; Z4 Potts
[e.g., Eq. (60)]; Z4 clock [e.g., Eq. (148)]; and Z6 clock [e.g.,
Eq. (110)]. The asterisk notation in Z∗

q clock indicates that
the clock term has an offset angle [e.g., Eq. (E5)], which
is always the case when the group lacks twofold in-plane
rotation axes and the nematic order parameter transforms as a
complex IR (which is indicated by an overbar in the second
column). The fifth column shows the residual point group
(PG) after the onset of nematic order, which indicates the
set of symmetry elements that remain intact after nematicity
is established.

Finally, in the last column of Table I, we list the transfor-
mation matrices of the nematic order parameters expressed
in terms of the transformation matrices of the coordinate
vector. To understand what this entails, consider first the
five-component nematic order parameter d. It transforms
according to the IR �+

j=2 of the fully-isotropic orthogo-
nal group O(3), and therefore transforms with the 5×5
matrices R+, j=2(g) = R j=2(ϑ, �̂) = exp(−iϑ J (2) · �̂), where
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TABLE I. Symmetry properties of the allowed nematic order parameters in all crystallographic point groups (PG). The columns list the
corresponding irreducible representation (IR), the relevant nematic basis vector (see main text for the definition), the universality class of the
corresponding Landau expansion, the residual PG, and the transformation matrices (see main text). Note that the Z3 clock and Z3 Potts models
have the same properties. The Z∗

q clock model has the same form as the Zq clock model, except that the clock term has a nonuniversal offset
angle. The overbar over the IR denotes a complex IR.
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TABLE II. Symmetry properties of the allowed nematic order parameters in noncrystallographic point groups (PGs) describing quasicrys-
tals. The columns represent the same quantities as those in Table I.

g = (ϑ, �̂, I ) are the symmetry elements of O(3), see Ap-
pendix A for more details. Moving from isotropic space to
point groups has two effects: first, it restricts the symmetry
elements g to the discrete set of operations that characterize
the group. Second, it causes the nematic order parameter
to be decomposed into different irreducible channels. Ac-
cordingly, in the point groups, the 5×5 matrices R+, j=2(g)
assume a block-diagonal form, where each block is labeled
by the IR characterizing the nematic order parameter. For
one-dimensional IRs, one simply recovers the characters of
the respective IR. For multidimensional IRs, the transforma-
tion matrices appear as blocks constructed from R+, j=2(g). In

particular, for the four multicomponent nematic bases de, dt ,
d ip, and dop used here, we have:

Rde (g) =
(

[R+, j=2(g)]11 [R+, j=2(g)]12

[R+, j=2(g)]21 [R+, j=2(g)]22

)
, (204)

Rdt (g) =
⎛
⎝[R+, j=2(g)]33 [R+, j=2(g)]34 [R+, j=2(g)]35

[R+, j=2(g)]43 [R+, j=2(g)]44 [R+, j=2(g)]45

[R+, j=2(g)]53 [R+, j=2(g)]54 [R+, j=2(g)]55

⎞
⎠,

(205)

Rd ip (g) =
(

[R+, j=2(g)]22 [R+, j=2(g)]25

[R+, j=2(g)]52 [R+, j=2(g)]55

)
, (206)
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Rdop (g) =
(

[R+, j=2(g)]33 [R+, j=2(g)]34

[R+, j=2(g)]43 [R+, j=2(g)]44

)
. (207)

In principle, we could simply use these matrices to define
the transformation properties of the nematic order parameters
listed in the table. However, to construct invariants involving
the coupling between the nematic order parameter and other
physical quantities, it is often more convenient to express
these four nematic transformation matrices (204)–(207) in
terms of transformation matrices of the coordinate vector.
The latter transforms according to the IR �−

j=1 of O(3). As a
result, its transformation matrices for any symmetry element
g = (ϑ, �̂, I ) of O(3) are given by

R(3)
g = R−, j=1(g), (208)

R(2)
g =

(
[R−, j=1(g)]11 [R−, j=1(g)]12

[R−, j=1(g)]21 [R−, j=1(g)]22

)
, (209)

where R−, j=1(g) = IR j=1(ϑ, �̂) and R j=1(ϑ, �̂) =
exp(−iϑ J (1) · �̂), see Eq. (A4) in Appendix A. Here, we
introduced two different matrices to distinguish between the
cases of a 3D vector, which transforms with R(3)

g (208) and
is relevant for the polyhedral point groups, and a 2D in-plane
vector, which transforms with R(2)

g (209) and is relevant
for the axial point groups. The key point illustrated by the
last column of Table I is that, for most of the nematic order
parameters, the transformation matrices (204)–(207) can be
directly related to either R(3)

g or R(2)
g . For instance, for the

nematic order parameter that transforms as the T2g IR of
Oh, the last entry on the row means that Rdt (g) = RA2u

g R(3)
g ,

where RA2u
g are the characters of the A2u IR. Similarly, for the

nematic order parameter transforming as the E IR of C4v, we
have Rdop (g) = σ xR(2)

g σ x, where σ j are Pauli matrices.
To illustrate the usefulness of this representation of the

transformation matrices, let us construct invariants involving
the coupling between the nematic order parameters and the
electric polarization P, which transforms like a vector. To
make the example more transparent, we consider the hexago-
nal point group C3h and the nematic in-plane order parameter
d ip. This doublet transforms according to the IR E ′ and via
the transformation matrix Rd ip (g) = σ zR(2)

g σ z, as shown in
Table I. The in-plane polarization Pip = (Px, Py), on the other
hand, transforms according to the same IR E ′, but via the
matrices RPip (g) = R(2)

g that characterize a vector. Indeed,
RPip (g) is related to Rd ip (g) through a similarity transforma-
tion, the Pauli matrix σ z. Since both d ip and Pip transform
as E ′, there must exist a bilinear invariant. However, due to
the difference in transformation matrices, this invariant is not
simply (d ip)T · Pip, but instead it is (d ip)T σ zPip, where the
additional Pauli matrix σ z is needed to compensate for the
similarity transformation relating RPip (g) and Rd ip (g). As a
second example, consider the coupling between the nematic
out-of-plane doublet dop and the out-of-plane polarization Pz

within the same point group C3h. The nematic order parameter
transforms according to the IR E ′′ and via the transformation
matrix Rdop (g) = RA′′

g (σ zR(2)
g σ z ), see Table I. The out-of-

plane polarization Pz, on the other hand, transforms as A′′ and
via the 1×1 “matrix” RPz (g) = RA′′

g . Using the fact that Pip

transforms according to R(2)
g , we can readily construct the

invariant Pz (dop)T σ zPip.
Table II has the same layout as Table I, but refers to the

quasicrystalline point groups considered in this work. They
correspond to octagonal, decagonal, dodecagonal, and icosa-
hedral quasicrystals.

The group-theoretical classification presented here can be
valuable in searching for new nematic systems in material
databases. More broadly, our results offer interesting insights
into which types of lattice may realize exotic electronic ne-
matic phenomena. Indeed, for any of the nematic doublets
that behave as a Zq clock order parameter with q � 4, the
nematic transition in 3D belongs to the XY universality class,
which in turn also describes the nematic transition of a 2D
isotropic model. On the other hand, in a 2D system with a
Zq clock nematic order parameter, a critical nematic phase
with quasi-long-range order precedes the onset of long-range
order for q � 5, whereas for q = 4 one obtains an Ashkin-
Teller nematic model, whose critical properties are described
by nonuniversal critical exponents. From Tables I and II, we
see that this condition is satisfied by (d2yz, d2xz ) nematicity
in hexagonal and tetragonal crystals, as well as (d2yz, d2xz )
and (dx2−y2 , d2xy) nematicity in octagonal, decagonal, and
dodecagonal quasicrystals. In this regard, it will be interesting
to investigate the properties of the Landau expansion (48) of
the icosahedral nematic order parameter, since the mean-field
ground states are either sixfold or tenfold degenerate.

