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Effective field theory of Berry Fermi liquid from the coadjoint orbit method
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We construct an effective field theory for an interacting Fermi liquid with nonzero Berry curvature at zero
temperature, called the Berry Fermi liquid. We start with the extended phase space formalism, incorporating
physical time into the configuration space. This approach allows us to include the time dependence of the back-
ground gauge fields “covariantly” into the symplectic structure. Upon restricting to the physical hypersurface, the
effective action that lives on the coadjoint orbit becomes the minus free energy on the extended phase space. We
also derive the action perturbatively in external fields using the canonical variables. For applications, we compute
both linear and nonlinear electrical responses using the Kubo formula and identify contributions from the electric
and magnetic dipole moments, which stem from interactions breaking parity and time-reversal symmetry. The
anomalous Hall effect is confirmed using the kinetic theory.
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I. INTRODUCTION

Berry curvature, originally discovered by Berry to describe
geometric properties of parametrized adiabatic evolution [1],
plays an important role in topological materials [2]. It gives
rise to exotic electronic properties in noncentrosymmetric ma-
terials, such as the anomalous Hall effect [3], and its nonlinear
generalizations [4]. After being understood in the context of
Weyl semimetals at finite density [5—7], the role of the Berry
curvature played in a generic Fermi liquid (gas) has been
developed recently [8,9]. It was first realized by Haldane [10]
that the nonquantized part of the anomalous Hall coefficient is
a Fermi surface property, suggesting that a Berry Fermi liquid
is an honest generalization of the Landau Fermi liquid (LFL).
However, unlike the gapped band insulator or the noninter-
acting Fermi gas, interactions in a Fermi liquid are important
to be taken together with the Berry curvature. A Keldysh
formalism was developed to study interaction effects on Berry
curvature [11], and the generalized Boltzmann equation in
the presence of the Berry curvature was confirmed using an
interacting fermionic QFT. [6,12]

In this work, we aim to construct an effective field the-
ory for Berry Fermi liquid using the coadjoint orbit method
recently proposed by Ref. [13], which develops the idea of
describing the Fermi liquid as incompressible fluid in the
phase space [14-16]. Instead of tackling the fermionic QFT
from a UV perspective, the effective field theory captures
the Berry curvature and the interaction effects phenomeno-
logically based on the symmetry principles. The bosonic
action is built to have the Boltzmann equation as its equa-
tion of motion, but also provides a systematic expansion
of irrelevant contributions to the Fermi liquid fixed point.
One major simplification is that the density-density loop
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diagrams in fermionic QFT are captured by tree-level dia-
grams in the bosonic action, corresponding to the solutions
of the Boltzmann equation. Based on that, we demonstrate
various responses in a Berry Fermi liquid.

The effects of Berry curvature are often studied through
semiclassical electron dynamics [2]: By including the ge-
ometric phase in both the real and momentum space into
the single-particle action, we obtain a modified symplectic
structure. However, as we show in Appendix A, the effec-
tive action on the coadjoint orbit of the modified canonical
transformation does not produce the correct Boltzmann equa-
tion. The reason is simple—the modified symplectic form is
time-dependent due to the electromagnetic fields which do
not commute under the canonical transformations. To derive
the correct Boltzmann equation, we apply the extended phase
space formalism [17-19] to include the physical time into
the configuration space. The total phase space now consists
of spacetime coordinates, energy, and momentum. Conse-
quently, the time dependence of the 1-form U (1) gauge field
is incorporated into the modified symplectic structure. In a
second approach, we apply the Darboux’s theorem which
states that there is always a set of canonical variables on a
local neighborhood of the symplectic manifold that satisfy
the canonical Poisson bracket. Since the canonical Poisson
bracket is time-independent, we can safely apply the coadjoint
orbit theory from Ref. [13], but the Hamiltonian now depends
on the noncanonical variables. However, the canonical vari-
ables can only be found perturbatively, while the extended
phase space formalism turns out to be exact. We will thus
focus on the first approach since it gives a nonperturbative
action and is explicitly gauge-invariant.

The structure of this paper is as follows. We first give a
brief review of the coadjoint orbit method in Sec. II following
closely Ref. [13] (see also Ref. [20]). We then construct the
effective action of Berry LFL using the extended phase space
formalism in Sec. III. We also discuss the perturbative action
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obtained from the canonical variables. In Sec. IV, we perform
a detailed calculation of linear and nonlinear electrical re-
sponses of a parity-violating system, and stress the difference
between the dc (w/q — o0) and the static (w/q — 0) limit.
We conclude in Sec. V with an outlook of our theory. We
supplement the main text with three appendices: Appendix A
devotes to the symplectic mechanics in an ordinary phase
space; Appendix B contains the Kubo formula for nonlinear
responses; Appendix C includes the perturbed kinetic theory
calculation. Throughout this paper, we focus on d = 2, but
generalization to higher dimensions is straightforward. We de-
note i, v =1, x,y as the spacetime indices and 7, j = x, y as
the spatial indices. We will also use £¢ to denote collectively
the phase space variables.

II. A BRIEF REVIEW OF THE COADJOINT
ORBIT METHOD

At zero temperature, the Fermi liquid governed by
the collisionless Boltzmann equation evolves following the
canonical transformations, i.e., Hamiltonian dynamics. De-
note the Lie algebra of the canonical transformation as g. The
Lie bracket in g is the Poisson bracket:

{F.G}=VF -V,G—V,F VG, 2.1)

for F(x, p), G(x, p) € g. We call these functions the fields.
The element of the Lie group G of the canonical transforma-
tion is the exponentiation of the Lie algebra: U = exp F € G.
As an example, the (free fermion) Hamiltonian H(x, p) =
e(p) + V(x) is an element of the Lie algebra g, and its cor-
responding group element exp H transforms (x, p) — (x', p’)
as a result of time evolution. The phase space distribution
function f(x, p) is defined in the dual space of the Lie algebra
g*. It is defined as returning the average value of the element
of the Lie algebra:

Flf1=({f.F) E/ f(x, p)F(x, p), 2.2
x.p

where [ = [d’x, fp = [d?p/(27)". The adjoint action of g
is defined through

adgF = {G, F}. (2.3)
Then, the coadjoint action is defined by requiring
(adif, F) = —(f, adgF), which leads to

adgf =1{G, f}. 2.4

Further, the adjoint/coadjoint action of group G is given by
AdyF =UFU 'and Adj, f = U fU~!, respectively That the
adjoint/coadjoint action furnishes a representation follows
from the fact that the Poisson bracket obeys Jacobi identity.

The Liouville’s theorem states that the distribution function
remains constant along trajectories in phase space. It results in
the collisionless Boltzmann equation (see Appendix A)

3,f —adi,f =0. 2.5)

A formal solution to this equation is given by
f@)=Adj, fo=UOfU@)™" where 3,U(t)=HU(t)
and U(0) = 1, and fy is some reference state. Therefore, the

relevant space of states is given by
O, ={f3U € G: f = Adj, fo},

which is the coadjoint orbit of G. For LFL, the space of states
consists of droplets in the momentum space of arbitrary shape
but fixed volume, and this is precisely given by the coadjoint
orbit Oy,. For our purpose, we take the reference state f; to be
a rotationally invariant connected Fermi surface

fo(p) = O(pr — |pPD).

A stabilizer subgroup H C G whose elements V leave
the distribution invariant f = Ady fy = fp implies Adj,,, fo =
Adj; fo. Therefore, the stabilizer subgroup describes a gauge
redundancy through U — UV, and the coadjoint orbit is the
left coset space:

(2.6)

2.7

Op =G/H.

In contrast, a global symmetry for the coadjoint orbit is the
transformation U — WU that leaves the dynamics invariant.
Egs. (2.8)! and (2.9)

The coadjoint orbit can be parametrized in the following
way. We denote each group element exp(—¢(x, p)), ¢ € g by
a perturbative field ¢ < 1. Then, we quotient out the stabilizer
element o = ¢(x, p) — ¢(x, 0, |p| = pr), ad}, fo = 0, where
6 parametrizes the Fermi surface. To the linear order, we arrive
at

(2.8)

U =exp(—¢(t,x,0)) € G/H,

where the bosonic field ¢(z, x, 8) lives on the Fermi surface
only. Expanding around (2.7), the distribution function is
given by

F=U/RU" = fo— (o, fo} + 3. (&, fol} + ...

=O(pr—Ip)+n-VP(lp| — pr) + ...,
(2.10)

(2.9)

where n' = p’/|p| is the unit vector normal to the Fermi sur-
face, and in the following we will use s = dyn to denote the
transverse direction.

The coadjoint orbit is a symplectic manifold according to
the Kirillov-Kostant-Souriau theorem [22]. To describe per-
turbative fluctuations around fj, the nondegenerate and closed
symplectic 2-form can be taken to be exact leading to the
effective action [13]:

S = Swzw + Su,  Swzw =/df<fo,U_13rU),

Sy = —/dt(fo, U~ 'H(x, p)U), (2.11)
which includes the Wess-Zumino-Witten (WZW) term Swzw
and the Hamiltonian Sg.

! An interesting stabilizer element is to take V = exp(a(pg)) on the
Fermi surface, then with the identification o ~ « + 27, it becomes
a “gauge” LU(1) symmetry associated with the coset space, i.e. the
coadjoint orbit. This should be contrasted with the global LU(1) sym-
metry discussed in Ref. [21] because that requires the IR distribution
function to satisfy Ad}, fir = fir-
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III. EFFECTIVE FIELD THEORY OF BERRY
FERMI LIQUID

In this section, we generalize the coadjoint orbit method to
include both the electromagnetic fields and the Berry curva-
ture. In Sec. IIT A, we apply the extended phase space method
to get the exact action, while, in Sec. III B, we use canonical
variables to construct an action that is perturbative in the
background gauge fields.