Experimentally, these properties should be directly acces-
sible via probes that measure the nematic susceptibility in
different channels, such as elasto-resistance [9] and Raman
spectroscopy [118]. Theoretically, one expects that nematic
fluctuations will be enhanced near the 3D XY nematic tran-
sition, since there will be not only soft longitudinal (i.e.,
amplitude) fluctuations but also soft transverse (i.e., phase)
fluctuations associated with the emergent continuous sym-
metry. Given that nematic fluctuations have been proposed
as potential drivers of non-Fermi liquid behavior [49–51,69]
and pairing [119,120], the investigation of emergent XY -
nematicity could provide further insights into these problems
as well. As for the exotic 2D behavior associated with q � 4
clock in-plane nematicity, the most promising realizations
would be in 30◦ twisted hexagonal bilayers (Z6 clock) and 45◦

twisted tetragonal bilayers (Z4 clock). Both settings have been
recently realized experimentally by twisting graphene [92]
and monolayers of cuprate BSCCO [96]. Interestingly, ne-
matic order has been observed in underdoped BSCCO [2].

One important ingredient that was not included in this
paper and that deserves further investigation is the role
of strain, both extrinsic and intrinsic. For instance, it
was recently shown that the impact of uniaxial strain on
in-plane Z3 Potts (which is equivalent to the Z3 clock) ne-
matics is fundamentally different from the well-studied case
of Ising-nematics [81]. This raises the broader question of
how external strain can be used to probe and modify the
behavior of Zq clock nematic order parameters. Moreover,
long-wavelength quantized strain fluctuations, which are man-
ifested as acoustic phonons, are known to significantly change
the critical properties of Z2 and Z3 electronic nematic tran-
sitions in tetragonal, hexagonal, and trigonal crystals by
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promoting long-range nematic interactions [74,107,121–124].
It will be important to perform similar analyses in cubic crys-
tals as well as quasicrystals, which also host phason modes
on top of phonon modes [125,126]. Finally, crystalline de-
fects such as dislocations, vacancies, and interstitials create
inhomogeneous strain distributions, which act as random ne-
matic conjugate fields [64,127,128]. While most studies have
focused on a random-field Ising-model description of this rich
phenomenon, it will be important to develop models that can
capture the long-range and correlated nature of the various
components of the strain fields generated by these defects.
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APPENDIX A: GENERATORS OF SO(3)
AND PARAMETRIZATION OF d

In this Appendix, we give further details about the gen-
erators of SO(3). Within the full rotation group SO(3), the
transformation matrices associated with an irreducible rep-
resentation (IR) � j are given by R j (ϑ, �̂) = exp(−iϑ J ( j) ·
�̂), parametrized by a rotation angle ϑ around a unit-length

rotation axis �̂. The three generators J ( j)
μ satisfy the Lie algebra[

J ( j)
μ1

, J ( j)
μ2

] = i εμ1μ2μ3 J ( j)
μ3

, (A1)

with the antisymmetric Levi-Civita tensor εμ1μ2μ3 . In princi-
ple, the matrices J ( j)

μ can be defined in the “Lie basis” using
the standard relationships

Ĵ ( j)
z | j, m〉 = m | j, m〉, (A2)

Ĵ ( j)
± | j, m〉 =

√
j( j + 1) − m(m ± 1) | j, m ± 1〉, (A3)

where Ĵ ( j)
± = Ĵ ( j)

x ± iĴ ( j)
y . However, for the transformation

matrices to be orthogonal, i.e., RT
j (ϑ, �̂) = R j (−ϑ, �̂) =

R−1
j (ϑ, �̂), one needs to impose the requirement (J ( j)

μ )T =
(J ( j)

μ )∗ = −J ( j)
μ , i.e., the generators need to be antisymmetric,

and thus, a similarity transformation has to be applied on
Eqs. (A2) and (A3). We now list the resulting generators. For
j = 0 the three generators are J (0)

x = J (0)
y = J (0)

z = 0, which
ensures that a � j=0 scalar is invariant under all rotations. For
j = 1 the three generators are the well-known antisymmetric
Gell-Mann matrices

J (1)
x = i

⎛
⎝0 0 0

0 0 −1
0 1 0

⎞
⎠, J (1)

y = i

⎛
⎝ 0 0 1

0 0 0
−1 0 0

⎞
⎠,

J (1)
z = i

⎛
⎝0 −1 0

1 0 0
0 0 0

⎞
⎠, (A4)

which can also be expressed in terms of the antisymmetric Levi-Civita tensor (J (1)
μ1

)μ2μ3 = −iεμ1μ2μ3 . The three generators for
j = 2 are given by

J (2)
x = i

⎛
⎜⎜⎜⎜⎝

0 0
√

3 0 0
0 0 1 0 0

−√
3 −1 0 0 0

0 0 0 0 1
0 0 0 −1 0

⎞
⎟⎟⎟⎟⎠, J (2)

y = i

⎛
⎜⎜⎜⎜⎝

0 0 0 −√
3 0

0 0 0 1 0
0 0 0 0 −1√
3 −1 0 0 0

0 0 1 0 0

⎞
⎟⎟⎟⎟⎠, J (2)

z = i

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 0 0 −2
0 0 0 1 0
0 0 −1 0 0
0 2 0 0 0

⎞
⎟⎟⎟⎟⎠,

(A5)

and those for j = 4 are

J (4)
x = i√

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 2
√

5 0 0 0 0
0 0 2 0 0 0 0 0 0
0 −2 0 −√

7 0 0 0 0 0
0 0

√
7 0 3 0 0 0 0

−2
√

5 0 0 −3 0 0 0 0 0
0 0 0 0 0 0 3 0 0
0 0 0 0 0 −3 0 −√

7 0
0 0 0 0 0 0

√
7 0 2

0 0 0 0 0 0 0 −2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A6)
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J (4)
y = i√

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 −2
√

5 0 0 0
0 0 0 0 0 0 0 2 0
0 0 0 0 0 0

√
7 0 −2

0 0 0 0 0 3 0 −√
7 0

0 0 0 0 0 0 −3 0 0
2
√

5 0 0 −3 0 0 0 0 0
0 0 −√

7 0 3 0 0 0 0
0 −2 0

√
7 0 0 0 0 0

0 0 2 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A7)

J (4)
z = i

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −4
0 0 0 0 0 0 0 3 0
0 0 0 0 0 0 −2 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 −1 0 0 0 0
0 0 0 2 0 0 0 0 0
0 0 −3 0 0 0 0 0 0
0 4 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A8)

Clearly, the generators are never unique in the sense that they
can always be rotated via an orthogonal matrix O( j) accord-
ing to [O( j)]T J ( j)O( j), which corresponds to a basis rotation.
Throughout this work, the generators are fixed according to
Eqs. (A4)–(A8).

Next, we determine the bilinears D j=2 and D j=4 that oc-
cur in the decomposition (16) and which were used in the
derivation of the Landau expansion of the 3D isotropic ne-
matic system. The transformation conditions are structurally
similar to Eq. (5). For example, for the �+

j=4 bilinear D j=4,ν =
di�

j=4,ν

i,i′ di′ , one needs to solve the equation

RT
+, j=2(g)� j=4,νR+, j=2(g) = R+, j=4(g)νν ′�

j=4,ν ′
, (A9)

where � j=4,ν are 5×5-dimensional matrices with i, i′ =
1, . . . , 5 and ν, ν ′ = 1, . . . , 9. Recall that the �+

j=2 nematic
order parameter d transforms via the matrices R+, j=2(g) =
R j=2(ϑ, �̂) for each element g = (ϑ, �̂, I ).