A. Extended phase space, modified canonical
transformation, and the effective action

Consider extending the configuration space from M to
M x R to include the physical time 7, where here M = R2.
The extended phase space is given by the cotangent bundle
T*(M x R) = T*M x R? with the coordinates (x', p;, t, E),
where E is the energy conjugate to . We introduce another
real variable s € R to parametrize the trajectories in the ex-
tended phase space. The single-particle action is given by

S= /.Xadéa — hds, 3.1)
where the tilde variables run over the extended phase space.
The extended Hamiltonian 4 takes the form of

h(x,p,t,E)=H(t,x,p)+ E, (3.2)
J
1 oF 8G  0F aG
{F, G}ex =\ 7 —
14+ BQ\ox' apt  dp' ox'
.. 0F 0G . 0F 0G
— QeVE,— — + QeVE;— —
dx/ oF JdE ax/

By varying the action (3.1) with respect to £¢, we obtain the
(single-particle) equation of motion

dE®
ds

hence, a modified canonical transformation.

The physical space of states has been enlarged upon ex-
tending the phase space. However, the dynamics at different
s driven by the Hamiltonian % are not physical. To eliminate
these unphysical dynamics, it is equivalent to taking different
states at different s as physically the same—they are related
by gauge transformations. To this end, we further impose a
first class constraint 4 = 0, and, at the same time, ds becomes
the 1-form Lagrangian multiplier. The first class constraint
defines a gauge transformation through the Poisson bracket
[23]. In our case, it is the Liouville’s equation 9, f = Adj f
that generates these gauge transformations. A gauge-invariant
variable f thus satisfies Adyf = 0. Taking the distribution
function f(x, p, t), and requiring it to be gauge-invariant, we
have

= (€%, h}ex = @™ 3ph,

(3.7)

of+ (E'3, f + Qo fE; + 3;f0,H

1+ BQ
— 0, f;H + Be" 9, f3,,H — Qe’0,f3;H) =0, (3.8)

where H is the physical Hamiltonian. Let us choose the sym-
plectic part to be

f hadE4 = f pldx' + Al (p)dp' + Ai(t, x)dx'

+ A, (t,x)dt + Edt, (3.3)

where A, (¢, x) and A ,(p) are the U (1) gauge fields and Berry
connection, respectively, and their fluxes are given by

E=VA —3A, B=VxA, Q=-V,xA4, (34

The corresponding symplectic form, defined as &,, = d,Ap —
OpAg, 1S given by

i, = B(t, x)eljv ibp’pf = —Q(P)El‘] s

(3.5)

Cbx"p/ = _aijv
&)xit = Ei(tvx)v CN(‘)Ef = 1’

with a modified phase space volume +/det® =1+
B(t,x)Q2(p). The Poisson bracket is determined by the
inverse of the symplectic form, @* = (@~ '),, and it is given

by
OF 0G ij oF 0G
_— € — —
ax! ax/ apt dp’
oF 0G oF 0G 0F 0G 0F 0G
—— —E—=— 1t —— - ——. 3.6)
op' OE oE ap' ot 0OE  0FE ot

(

which is precisely the Boltzmann equation described in
Ref. [2]. Hence, a gauge-invariant quantity lives in the reduced
phase space which turns out to be the original phase space
T*M.

Having constructed the correct Boltzmann equation, we
next write down its corresponding action. Restriction to the
hypersurface & = 0 is to identify the energy with the Hamil-
tonian £ = —H (¢, x, p). Given the reference state (2.7), the
coadjoint orbit is now parametrized by

U=exp(—¢(t,x,0,E =—-H(,x,0, p= pr)))

= exp(—(t, x, 0)). (3.9

This can be seen by taking o = ¢(x, p) — d(x, 6), and we
have

n y
—1 T BQ [dicx + eleapfa]hp\:PF =0

Ead ad;fo = {a, folex =0,

'™ dyetl pi—p, =
(3.10)

where we used 0;a||pj=p, = Opit||pj=p, = 0 and the radial
derivative vanishes due to the antisymmetric tensor, hence,
a € H. For simplicity, we will omit the tilde on ¢ in the
following. Let us denote the inner product in the reduced
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phase space as

2.2
(f s F) =/wx/det€o, (3.11)

(2m)?

where we have assumed that the symplectic form will not
depend explicitly on E. Then, the effective action becomes

S = —/dt(fo, U~'x;0,U)
=/dt(f0,U‘18,U) —/dt(fo, U~'X50.U)

—Z/dz(fo, U~'afa,U),

a#t

(3.12)

where X! = ®"9,h is the Hamiltonian vector field for 4, and
fo is given by Eq. (2.7). In the first line of Eq. (3.12), the total
action is written as the minus “free energy” of the Hamilto-
nian & subtracting off its equilibrium value. This is expected
to generate the equation of motion Adjf = 0 according to
Sec. II, and indeed by varying the action with respect to
U — exp(Sa(t,x, p))U, we find Eq. (3.8). In the second line
of Eq. (3.12), we see the difference when the canonical trans-
formation is modified by the background fields: the first two
terms correspond to the WZW and the Hamiltonian part in
Eq. (2.11), respectively, while the last term only arises in the
presence of a time-dependent electric field. Combining the last
term with the first term, we see that writing the time-derivative
obeying the modified canonical transformation amounts to
replacing

9, — @F%%,. (3.13)

This will be the essence of constructing the effective field
theory.

In terms of the bosonic field ¢, the action can be expanded
as follows. Let us take the noninteracting kinetic energy H =

e(p), so
1 y
{h, p}ex = —0,0 + m(gé 'Eidj¢ — Eidp¢ — v;0i

+ Bevid ), (3.14)

where v; = d¢/9p'. Thus, the linear order action becomes

S — / dt (fo. h, —$)ec)

fo(—(1 + BQ)3,¢ + QeVE;0;¢p — E;id,i¢)

L,x,p

_ PE .
~ Ty /,,x,e” Ee,

where we have ignored total derivatives, and in the last step
we used the Maxwell relation 3, B = —V X E and the identity
0pi fo = —n'8(p — pr). The leading expansion of the distribu-
tion function becomes

(3.15)

i

{fo, Plex = 789

(8¢ — Be3,:¢)8(p — pr).  (3.16)

Hence, the quadratic action becomes

1

5@ = / A1 (. folex. 1. $)ex)

I 4 . _E
=202 )i (" ve pFM’)

1 -
X (at¢ - 1+ BQ (Qe”Eiajq& — VUgR - V¢

Bvg —E -s
+UF—30¢))-
PE

B. Canonical variables

(3.17)

In a neighborhood of each point of a symplectic manifold,
there always exists a set of canonical phase space variables
that satisfy the canonical Poisson bracket (2.1) thanks to the
Darboux’s theorem. For example, particles moving in the
electromagnetic fields can be formulated under the canonical
variables x and p + A, where the shift of momentum is the
Peierls substitution. In the presence of both the U (1) gauge
field A, (¢, x) and the Berry connection A ,(p), the exact form
of canonical variables is unknown. However, it is possible
to work in the regime where A, = O(¢) and A; = O(e,) are
perturbatively small €, €, < 1, and only keep leading orders
up to O(ee,). Within this subsection, we work in the phase
space T*M = R*.

Based on the single-particle symplectic mechanics in Ap-
pendix A, we have the canonical variables given by

X =x—A,(p)—A'V,A/

- (3.18a)
P=p+Ax).

(3.18b)

To see they give rise to the correct symplectic structure, we
calculate the transformed symplectic form

(X, P)
hon—can _ MT c a)canMd’ ME — ’ , 3.19
ab (M") @cq M b= B ) (3.19)
with wfc?;j = —4J;;, and we find, to the leading order in O(¢¢),),
w)rcllopnjfcan — _Bij’ wE?pnjfcan — —QEU, a))rclgcr}fcan — Beij,
(3.20)

which agrees with Eq. (A3).
Consider the action (2.11) with a kinetic energy H =
e(p) — A1, x):

S:fdt (fo, U8, + At x) — e(p)]U), (3.21)

where the canonical transformation is given with respect to
the canonical variables (3.18). We can still use the canonical
Poisson bracket (2.1), but with the price that the functions in
the action (3.21) now depend on the noncanonical variables:

X (X, P)=X"+A(P) — Q€A (3.22a)
P'X,P)=P —A(X)— akAiA’;,. (3.22b)
Upon varying the action, we obtain the equation of motion as

O f + OxiAOpi f — OxiA, 0pi AL dxi f + v'Oxi f + v/ 0xiAl Opi f

— v/ 05 AT OpiAl 0y f = 0, (3.23)
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where f = f(t,x, p), v' = dg/dp’. Next, we expand f in
terms of the canonical variables using Eq. (3.22), and we have,
to the order O(ee,),

Wf A O fa— 0y a0 A" — 0 faQe" BA,;
— 0 [0k O, A'AL
dxiA;dpi f ~ aA,a i fa + 0;A; 0 anp »
Vidyi f A 00 fa — 10, f1AT — 013, 1€ 9:A,
— "0, fa0k ;AT AL,

Vv xiA Opi f A VI 0,AT 0, fo 4 v/ 0iAT D faDiAL,  (3.24)
where f1(¢t,X,P) = f(t,x, p) and we have renamed the ar-
guments on the right hand side. Gathering above, we arrive at

the final equation of motion

ath + Eial)ffA + injaifAEj

+ (1 — BQW'0:fa + BeVd, fav/ =0, (3.25)
where we have neglected the term proportional to (w — v -
q)AA, since (w — v -q) ~ O(e, €,). We see that Eq. (3.25)
agrees with Eq. (3.8) to the leading order in O(e€,,).

Before moving on, let us comment on the relation be-
tween our canonical variables and the “covariant” variables
in Ref. [13]. In Appendix A of Ref. [13], they considered
coupling to generic background gauge fields parametrized
by A,(t,x,p) and A,(t,x, p). The way these gauge fields
coupled to the action is by introducing a non-Abelian gauge
transformation, which is essentially the full canonical trans-
formation, and the resulting covariant variables are linear in
these gauge fields: X =x —A,, P = p + A. However, their
free fermion covariant action does not depend explicitly on A,
meaning the theory will not couple to the Berry curvature; this
also manifests in their Ward identities where the anomalous

J

velocity does not show up. To see explicitly that the linear-in-
gauge-field covariant variables cannot produce the Berry LFL,
we expand the transformation matrix as

MY =1+ MY, , (3.26)

where n ~ O(e, €,,) keeps track of the order of gauge fields.
The gauged symplectic 2-form is given by

wnon—can — MT . a)can M = wcan

+ (0™ - M) + M, - o)