A straightforward but tedious calculation then yields
D j=0 = |d|2, D j=2 given by Eq. (19), and

D j=4 =
√

5

6

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1√
5

[
6d2

1 − 4
(
d2

3 + d2
4

)+ (d2
2 + d2

5

)]
√

7
(
d2

2 − d2
5

)
√

14(d2d3 + d4d5)

2
√

3d1d2 − 2
(
d2

3 − d2
4

)
√

2
[(

2
√

3d1 + d2
)
d3 − d4d5

]
√

2
[(

2
√

3d1 − d2
)
d4 − d3d5

]
2
√

3d1d5 + 4d3d4√
14(d2d4 − d3d5)

2
√

7d2d5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A10)

Importantly, all three bilinears have the same magni-
tude, (D j=0)2 = (D j=2)2 = (D j=4)2 = |d|4. From the con-
dition (A9) we see that a basis rotation O( j=4) on the

generators J ( j=4) would rotate the basis state D j=4 (A10) into
O( j=4)D j=4.

To finish this Appendix, we further discuss the
parametrization of the five-component nematic order
parameter within the (nml ) representation (14). Recall that:

d = |d|√
3

{
cos (α)

(
nμλ

j=2
μμ′ nμ′

)+ cos

(
α + 2π

3

)(
mμλ

j=2
μμ′ mμ′

)

+ cos

(
α + 4π

3

)(
lμλ

j=2
μμ′ lμ′

)}
. (A11)

The three angles describing the three orthonormal eigenvec-
tors n, m, l can be chosen in several ways. The parametrization
employed in this work makes use of the spherical unit vectors

êr =
⎛
⎝cos ϕ sin θ

sin ϕ sin θ

cos θ

⎞
⎠, êϕ =

⎛
⎝ sin ϕ

− cos ϕ

0

⎞
⎠, êθ =

⎛
⎝cos ϕ cos θ

sin ϕ cos θ

− sin θ

⎞
⎠.

(A12)

One of the eigenvectors, e.g., l , can always be chosen to be
aligned with the radial vector êr , i.e., l = êr . Conversely, the
remaining two vectors can be arbitrarily rotated about this
axis by an angle η:

l = êr, n = cos η êϕ + sin η êθ ,

m = − sin η êϕ + cos η êθ . (A13)

Thus, within the (nml ) representation the five degrees of
freedom are encoded in the magnitude |d| and the four angles
α, ϕ, θ, η. To ensure a one-to-one mapping between the two
representations, (9) and (11), the parameter ranges have to be
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restricted according to1

|d| � 0, α ∈
[
0,

π

3

]
, θ ∈

[
0,

π

2

]
,

ϕ ∈ [0, 2π ], η ∈ [0, π ]. (A14)

APPENDIX B: SYMMETRIZED PRODUCTS

In this Appendix, we discuss in more detail the prod-
uct decomposition associated with a generic order parameter
η = (η1, . . . , ηdim n) that transforms according to an IR n of
some group. Because the order parameter components com-
mute, i.e., ηiη j = η jηi, the number of product components
is reduced. For example, for a two-component order param-
eter η = (η1, η2) one would naively expect 2×2 = 4 product
components, while in fact, there are only three: η2

1, η2
2, and

η1η2, since the antisymmetric combination η1η2 − η2η1 van-
ishes. Here, we use group theory to derive expressions for the
product decompositions in the symmetric channel, see, e.g.,
Ref. [129]. Doing so automatically excludes vanishing contri-
butions, such as the antisymmetric combination η1η2 − η2η1

in the above example, and removes redundancies associated
with double counting. To illustrate the last point, consider the
symmetrized bilinears in the above example: N1 = η2

1 + η2
2

and N2 = (η2
1 − η2

2, 2η1η2). Then, a straightforward decom-
position would suggest that two invariants exist in fourth
order, N2

1 and N2 · N2, while in fact they are identical since
N2

1 = N2 · N2 = (η2
1 + η2

2 )2. Such double-countings are re-
moved by using the symmetrized decomposition. As we are
interested in Landau expansions, we consider products up to
sixth order, but extension to higher orders is straightforward.

Let us begin with the second-order product P2,i j = ηiη j .
Using the order-parameter transformation η′

i = Rn(g)ii′ηi′ un-
der a symmetry element g, one finds the product to transform
as

P′
2,i j = Rη2

(g)i j,i′ j′ P2,i′ j′ , (B1)

where Rη2
(g)i j,i′ j′ = Rn(g)ii′Rn(g) j j′ . The transformation

matrices Rη2
(g) themselves form a representation of the

group, i.e., it holds that Rη2
(g1g2) = Rη2

(g1)Rη2
(g1), see,

e.g., Ref. [129] for details. Correspondingly, the characters of
this representation result from the trace,

χη2
(g) =

∑
i, j

Rη2
(g)i j,i j =

∑
i, j

Rn(g)iiRn(g) j j = χ2
n (g).

(B2)

The formula (B2) contains all symmetry channels, including
those that eventually vanish due to the commutativity of the
components of η. To have these removed, we symmetrize the
transformation matrix Rη2

(g) before computing its character.
Symmetrization involves the addition of all permutations in
Eq. (B1) with respect to (i′, j′), divided by the number of
permutations, i.e.,

Rη2

s (g)i j,i′ j′ = 1

2!

[
Rη2

(g)i j,i′ j′ + Rη2
(g)i j, j′i′

]
. (B3)

1For the limiting values of θ the rotation angles are actually more
restricted: For θ = 0 we constrain ϕ ∈ [0, 0] and η ∈ [0, π ], and for
θ = π/2 we constrain ϕ ∈ [0, 2π ] and η ∈ [0, π/2].

Then, the characters for the symmetrized product (B3) be-
come

χη2

s (g) =
∑
i, j

Rη2

s (g)i j,i j = 1

2

[
χ2

n (g) + χn
(
g2
)]

. (B4)

Thus, the decomposition of a symmetrized product (B4) only
contains a subset of the original symmetry channels associated
with the bare product (B2). The symmetrized decomposition
is accomplished by using Rη2

s (g) rather than Rη2
(g).

For the higher-order products such as P3,i jk = ηiη jηk and
P4,i jkl = ηiη jηkηl , one proceeds analogously. As in the case
above, the corresponding transformation matrices

Rη3
(g)i jk,i′ j′k′ = Rn(g)ii′Rn(g) j j′Rn(g)kk′ , (B5)

Rη4
(g)i jkl,i′ j′k′l ′ = Rn(g)ii′Rn(g) j j′Rn(g)kk′Rn(g)ll ′ , (B6)

form representations of the group with characters

χη3
(g) =

∑
i jk

Rη3
(g)i jk,i jk = χ3

n (g), (B7)

χη4
(g) =

∑
i jkl

Rη4
(g)i jkl,i jkl = χ4

n (g). (B8)

The symmetrized transformation matrices are

Rη3

s (g)i jk,i′ j′k′ = 1

3!

[
Rη3

(g)i jk,i′ j′k′ + 5(i′ ↔ j′ ↔ k′)
]
,

(B9)

Rη4

s (g)i jkl,i′ j′k′l ′

= 1

4!