—I— n M(l) wc‘m ~M(]), (327)

where the matrix multiplication follows Eq. (3.19). For a
generic phase space gauge field, the O(n?) term in Eq. (3.27)
will not vanish. However, we know that """ — " =
dA ~ O(n), so there is a contradiction. It could be the case
where we only care about the order O(n), but the Berry LFL
is not the case—the nontrivial phase space volume only shows
up at the order BQ2 ~ O(n?). Therefore, the transformation
matrix (3.26) is not enough to generate the correct symplectic
manifold for Berry LFL, and we need the covariant variables
to be nonlinear in gauge fields (3.18). Now, if one wants to
treat the canonical variables as coming from a (non-Abelian)
gauge symmetry as the subgroup of the canonical transfor-
mation, then the nonlinear coupling between gauge fields
in Eq. (3.18a) makes the structure of such gauge symmetry
obscure. Nevertheless, we note that the linearized “covariant”
variables were used to describe the phase space Berry phase
in the semiclassical limit [11,24].

C. Including Landau parameters

So far we have considered free fermions. Interactions
between fermions can be accounted for by expanding the
Hamiltonian in terms of Landau parameters. Generalizing
Eq. (3.12) to include leading Landau parameters, we have

S — _/dt<f0, U_]X}il/aaU>, h/ — h +Hint — h +Hint,(2,0) +Hint’(2']),

. 1 NP Ny
HMCO (x py = T (1 +BQHE®O(p, pHf,
p,

FS
Hint,(z,])(x p) —

1
2VFS

where Vis = [ fo = pg/4m is the volume of the Fermi
surface, and Q' = Q(p’), f' = f(x, p’). The tilded Landau
parameters indicate interactions between the full distribution
functions, which is equivalent to rearranging the expansions
but also has the benefit of keeping track of interactions within
the Fermi sea. The Landau parameters satisfy F > (p, p’) =
FCO®@, p), EXV(p, p') = —F>D(p', p). Notice that £,*"
breaks the time-reversal symmetry 7 : p — —p, and 17"1.(2’1)
breaks the inversion. In the above equation, we have gen-
eralized the Landau parameters to account for the modified

1 - - i
T / (1+BOYE> (p. pra™ duf + F2D (p. p)a” 0uf")
FS Jp

/ E2 D, p)((1 + B f' — QeVED f + Edyf) + E*V(p, pP)@if — BeTo, f),  (3.28)

(

symplectic manifold in accordance with Eq. (3.13); essen-
tially, the Poisson bracket plays the role of metric to properly
contract indices.

Due to interactions within the Fermi sea, H™ does not
vanish in the equilibrium contributing to the single-particle
kinetic energy in the leading order of fields as

: 1
Hnew%H_MlEi—E

/(1 + BQ)F2O (p, p) i,

n'e;B

3.29
2VFS (3.29)
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where ' and p'/ are electric and magnetic dipole moments,  In the above equation, we included the free fermion orbital

respectively, and they are given by magnetization py = Qe following Refs. [6,25,26].
; DE =21 L Let us now work out the action in the presence of the
w(p) = Wi (21 )2 / / B2 p, 00)m;, (3.30a)  Landau parameters for the bosonic field ¢. We turn off the
s magnetic field and the Berry curvature B = Q = 0 for sim-
w(p) = Qe — PF / F(Zal)(p, 0'n',. (3.30b) plicity. The linear action is given by
Wes(2m)? Jp U ¢

J

) / dt{{fo, ¢lex H™)

PF i 1 / £ (2,0) / , ~(2,1) N ,
= —— na,' —_— F ’ (9, ) )_F s (9’ )n E8( . )
(277)2 /tix,é ¢VFS » ( 4 fo(P t p p PF )
—1 i (2,1) N,
= n-VoF=76,0)n -E. (331)
413 Ji vo.00

The quadratic action is given by

1

— / <F<2v0>(9, 0'n-Von' - V(' +¢)+F>1O, 9/)<n’ Vou¢n-Ve— %BM(n Vo'n'- qu/))
t,x,0,0"

§int) _
8m3

—E'(n-Von' -V (8, 50,0 + pp'sjde E>V) + E>6, 0n(n - Vordpy's* 80 — pp's*e(n - V)dis)

+ 0, F*0,6 mn - pn' - V¢)>. (3.32)
We can see that even if we start with interactions over the Fermi sea, the bosonic action still depends only on the Fermi surface.

D. Current operators

When the U(1) gauge fields are contained in the underlying symplectic structure, the way they couple to the U(1)
currents becomes complex. For example, in terms of infinitesimal 6A,, the variation of the action (3.12) is given by 45 =
[ dt(fo, U™ (1 + BQ)™"(9;8A,0,, — Qe9;8A,0;)U). Observe that 54, only talks to the original phase space R?, so we can use
the symplectic form from Appendix A to rewrite the action as 8S = [ dt(fy, U '6A,U) = ft’x’p v/detwf3A,. Then, by variation
of §A;, we obtain the charge density in Eq. (3.33a). To obtain the other components of the current, we need to vary the action with
respect to §A;, which involves varying the symplectic form; however, we will see in Sec. IV that the variation current remains
some ambiguities. Instead of doing so, we resort to a more convenient avenue to obtain the U (1) currents. Observe that the
Boltzmann equation (3.8) can be identified as the charge conservation equation 9,J* = 0, with

@ = [a+ b)), (3:33)
P
Jix) = / (9, H f(x. p) + QeVE; f(x. p) + QETH; £ (x. ), (3.33b)
P
where we used the Maxwell equation 3;B = —V x E. Hence, Eqs. (3.33) are the current operators for a Berry LFL. The above

current is compatible with the stress-energy tensor in Ref. [6], and we are free to ignore further divergence-free terms since only
the divergence part enters the charge conservation; we will see later that this current is consistent with the energy shift by the
orbital magnetization (3.29). Moreover, the interaction-induced current operator can be obtained by shifting H — H + H'™ in
Eq. (3.33). It is given by

Jit = — / (H™0, f — Qe"H™0,f)
P

1 o / / / ij g/
~—— | F@O®0p, pHI( + B8, f — Qe f;f]
2VFS p.p

+ ECV(p, pO@Bf — B3, )3, f — Q7 (B f — B3, 19 f1
+ P (p, pOUA + B3, f + (Exdp f' + Qe f'END, f — Qe (D f + Exd i f1)3; 1. (3.34)
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The equilibrium current from substituting ]}“‘[ f — folcanbe
absorbed into the shift of the Fermi momentum. Specifically,
we have

IMf — fol ~ — /

)4

8H8p,-f0 = /v]:ni(sppap}:fo

P
= [ fospe = [ et 339
P p

where 6H = H™ — H, §pr = UI;ISHPZPF’ and pi*V = pp +
8pr, and we used | , UFN'dp fo = 0. At the modified Fermi

momentum pg™, the charge density becomes

DF
I~ |0+ Bf, — —=— | 8H,_,,.
-/p( + BB o (Zn)zvpfe -

The equilibrium Hamiltonian-independent currents J' ~
[,BSfo and J' ~ [ QeVE;f, have been argued to come
from a Chern-Simons theory in the phase space [27] (3.36).
However, it is not clear how to define such a topologi-
cal action for a gapless Fermi liquid out of equilibrium
f # fo. For example, if we attempt to write down Scs =
—% [ dt{fo, U™ [e¥A,3,A.04A.1U) forA, = (A,, A,) and
canonical phase space (x, p), then the action is not gauge in-
variant under the transformations A, = 9,A(f,x) and 64, =
V,A(p), because the coadjoint orbit element U has nontrivial
x, p dependence. The lack of the topological action suggests
many additional albeit nonuniversal contributions to the re-
sponse of the Fermi liquid as we will see below.

(3.36)

IV. ELECTRICAL RESPONSES

In this section, we take free fermion kinetic energy
H(x, p) = ¢(p) and keep Landau parameters and Berry cur-
vature to the leading order. As is clear from the derivation of
the Kubo formula in Appendix B, the correlation functions
we need only involves the unperturbed action before coupling
to the electromagnetic field. Therefore, the quadratic action
(3.17) reduces to the one studied in Ref. [13] with the two-
point correlation function given by

.2 )?

66 )(w.q) = i 56 =6
PF

n-qw—vpn-q)
Since part of the current operator would depend on the ex-
ternal electric field linearly, they will contribute to the nth
order conductivity through n-point correlation function, and,
in particular, their VEVs imply an equilibrium current.

Let us comment on the issues related to the current oper-
ator obtained from the variation approach. According to the
linear action (3.15), the leading-order current from variation
of A; reads Jl.dy"(l) = —(ZPTF)z J, n'0;¢ which vanishes in the dc
limit w = 0. The two-point correlation function is given by
(]l.dyn(l)J;ly“(l)) ~ [ nin"',mw"_’—m which always has a sin-
gularity at n - ¢ = 0. This ambiguity is essentially due to the
fact that n - V¢ is the momentum conjugate of ¢ itself. To

A.1)

2Many recent works [21,28-33] have formulated the similar phase
space Chern-Simons theory with the focus on the 't Hooft anomaly
of a Fermi liquid without Berry curvature.

remedy it, one needs to perform a Legendre transformation
of the action so that the pole becomes n - g(w — vpn - q) —
vglw(w — vpn - q) [34]. In this paper, we focus on the orig-
inal formalism of the bosonic action, therefore will use the
Boltzmann equation to read off the current operators.

With the Hamiltonian formalism in mind, we generalize
the Kubo formula for the static and dc conductivity using the
on-shell condition in Appendix B. We justify it by correctly
producing the Streda formula for the linear Hall conductivity.

A. Linear conductivity

Expanding Egs. (3.33) and (3.34) to the leading order in ¢
and derivatives, we find, in the absence of external fields,

PF - PF ~if
J.<‘>:_/ n.v / Y.V,
CE G YO T g [, Fom e YO8
P% @,1) 3
R ¢ F@D@,0)n'n-Va 0(3%),
Wrs(2)? /9,9' w0 VO 007
4.2)
where [, = [ df and
1 .
r=vp+— [ F%90,0), (4.3a)
PETT Jo
. y ij _
Ry =g = 5y~ | QFEVO, PO — P, (4.3b)
FS Jp

are renormalized Fermi velocity and free fermion magnetic
moment, respectively. Another current is given by expanding
in terms of electric fields. Keeping the equilibrium distribution
function, we have

509 = [ Qg - pr 0w @)
p

where we counted E; ~ O(d¢€) and ignored the correction
from the modified Fermi momentum. The total linear conduc-
tivity is then given by

Uitft = 0 + 0,0, 4.5)
where o;; will be given by the Kubo formula of the current
in Eq. (4.2), and o;;¢ will be determined by the equilibrium

current (4.4).