[
Rη4

(g)i jkl,i′ j′k′l ′ + 23(i′ ↔ j′ ↔ k′ ↔ l ′)
]
, (B10)

with the number of added permutation terms indicated explic-
itly [cf. Eq. (B3)]. One finds the characters associated with
these symmetrized products to be

χη3

s (g) =
∑
i jk

Rη3

s (g)i jk,i jk

= [χ3
n (g) + 2χn(g3) + 3χn(g)χn(g2)

]/
6, (B11)

χη4

s (g) =
∑
i jkl

Rη4

s (g)i jkl,i jkl = 1

24

[
χ4

n (g) + 6χ2
n (g)χn(g2)

+ 8χn(g)χn(g3) + 3χ2
n (g2) + 6χn(g4)

]
. (B12)

Similarly, one finds the fifth- and sixth-order expressions

χη5

s (g) = 1

5!

[
χ5

n (g) + 10χ3
n (g)χn(g2) + 20χ2

n (g)χn(g3)

+ 24χn(g5) + 30χn(g)χn(g4) + 20χn(g2)χn(g3)

+ 15χn(g)χ2
n (g2)

]
, (B13)

χη6

s (g) = 1

6!

[
15χ4

n (g)χn(g2) + 120χn(g)χn(g2)χn(g3)

+ χ6
n (g) + 15χ3

n (g2) + 40χ2
n (g3) + 45χ2

n (g)χ2
n (g2)

+ 144χn(g)χn(g5) + 40χ3
n (g)χn(g3) + 120χn(g6)

+ 90χn(g2)χn(g4) + 90χ2
n (g)χn(g4)

]
. (B14)

The presented derivation is not restricted to η transforming
according to a single IR. In fact, we can equally assume
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that η transforms according to the representation n1 + n2 +
· · · + nν . For example, in the case of a complex IR, we
choose n1 = E and n2 = Ē ; in the case of a degeneracy such
as in a trigonal system, we have n1 = Eg and n2 = Eg, or
even combinations thereof such as in C3 with n1 = n3 = E
and n2 = n4 = Ē . For clarity, we let R̃n(g) be the trans-
formation matrices associates with the IR n, and χ̃n(g) the
corresponding character. The nematic order parameter η =
(η1, η2 . . . , ηdim n1+···+dim nν

), on the other hand, transforms
with the matrices Rn(g) = R̃n1 (g) ⊕ · · · ⊕ R̃nν

(g). Clearly,
its characters are given by χn(g) = χ̃n1 (g) + · · · + χ̃nν

(g).
More importantly, since the transformation matrices Rn(g) are
block diagonal, we find

[Rn(g)]� = [R̃n1 (g)
]� ⊕ · · · ⊕ [R̃nν

(g)
]�

, (B15)

with � = {0, 1, 2, . . . }. As a result, the characters for any
power � become

χn(g�) = χ̃n1 (g�) + · · · + χ̃nν
(g�). (B16)

We now note that the above formalism equally applies
to the “mixed” η = (η1, η2, . . . , ηdim n1+···+dim nν

) with trans-
formation matrices Rn(g). The only difference is that the
characters (B16) have to be inserted into the formulas (B4)–
(B14).

APPENDIX C: MINIMIZATION OF THE ICOSAHEDRAL
NEMATIC LANDAU EXPANSION

In this Appendix, we derive the mean-field phase diagram
of the nematic instability in an icosahedral group, which is
presented in Fig. 3. Starting from the symmetrized product
decomposition (43)–(45) we first determine the three bilin-
ear combinations DAg , DHg,1, and DHg,2. The trivial one is
given by DAg = |d|2. For the two degenerate Hg bilinears we
choose a representation where both bilinears have equal am-
plitude |DHg,1| = |DHg,2| = |d|2. This condition indeed fixes
the two bilinears and one finds DHg,1 = D j=2 to be iden-
tical to the O(3) bilinear (19). With the amplitudes being
equal, it is clear that the obtained DHg,2 must be related to
DHg,1 through a rotation of the kind DHg,2 = RAD̃

Hg,1 where
D̃

Hg,1 = DHg,1|d→d̃=RBd with rotation matrices RA,B. Clearly,
this choice preserves the magnitude as (DHg,2)T DHg,2 =
(D̃

Hg,1)T D̃
Hg,1 = [(d̃ )T d̃]2 = [(d )T d]2. We find this relation

to be satisfied for RA = R5(−φ0) and RB = R5(φ0), as pre-
sented in the main text in Eqs. (46) and (47). Introducing the
unit vectors d̂ = d/|d| and D̂

Hg,1/2 = DHg,1/2/|d|2, we rewrite
the Landau expansion (48) as

S =
∫

x
|d|2{r0 + |d| f (3)

α,n,m,l + |d|2 f (4)
α,n,m,l

}
, (C1)

with the direction-dependent functions

f (3)
α,n,m,l = g1d̂ · D̂

Hg,1 + g2d̂ · D̂
Hg,2

, (C2)

f (4)
α,n,m,l = u1 + u2 D̂

Hg,1 · D̂
Hg,2

. (C3)

Within a mean-field analysis, the cubic term in the
action (C1) triggers a first-order transition at a reduced tem-
perature r0 > 0. To derive this solution, one first solves the

Landau equations for |d|:

|d|0 = 3
∣∣ f (3)

α,n,m,l

∣∣
8 f (4)

α,n,m,l

⎡
⎣1 +

√√√√1 − 32r0 f (4)
α,n,m,l

9
[

f (3)
α,n,m,l

]2
⎤
⎦, (C4)

where we implicitly assumed that f (3)
α,n,m,l < 0; we later veri-

fied that this is indeed the case for the mean-field solution. The
first-order phase transition occurs at the reduced temperature
rc

0 where the expansion (C1) evaluated at the solution (C4)
vanishes. We find

rc
0 = max

α,n,m,l

[
f (3)
α,n,m,l

]2
4 f (4)

α,n,m,l

, (C5)

where the maximum function determines the optimal di-
rection of the nematic direction parameters α, n, m, l . This
optimization with respect to the four degrees of freedom has
been conducted numerically to derive the phase diagram in
Fig. 3.

An analytical solution is readily available in two regions of
the (g2/g1, u2/u1) parameter-space. First, it is convenient to
parametrize the rotated nematic vector d̃ = R5(φ0)d as

d̃ = |d|√
3

{
cos (α̃)

(
ñμλ

j=2
μμ′ ñμ′

)+ cos

(
α̃+ 2π

3

)(
m̃μλ

j=2
μμ′ m̃μ′

)

+ cos

(
α̃ + 4π

3

)(
l̃μλ

j=2
μμ′ l̃μ′

)}
, (C6)

similar to the (nml ) representation (14). Here, (α̃, ñ, m̃, l̃)
are functions of (α, n, m, l) defined implicitly through
d̃ = R5(φ0)d. This allows us to rewrite the cubic terms in
Eq. (C1) as

d · DHg,1 = |d|3 cos (3α), (C7)

d · DHg,2 = d̃ · D̃
Hg,1 = |d|3 cos (3α̃). (C8)

The two parameter regimes where we can analytically de-
rive the nematic ground state are spanned by (i) signg1 =
signg2 and u2 < 0; and by (ii) signg1 = −signg2 and u2 > 0.
In both regimes, all direction-dependent terms in the expan-
sion (C1) can be simultaneously minimized.

In the first parameter regime (i), the cubic terms are mini-
mized by d̂ · D̂

Hg,1 = d̂ · D̂
Hg,2 = −signg1, which corresponds

to cos(3α) = cos(3α̃) = −signg1, see Eqs. (C7) and (C8). For
concreteness, we choose g1 < 0, such that the minimization
gives α = α̃ = 0; a similar procedure can be carried out for
g1 > 0. Technically, one still needs to demonstrate that eigen-
vectors n, m, l exist for these values. Setting α = α̃ = 0 in the
definition d̃ = R5(φ0)d and in expression (C6), we find two
equations

d̃ = |d|
√

3

2
nμ(R5(φ0)λ j=2)μμ′nμ′ , (C9)

d̃ = |d|
√

3

2
ñμλ

j=2
μμ′ ñμ′ , (C10)

which have to be identical. Equating the two lines (C9)
and (C10) leads to the five equations

2ñ2
z −ñ2

x−ñ2
y = 1 + 3

√
5

4
n2

x + 1−3
√

5

4
n2

y − 1

2
n2

z , (C11)
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ñ2
x−ñ2

y = −1 + √
5

4
n2

x + 1 + √
5

4
n2

y − 2
√

5

4
n2

z , (C12)

ñxñz = nxnz, (C13)

ñyñz = nynz, (C14)

ñxñy = nxny, (C15)

that need to be simultaneously satisfied by the four degrees
of freedom comprised in n and ñ (recall that each unit vec-
tor has two independent degrees of freedom). The set of
equations (C11)–(C15) has a total of 10 solutions. The first
four solutions correspond to the equal amplitude condition
|nμ| = |ñμ| = 1/

√
3, which automatically satisfies Eqs. (C11)

and (C12). Equations (C13)–(C15) are solved by appropri-
ately choosing the relative signs between the components
of each vector, yielding ni = ñi = V111

i with V111 given by
Eq. (35) and i = 1, 2, 3, 4. Recall that changing the sign of ni

or ñi does not change the corresponding nematic order param-
eter d, which allows us to discard the solutions ni = −ñi.

The other six solutions are obtained upon setting one com-
ponent nμ = 0 to zero. This necessarily requires ñμ = 0 in
order to solve two of Eqs. (C13)–(C15). The remaining three
equations can then be solved in a straightforward way. For
example, for nz = 0 we find the two solutions

n5 = (α(3)
− , α

(3)
+ , 0

)
, ñ5 = (α(3)

+ , α
(3)
− , 0

)
, (C16)

n6 = (α(3)
− ,−α

(3)
+ , 0

)
, ñ6 = (α(3)

+ ,−α
(3)
− , 0

)
, (C17)

with α
(3)
± = 1√

6
(3 ± √

5)1/2. The other four solutions are
found analogously and are presented in Eqs. (50) and (34).
Note that the ñ directions in Eqs. (C16) and (C17) do not carry
any information, they are merely a mathematical construct
used to find the solution.

In the second parameter regime (ii), the cubic terms are
minimized by d̂ · D̂

Hg,1 = −d̂ · D̂
Hg,1 = −signg1 or, equiva-

lently, cos(3α) = − cos(3α̃) = −signg1. Setting again g1 < 0
for concreteness, we search for solutions with α = 0 and
α̃ = π/3. As a result, one obtains Eq. (C9) while the second
equation (C10) is replaced by

d̃ = −
√

3

2
|d| m̃μλ

j=2
μμ′ m̃μ′ . (C18)

Equating Eqs. (C18) and (C9) gives once again five equations:

m̃2
x + m̃2

y − 2m̃2
z = 1 + 3

√
5

4
n2

x + 1 − 3
√

5

4
n2

y − 1

2
n2

z ,

(C19)

−m̃2
x + m̃2

y = −1 + √
5

4
n2

x + 1 + √
5

4
n2

y − 2
√

5

4
n2

z ,

(C20)

−m̃xm̃z = nxnz, (C21)

−m̃ym̃z = nynz, (C22)

−m̃xm̃y = nxny. (C23)

In contrast with the previous case, Eqs. (C19)–(C23) do not
allow for solutions with equal amplitudes due to the relative
minus signs in Eqs. (C21)–(C23). The six existing solutions
are obtained by imposing a vanishing component nμ = 0,
which directly implies m̃μ = 0, leading to three remaining

equations. Those can be solved in a similar fashion as the pre-
vious case. For instance, for nz = 0, we find the two solutions

n1 = (α(5)
+ ,−α

(5)
− , 0

)
, m̃1 = (α(5)

− , α
(5)
+ , 0

)
, (C24)

n2 = (α(5)
+ , α

(5)
− , 0

)
, m̃2 = (α(5)

− ,−α
(5)
+ , 0

)
. (C25)

A similar procedure can be applied for nx = 0 and ny = 0,
resulting in the solutions presented in Eqs. (52) and (33).

APPENDIX D: LANDAU EXPANSION FOR
THE TETRAHEDRAL GROUPS Th and T

In this Appendix, we derive the Landau expansion of the
nematic doublet order parameter de in the case of the cubic
point groups {Th, T}. The main difference with respect to the
derivation presented in Sec. III B, which applied to the cubic
point groups {Oh, O, Td}, is that here the nematic doublet de

transforms according to a complex IR. We emphasize that, for
the {Th, T} point groups, the nematic triplet order parameter
dt still transforms as a real IR, so the results in Sec. III B apply
directly to those groups as well.

To keep the notation transparent, we focus on the point
group Th; the results apply equally to the group T. Within Th,
the complex combination �e = |de|eiγe transforms as the Eg

IR while its complex conjugate �̄e transforms as the Ēg IR,
such that the two-component doublet de transforms according
to the representation (Eg ⊕ Ēg). To derive the corresponding
Landau expansion, we first compute the decomposition of the
symmetrized product for each expansion order, following the
procedure outlined in Appendix B:[⊗2

j=1(Eg ⊕ Ēg)
]

s = Ag ⊕ (Eg ⊕ Ēg), (D1)[⊗3
j=1(Eg ⊕ Ēg)

]
s = 2Ag ⊕ (Eg ⊕ Ēg), (D2)[⊗4

j=1(Eg ⊕ Ēg)
]

s = Ag ⊕ 2(Eg ⊕ Ēg). (D3)

We note the existence of one additional cubic invariant in this
case, when compared with the cases in which de transforms
as a real IR, see Eq. (65). To construct the four Ag invariants
in (D1)–(D3), we first determine the bilinears associated with
Eq. (D1):

DAg = |de|2, DEg = |de|2e−i2γe , DĒg = |de|2ei2γe . (D4)

Then, the four invariants can be written as |de|2, |de|4, �̄eDEg ,
and �eDĒg . From the latter two, we construct two real com-
binations (�̄eDEg + �eDĒg ) and i(�̄eDEg − �eDĒg ), such that
the Landau expansion becomes

S =
∫

x
{r0|de|2+ |de|3[gc cos(3γe) + gs sin(3γe)] + u|de|4}.

(D5)

The presence of the second cubic term proportional to
sin(3γe) can be traced back to the fact that the cubic groups
{Th, T} lack an axis of (proper or improper) fourfold rota-
tional symmetry compared with the cubic groups {Oh, O, Td}.
To proceed, it is instructive to rewrite the cubic terms as

gc cos(3γe) + gs sin(3γe) = g cos(3γe − δ0), (D6)

with

g = sign(gc)
√

(gc)2 + (gs)2, δ0 = arctan(gs/gc). (D7)
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Then, the action (D5) becomes

S =
∫

x
{r0|de|2 + g|de|3 cos(3γe − δ0) + u|de|4}, (D8)

illustrating the emergence of an offset angle δ0 for the ne-
matic director that is nonuniversal, i.e., it is determined by the
Landau coefficients, which in turn depend on the microscopic
model. As discussed above, this is due to the lack of proper
or improper fourfold rotational symmetry. This Landau ex-
pansion thus behaves effectively as a Z3 Potts model whose
threefold-degenerate ground-state directions

γ 0
e = 1

3
δ0 + mπ

3
(D9)

are offset by an angle δ0/3. Here, m = {1, 3, 5} for g > 0 and
m = {0, 2, 4} for g < 0. In Table I, we signal this modified
form of the Z3 Potts model via Z∗