1. Drude conductivity

The dissipative part of the linear conductivity comes from
the first term in Eq. (4.2). Neglecting the Landau parameters,
the normal current is given by

PO A
6

The two-point current correlation function is given by

(4.6)

VRN - 4
®—Vpn - q

4.7

IV, IV (—w, — =-pF”F/ i
(1 (a) q) j ( @ ‘I)) 1(2]_[)2 Hl’ll/l
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Assuming g = g%, we have, according to the Kubo formula,

x\2
Reo,,(w, g) = Rei PevE / )
2n)? Jo o —vpn - q

1
:Re_i&_i<1 .
27 q vrq

/veq )
V(@/vrg? =1
w/q— 0

0/ — 00" 4.8)

— O’
| G,

and
(n)?

@ — VFR - ¢4

1
- Reiﬁ—(i — J(@/veq? — 1)
_ g—;q’l, w/qg— 0
| EErs(w),

Together, we obtain

. PFV
Reoy,(w, q) = Rei (21:_[ ;2 /

. 4.9
w/q — o0

pe—1

. , -0
Reo (w, ) = Red"o;j(w, q) = {2],61 /4

BEY% nr§(w), w/q—> oo

(4.10)

This conductivity is known as the Drude conductivity due to
the Drude peak 6(w) in the dc limit w/q — oo. In the static
limit w/q — 0, however, the Drude conductivity (/V.10)
diverges as Reo ~ ¢! due to the fact that the transverse
fluctuations on the Fermi surface do not cost energy. In fact,
as shown above, only the yy component (IV.9), which is trans-
verse to ¢ = ¢gX, has such contributions. Taking the relaxation
time approximation, @ — @ + it !, the Drude peak becomes
mé(w) — 7, and the resulting conductivity agrees with the
Drude formula Rec = nt /m with the density n = pf: /27 and
the mass m = pg/vr given by the Fermi liquid theory. Notice
that under the relaxation time approximation, both the static
and dc conductivity would agree with the Drude formula. The
Drude peak or g~ divergence of the conductivity is a conse-
quence of the translational symmetry, and it is straightforward
to check that including the Landau parameters will not alter
this universal behavior.

2. Hall conductivity

First, we can directly read off from Eq. (4.4) the conduc-
tivity o;;,0 in Eq. (4.5) as

o)

J

Reo;;o(w, q) = Re = / Qe'O(pr —p),  (4.11)
p

which is antisymmetric and independent of w, q.
The first-order current (4.2) can be decomposed as Ji(l) =

JOO 4 g0
J(1)0 '

., where the dots include corrections to
and the dipole-moment-induced current is given by

(D, dip

i (2 )2 /( Un-Voip+pu'n-Vae), (4.12)

with the dipole moments given by Egs. (3.30) and (4.3b). The
two-point correlation function is given by

(@, I (o, —@)+ (1P 0, I (0, —g)

_ ZPFf li 1k UEn - 4
= any (n g —n''p/ w)w_an p

(4.13)

The other part of the linear Hall conductivity in Eq. (4.5) then
reads

1 py p i T
Reoy = Rezeoy) = an /e(n[ ¥ g — nlpw)
— Vpn -

Because in 2D there is only one antisymmetric tensor €'/, we
can write the magnetic dipole as 1"/ = fie"/. Then, in the dc
and static limit, we have

ReoH(a) g 0, q= O) = —(21)7]:)2 [;Gijl’lill,j, (4153)
Reoy(w = 0 —>0)—L/~ (4.15b)
me=R T Qe o '

which are consistent with the kinetic results derived in Ap-
pendix C.

Together, we have the total linear Hall conductivity in
Eq. (4.5) as

Reoid'(w — 0,4 = 0) = / QO (s — p)
P

__PF /e-n’pf
Qr)2 Jo T

Reoy (0 =0, — 0) = /QG)(pF -p)+ sz /ﬂ'
» (27 )*vr Jg

(4.16b)

(4.16a)

This result is consistent with Ref. [12] for that the linear Hall
conductivity of the Berry Fermi liquid not only comes from
the Berry curvature effect, but also comes from the electric
and magnetic dipole moments, which, in our case, are coming
from Landau interactions on the Fermi sea. The electric and
magnetic dipole moments can be further renormalized by the
interactions.

While the first term in Eq. (4.16) depends explicitly on
the Fermi surface, the first integral can also be identified as a
Fermi surface integral using 2 = —V, x A, and integration
by part [10].

The static linear Hall conductivity merits a well-known
Streda formula. For the Berry Fermi liquid, this holds in the
deep IR regime, i.e., projecting out the other gapped bands.
As our formalism explicitly assumes this regime, we should
expect the Streda formula to be true. Indeed, from Eqgs. (3.36)
and (3.30), we find

aJ! tot
— =Reoy' (w =0,9 — 0).