3 .
To further visualize the effect of the offset angle, we rewrite

the order parameter de = |de|(cos γe, sin γe) in the (nml )
representation of Eq. (14). To accomplish that, we define
ne = div(γe, π/3) and γ̃e = mod(γe, π/3) = γe − neπ/3 ∈
[0, π/3] with div, mod denoting integer division and modulo,
respectively. Since the definition in Eq. (D7) implies δ0 ∈
[−π/2, π/2], it follows that ne = m − [1 − sign(δ0)]/2 and
γ̃e = δ0/3 + π

3 [1 − sign(δ0)]/2 ∈ [0, π/3]. Then, for even
ne, the de order parameter in the (nml ) representation of
Eq. (14) becomes

α = γ̃e, n = eñe+2, m = eñe+1, l = eñe , (D10)

where ñe = 1
2 ne + 1 ∈ {1, 2, 3} and the summation in (D10) is

understood as modulo three. Conversely, one obtains for odd
ne,

α = π

3
− γ̃e, n = eñe , m = eñe+1, l = eñe+2, (D11)

with ñe = 1
2 ne + 1/2 ∈ {1, 2, 3}. Interestingly, in this case of

a Z∗
3 Potts transition, the offset angle only affects α but leaves

the nematic axes aligned with the coordinate axes e1, e2,
and e3. Thus, within the point groups Th and T, the nematic
doublet state is generically biaxial with α �= {0, π/3}. Only
for γe = n π

3 (n ∈ N), which is a symmetry-enforced condition
in the point groups {Oh, O, Td}, the state is uniaxial with
α = {0, π/3}.

APPENDIX E: LANDAU EXPANSION FOR
THE HEXAGONAL GROUPS C6h, C3h, AND C6

In this Appendix, we derive the nematic Landau expansion
for the hexagonal point groups {C6h, C3h, C6}. In contrast
with the cases presented in Sec. IV B, the nematic in-plane
and out-of-plane doublets d ip and dop transform according to
complex IRs. For concreteness, we focus on the point group
C6h, for which the complex in-plane and out-of-plane nematic
order parameters, �ip = |d ip|eiγip and �op = |dop|eiγop , trans-
form according to the IRs E2g and E1g, respectively, whereas
their complex conjugates transform as Ē2g and Ē1g. The same
results hold for the other two groups.

To derive the Landau expansion for the in-plane nematic
doublet, we first compute the decomposition of the sym-
metrized product for each expansion order,[⊗2

j=1

(
E2g ⊕ Ē2g

)]
s
= Ag ⊕ (E2g ⊕ Ē2g

)
, (E1)[⊗3

j=1

(
E2g ⊕ Ē2g

)]
s
= 2Ag ⊕ (E2g ⊕ Ē2g

)
, (E2)[⊗4

j=1

(
E2g ⊕ Ē2g

)]
s
= Ag ⊕ 2

(
E2g ⊕ Ē2g

)
. (E3)

The four invariants are written in terms of the bilinears in
Eq. (E1),

DAg = |d ip|2, DE2g = |d ip|2e−i2γip , DĒ2g = |d ip|2ei2γip .

(E4)

resulting in |d ip|2, |d ip|4, �ipDĒ2g , and �̄ipDE2g . Thus, enforc-
ing the invariants to be real-valued, we obtain the nematic
Landau expansion

Sip =
∫

x

{
r0|d ip|2 + gip|d ip|3 cos

(
3γip − δ0

)+ u|d ip|4},
(E5)

with an angular-shifted cosine term obtained from the rela-
tionship (D6). The Landau expansion (E5) is that of a Z3 clock
model with an offset angle δ0, whose minimization gives

γ 0
ip = 1

3
δ0 + π

3

(
1 + sg

2

)
+ 2π

3
n, n = {0, 1, 2}, (E6)

where sg = signgip. In the nematic state, the Fermi surface is
similar to that shown in Fig. 5(a), but arbitrarily rotated about
the kz axis according to the offset angle δ0, which is a Landau
coefficient. To see this, we start from the parametrization of
d ip in Eq. (87) and employ the identities⎛
⎝cos

γ 0
ip

2

sin
γ 0

ip

2

⎞
⎠

= (−1)nRz

(
δ0

6

)[(
cos γ̃ 0

ip

− sin γ̃ 0
ip

)
1−sg

2
+
(

sin γ̃ 0
ip

cos γ̃ 0
ip

)
1+sg

2

]
,

(E7)⎛
⎝− sin

γ 0
ip

2

cos
γ 0

ip

2

⎞
⎠

= (−1)nRz

(
δ0

6

)[(
sin γ̃ 0

ip

cos γ̃ 0
ip

)
1−sg

2
−
(

cos γ̃ 0
ip

− sin γ̃ 0
ip

)
1+sg

2

]
,

(E8)

with γ̃ 0
ip = π

3
1+sg

2 + 2π
3 n and the rotation matrix

Rz(δ) =
(

cos δ − sin δ

sin δ cos δ

)
. (E9)

The relationships in Eqs. (E7) and (E8) explicitly show
that the in-plane nematic axes are rotated by an angle δ0/6
away from the hexagonal high-symmetry directions listed in
Eq. (97).

Repeating the same steps for the out-of-plane doublet order
parameter dop, we obtain the symmetrized-product decompo-
sitions [⊗2

j=1

(
E1g ⊕ Ē1g

)]
s
= Ag ⊕ (E2g ⊕ Ē2g

)
, (E10)
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[⊗3
j=1

(
E1g ⊕ Ē1g

)]
s
= 2Bg ⊕ (E1g ⊕ Ē1g

)
, (E11)[⊗4

j=1

(
E1g ⊕ Ē1g

)]
s
= Ag ⊕ 2

(
E2g ⊕ Ē2g

)
, (E12)[⊗5

j=1

(
E1g ⊕ Ē1g

)]
s
= 2Bg ⊕ 2

(
E1g ⊕ Ē1g

)
, (E13)[⊗6

j=1

(
E1g ⊕ Ē1g

)]
s
= 3Ag ⊕ 2

(
E2g ⊕ Ē2g

)
, (E14)

with the bilinears

DAg = |dop|2, DE2g = |dop|2ei2γop , DĒ2g = |dop|2e−i2γop .

(E15)

Compared with the case of d ip, here the cubic terms �opDE2g

and �̄opDĒ2g do not transform as Ag but as Bg. Thus, the
five invariants in Eqs. (E10)–(E14) are |dop|2, |dop|4, |dop|6,
(�opDE2g )2, and (�̄opDĒ2g )2, yielding the Landau expansion

Sop =
∫

x

{
r0|dop|2 + u|dop|4 + u6|dop|6

+ v6|dop|6 cos
(
6γop − δ0

)}
, (E16)

with an offset angle δ0 due to the relation (D6). Minimization
leads to

γ 0
op = 1

6
δ0 + π

6

1 + signv6

2
+ 2π

6
n, n ∈ {0, 1, . . . , 5},

(E17)

which, from Eq. (89), corresponds to a rotation of the nematic
axes by δ0/6 about the kz axis.

APPENDIX F: LANDAU EXPANSION FOR
THE TRIGONAL GROUPS C3 AND S6

This Appendix presents the derivation of the Landau ex-
pansion for the trigonal groups {S6, C3}, which lack the
in-plane symmetry directions Vhex

1 , Vhex
2 in Eq. (97), thus com-

plementing the analysis shown in Sec. IV C for the trigonal
groups {D3, D3d, C3v}. We consider the point group C3 for
concreteness; in this case, the combinations �ip = |d ip|eiγip

and �op = |dop|eiγop transform according to the complex IR E ,
whereas their complex conjugates �̄ip, �̄op transform accord-
ing to Ē . Since we are interested in the Landau expansion of
the total nematic order parameter dE = (d ip, dop), we need the
symmetrized product decomposition of (E ⊕ Ē ) ⊕ (E ⊕ Ē ):[⊗2

j=1((E ⊕ Ē ) ⊕ (E ⊕ Ē ))
]

s = 4A ⊕ 3(E ⊕ Ē ), (F1)[⊗3
j=1((E ⊕ Ē ) ⊕ (E ⊕ Ē ))

]
s = 8A ⊕ 6(E ⊕ Ē ), (F2)[⊗4

j=1((E ⊕ Ē ) ⊕ (E ⊕ Ē ))
]

s = 9A ⊕ 13(E ⊕ Ē ). (F3)

The bilinear combinations obtained from Eq. (F1) are

DA1
ip = |d ip|2, DA1

io = |d ip||dop|ei(γip−γop ),

DA1
op = |dop|2, DE

ip = |d ip|2e−i2γip ,

DE
op = |dop|2e−i2γop , DE

io = |d ip||dop|e−i(γip+γop ), (F4)

as well as the complex conjugates of the bilinears that are not
real-valued. The eight cubic invariants transforming as A are

given by

�̄ipDE
ip = |d ip|3e−i3γip , �̄ipDE

io = |d ip|2|dop|e−i(2γip+γop ),

�̄opDE
op = |dop|3e−i3γop , �̄opDE

io = |d ip||dop|2e−i(γip+2γop ),
(F5)

plus their complex conjugates. Similarly, the nine quartic in-
variants are

DA
ipDA

ip = |d ip|4, DA
ipDA

io = |d ip|3|dop|ei(γip−γop ),

DA
opDA

op = |dop|4, DA
opDA

io = |d ip||dop|3ei(γip−γop ),

DA
ipDA

op = |d ip|2|dop|2, DA
ioDA

io = |d ip|2|dop|2ei(2γip−2γop ),
(F6)

plus the complex conjugates of the terms on the right column.
We can now write down the Landau expansion in terms of
the real-valued combinations of these invariants. The resulting
action becomes S = S2 + S3 + S4, with

S2 =
∫

x
{rip(d ip )2 + rop(dop)2 + rio1(d ip · dop)

+ rio2(d ip )T (−iσ y)dop}, (F7)

S3 =
∫

x

{|d ip|3[gc
ipc3γip + gs

ips3γip

]
+|dop|3[gc

opc3γop + gs
ops3γop

]
+|d ip||dop|2[gc

2cγip+2γop + gs
2sγip+2γop

]
+|d ip|2|dop|[gc

1c2γip+γop + gs
1s2γip+γop

]}
, (F8)

S4 =
∫

x

{
uip|d ip|4 + |d ip|2|dop|2[uc

ioc2γip−2γop + us
ios2γip−2γop

]
+ u0

io|d ip|2|dop|2 + [uc
2cγip−γop + us

2sγip−γop

]|d ip||dop|3

+ uop|dop|4 + [uc
1cγip−γop + us

1sγip−γop

]|d ip|3|dop|},
(F9)

with 23 invariants. For brevity, we defined cγ ≡ cos γ and
sγ ≡ sin γ ; the Pauli matrix iσ y in the quadratic action S2

acts on the two-dimensional subspace of d ip and dop.
To minimize S , we proceed in the same way as the analysis

carried out in Sec. IV C. Upon diagonalizing S2, we obtain

S2 =
∫

x

(
d ip

dop

)T

M

(
d ip

dop

)
=
∫

x
{λ+|d+|2 + λ−|d−|2}, (F10)

where

λ± = 1
2

(
rip + rop ±

√(
rip − rop

)2 + r2
io1 + r2

io2

)
. (F11)

Here, we used the result U T MU = diag(λ+, λ+, λ−, λ−) and
introduced the diagonal basis(

d+

d−

)
= U T

(
d ip

dop

)
=
(

β+RT
δio

d ip + β−dop

−β−RT
δio

d ip + β+dop

)
, (F12)

with the rotation matrix

Rγ =
(

cos γ − sin γ

sin γ cos γ

)
, (F13)
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and the unitary matrix

U =

⎛
⎜⎜⎝

β+ cos δio −β+ sin δio −β− cos δio β− sin δio

β+ sin δio β+ cos δio −β− sin δio −β− cos δio

β− 0 β+ 0
0 β− 0 β+

⎞
⎟⎟⎠,

(F14)

where

β± = 1√
2

√√√√1 ± rip − rop√(
rip − rop

)2 + r2
io1 + r2

io2

, (F15)

and

cos δio = rio1√
r2

io1 + r2
io2

, sin δio = rio2√
r2

io1 + r2
io2

. (F16)

We emphasize that the corresponding expressions shown in
Sec. IV C for the trigonal groups {D3, D3d, C3v} can be
recovered from the expressions above upon setting rio2 = 0,
which gives δio = 0, π . The cubic and quartic actions can
also be rewritten in the d± = |d±|(cos γ±, sin γ±)T basis. For
instance, S3 becomes

S3 =
∫

x

{|d+|3[gc
+c3γ+ + gs

+s3γ+
]

+ |d−|3[gc
−c3γ− + gs

−s3γ−
]

+ |d+|2|d−|[g̃c
1c2γ++γ− + g̃s

1s2γ++γ−
]

+ |d+||d−|2[g̃c
2cγ++2γ− + g̃s

2sγ++2γ−
]}

. (F17)

Here, we defined the new Landau coefficients

g+ = β3
−gop + β2

−β+RT
δio

g2 + β−β2
+RT

2δio
g1 + β3

+RT
3δio

gip,

g− = β3
+gop − β−β2

+RT
δio

g2 + β2
−β+RT

2δio
g1 − β3

−RT
3δio

gip,

g̃1 = 3β2
−β+gop + β−

(
2β2

+ − β2
−
)
RT

δio
g2

+ β+
(
β2

+ − 2β2
−
)
RT

2δio
g1 − 3β−β2

+RT
3δio

gip,

g̃2 = 3β−β2
+gop + β+

(
β2

+ − 2β2
−
)
RT

δio
g2

− β−
(
2β2

+ − β2
−
)
RT

2δio
g1 + 3β2

−β+RT
3δio

gip, (F18)

where

gip =
(

gc
ip

gs
ip

)
, gop =

(
gc

op

gs
op

)
, g1,2 =

(
gc

1,2

gs
1,2

)
,

g± =
(

gc
±

gs
±

)
, g̃1,2 =

(
g̃c

1,2

g̃s
1,2

)
. (F19)

Similarly to the case of the trigonal groups investigated
in Sec. IV C, we keep only the terms in the action that are
linear and quadratic in the subleading-order parameter d+.
This results in S = S−[d−] + S+−[d+, d−] with

S− =
∫

x
{λ−|d−|2 + g−|d−|3 cos (3γ− − δ−) + u−|d−|4},

(F20)

where

g− = sign(gc
−)
√

(gc−)2 + (gs−)2, δ− = arctan
gs

−
gc−

, (F21)

and

S+− =
∫

x
{λ+|d+|2 + |d+|2|d−|g̃1 cos(2γ+ + γ− − δ̃1)

+ |d+||d−|2g̃2 cos(γ+ + 2γ− − δ̃2)}, (F22)

with relationships similar to Eq. (F21) holding for g̃1,2 and δ̃1,2

in terms of the vectors g̃1,2 defined in Eq. (F18). Minimizing
with respect to d+ gives

|d+| ≈ −g̃2 cos(γ+ + 2γ− − δ̃2)

2λ+
|d−|2 + O(|d−|3), (F23)

which, when inserted back in Eq. (F22), results in an addi-
tional quartic term in d−:

S+− =
∫

x

{
− (g̃2)2 cos2(γ+ + 2γ− − δ̃2)

4λ+
|d−|4

}
. (F24)

Combined with the condition that |d+| in Eq. (F24) must
be positive, this additional quartic term is minimized for the
angle

γ+ = −2γ− + δ̃2 +
(

1 + sign g̃2

2

)
π. (F25)

Consequently, the effect of integrating out the fluctuations
in the subleading d+ channel is to renormalize the quartic
Landau coefficient u− → u− − (g̃2)2/(4λ+) of the d− ac-
tion (F20), analogously to what we found in Sec. IV C. The
main difference of this action with respect to the action de-
rived in Sec. IV C for the trigonal groups {D3, D3d, C3v} is
the offset angle δ−. Thus, the nematic order parameter d−

behaves as a Z∗
3 clock order parameter, characterized by the

threefold-degenerate ground state:

γ 0
− = δ−

3
+ π

3

1 + sign(g−)

2
+ 2π

3
n, n = {0, 1, 2}. (F26)

For these values of γ 0
−, the induced d+ nematic order parame-

ter becomes

d+ = sign(g−)
|g̃2|
2λ+

|d−|Rδ̃2−δ−d−. (F27)

Therefore, d+ is rotated against d− by the offset angle δ̃2 −
δ−. Using Eq. (F12), it is straightforward to obtain the original
nematic order-parameter doublets:

dop = β−d+ + β+d−, d ip = R−δio (β+d+ − β−d−). (F28)

Because d+ is not collinear to d−, dop, and d ip are gen-
erally not going to be collinear either. One consequence of
this property is that the nematic axes n, m, l will be offset
from any high-symmetry axes. This is consistent with the fact
that the groups {S6, C3} have no residual symmetry axes
in the nematic phase, see also Table I. In contrast, for the
trigonal groups {D3, D3d, C3v}, the Landau coefficients satisfy
rio2 = 0, gs

ip,op,1,2 = 0, and us
io,1,2 = 0. This causes the rotation

matrix in Eq. (F27) to become the identity, Rδ̃2−δ− = 1, such
that d+ and d− are collinear.

APPENDIX G: LANDAU EXPANSION FOR
THE TETRAGONAL GROUPS C4h, C4, AND S4

In this Appendix, we consider the three tetragonal point
groups {C4h, C4, S4} that do not possess in-plane twofold
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rotational symmetry axes. This implies not only that the two
in-plane nematic components {d2, d5} transform as the same
one-dimensional IR, but also that the out-of-plane nematic
doublet dop transforms as a complex IR. For concreteness, we
focus on the group C4h, for which d2 and d5 transform as Bg

while �op = |dop|eiγop and �̄op = |dop|e−iγop transform as Eg

and Ēg.
Since the in-plane components are degenerate, we consider

the full in-plane doublet d ip = (d2, d5), which transforms ac-
cording to (Bg ⊕ Bg). The decomposition of the symmetrized
product is straightforward:

[⊗2
j=1(Bg ⊕ Bg)

]
s = 3Ag, (G1)[⊗3

j=1(Bg ⊕ Bg)
]

s = 4Bg, (G2)[⊗4
j=1(Bg ⊕ Bg)

]
s = 5Ag. (G3)

There are thus eight Landau invariants up to fourth-order. The
resulting action S = S2 + S4 is then

S2 =
∫

x
{r1(d2)2 + r2(d5)2 + r3d2d5}, (G4)

S4 =
∫

x
{u1(d2)4 + u2(d5)4 + u3(d2)2(d5)2

+ u4d2(d5)3 + u5(d2)3d5}. (G5)

We follow the same procedure as with the trigonal case
in Sec. IV C. The diagonalization of the quadratic action,
Eq. (G4), is accomplished via the orthogonal matrix

U =
(

β+ − r3
|r3|β−

r3
|r3|β− β+

)
, β± = 1√

2

√√√√1 ± �r√
(�r)2 + r2

3

,

(G6)

with �r ≡ r1 − r2. We obtain

S2 =
∫

x
{λ+(d+)2 + λ−(d−)2}, (G7)

with eigenvalues

λ± = 1
2

(
r1 + r2 ±

√
(r1 − r2)2 + r2

3

)
, (G8)

and eigenvectors

(d+, d−)T = U T d ip. (G9)

Since λ− < λ+ by construction, the combination d− orders
first. We thus rewrite the action S = S− + S+− as

S− =
∫

x
{λ−(d−)2 + u−(d−)4}, (G10)

S+− =
∫

x
{λ+(d+)2 + ũ1d+(d−)3 + ũ2(d+)2(d−)2}, (G11)

where we kept only terms that are linear or quadratic in the
subleading channel d+ and defined⎛

⎝u−
ũ1

ũ2

⎞
⎠ = β4

−

⎛
⎝ u1

−u5

u3

⎞
⎠+ β4

+

⎛
⎝u2

u4

u3

⎞
⎠

+ β2
−β2

+

⎛
⎝ u3

3(u5 − u4)
6u1 + 6u2 − 4u3

⎞
⎠

+ r3

|r3|β−β3
+

⎛
⎝ −u4

4u2 − 2u3

3u4 − 3u5

⎞
⎠

− r3

|r3|β
3
−β+

⎛
⎝ u5

4u1 − 2u3

3u4 − 3u5

⎞
⎠. (G12)

Minimizing Eq. (G11) gives d+ ≈ − ũ1
2λ+

d3
−, which upon rein-

sertion into S+− leads to a sixth-order term d6
−. Hence,

fluctuations of the subleading channel only renormalize the
sixth-order Landau coefficient of the Ising-nematic action of
the leading channel, Eq. (G10). To express the ground state
in the in-plane (nml ) representation of Eq. (89), we can
substitute d+ ≈ − ũ1

2λ+
d3

− in Eq. (G9) and perform the inverse

transformation to obtain both |d ip| and the specific angle γip,
both of which will be determined by the Landau parameters
of the original action (G4) and (G5).

Proceeding to the out-of-plane doublet dop, the decompo-
sitions of the symmetrized products are[⊗2

j=1(Eg ⊕ Ēg)
]

s
= Ag ⊕ 2Bg, (G13)[⊗3

j=1(Eg ⊕ Ēg)
]

s
= 2(Eg ⊕ Ēg), (G14)[⊗4

j=1(Eg ⊕ Ēg)
]

s
= 3Ag ⊕ 2Bg, (G15)

with the bilinears D
Ag
op = |dop|2,

D
Bg,1
op =|dop|2 cos

(
2γop

)
, D

Bg,2
op =|dop|2 sin

(
2γop

)
. (G16)

The four invariants can be expressed as |dop|2, |dop|4,
D

Bg,1
op D

Bg,2
op , and (DBg,1

op )2 − (DBg,2
op )2 which, combined with the

relationship (D6), give the Landau expansion:

Sop =
∫

x

{
r0|dop|2 + u|dop|4 + v4|dop|4 cos

(
4γop − δ0

)}
.

(G17)

As in the cases analyzed in the previous Appendixes, the
offset angle δ0 should be understood as a Landau coefficient.
The Landau expansion (G17) has the shape of a modified
four-state clock model, Z∗

4 clock, with the fourfold degenerate
angles offset from the high-symmetry tetragonal directions:

γ 0
op = 1

4
δ0 + 2π

4
n + π

4

(
1 + signv4

2

)
, n ∈ {0, 1, 2, 3}.

(G18)

Upon employing Eq. (89), we conclude that the offset angle
δ0 leads to a rotation of the nematic axes about the kz axis by
an angle δ0/4.
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