5 4.17)
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B. Second-order Hall conductivity

The second-order conductivity describes electrical re-
sponses in the following form

Ji(w1 + @) = oijr(w) + w2, o1, 02)Ej(w1)Eg(w2), (4.18)

where the wave-vector dependence is suppressed. By defini-
tion, the second-order conductivity is symmetric in the latter
two indices: 0;jr = oy ;. Since we are interested in the dc and
static limit, it is convenient to take the harmonic response

W= =w, q=q=4¢q,, 4.19)

and then take w — 0,9 — 0. For the second-order Hall
conductivity, we can assume our system is time-reversal sym-
metric but still breaks the parity [4]. In the following, we will
omit the interaction effects and focus on the response caused
purely from the Berry curvature.

The current operators quadratic in ¢ are given by, in the
noninteracting limit,

1 .
I = =3 [ s(e— puiveglis - Vo 45 Vom - Vaug
p
— dppn - Vs Vgl +vn'(n - V)0,8(pr — p),
(4.20)
and

o 1 ;
I == / 8(pr — PorQe (s - Vo)’
p

+5-Von-Vogp —dgpn - Vs - Vo)
+ eQe"d(n - V$)*9,8(pr — p). 4.21)

We find that Eq. (4.21) is still induced by a magnetic dipole
moment since it is divergence-free. Further, by expanding
Eq. (4.4), we also have

Jo — PF

= Gy 4.22)

/QeijEjn V.
4

There is no current J©<*) since the full expressions (3.33) and
(111.34) are linear in electric fields. The total second-order
conductivity is then given by

Gl-t;)]: = Ojjik =+ Oijk,0 (4.23)

where 0;; will be given by the Kubo formula of the current in
Eq. (4.21), and 0;x0 will be determined by Eq. (4.22).
1. Two-point current correlation function

Based on Eq. (4.22), we have the following two-point cur-
rent correlation function:

(Ji(l’é)(wl + w2, q, +¢12)J;1)’0(—€01, —q,))

. DF / i ik VrR-q,
=i Qnl/e ———FE ().
)2 J, | — VER - ¢,

Symmetrizing over the latter two indices and dividing by the
electric field, we find

(4.24)

PF
(27 )?

X 8(w — vpn - q).

Reoiji 0w, 2q) =7 /Q(n-feik + nkeij)
0

(4.25)

IV e 2K
:::. JP ‘5(3) --e g
S e g e

FIG. 1. Current three-point correlation functions at the tree level.
Left: the triangle diagram; Right: the star diagram. The star diagram
involves a vertex from the cubic action.

The § function in the above equation reflects the Drude
physics of the second-order Hall conductivity: in the dc limit,
Eq. (4.25) develops a Drude peak §(w), and, in the static limit,
it contains 8(n - g) ~ ¢~ '8(n - ¢) agreeing to the linear Drude
conductivity (4.10). Under the relaxation time approximation,
Eq. (4.25) becomes

PFT

Reoijio = —— f Q'™ + nkell)y,
0

o (4.26)

agreeing with Ref. [4] which is also derived in Appendix C.
Both Eqgs. (4.25) and (4.26) describe dissipationless dynamics
despite of containing the Drude physics because the Joule
heating vanishes, J;E' ~ 0,3 E'E/E* = 0. Importantly, this
justifies using the second-order Kubo formula to derive the
second-order response [35].

2. Three-point current correlation function

Within this subsection, we take the following restriction:
LetE o g and B = 0. We will see that B = 0 offers much sim-
plification in calculations. In particular, we can use the bare
two-point function (4.1) and the unmodified Poisson bracket
(2.1), and there will be no magnetization induced energy shift
in the kinetic theory (Appendix C) making the comparison
with the diagram approach more clean and convenient. Hence,
we are interested in the projected second-order conductivity

oi(w) + w2, w1, @) = ok (w1 + w2, w1, wz)@{@; (4.27)
where § = q/q. Using the Kubo formula, we further have

oi(w) + w2, w1, )
1

= 50010, P (01 + )G (—01) G5 i (—w))
1 i
= 2—<J,-d"(w1 + o) li(—o) (—w)),  (4.28)
q192

where we used the Ward identity ¢'J; = wJ; and took the
frequency to be small. The dipole-moment-induced current
in Eq. (4.28) guarantees that the response is dissipationless
0,E" = 0 justifying that it is the second-order Hall conductiv-
ity. With the above, we emphasize that our framework allows
for analysis with B # 0 but computing its three-point correla-
tion function is more tedious.

The three-point correlation function consists of two types
of diagrams at the tree level as shown in Fig. 1. The triangle
diagram involves one J{» and two J{"’s. The star diagram
is obtained by inserting the cubic action into the correlation
function of three JV’s. The unperturbed cubic action is given
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by [13] Expanding the zero-component of current to second order, we
§3) — SS)ZW + 59 have
| [ dtd’xd6 : : g = _Pr /n V¢, (4.31a)
S =5 | "y VO Vo —s - Ve, SNCESLN
1
L [ dtd’xd6 pr I == [ 8(pr = pIpe'[(s - Vo) +5-Von - Vo
s — - | I v, 4.9 t PF — P)Pg o
P =5 Gag @ VO (4.29) 2,
where we defined the mass —dgpn-Vs-Vol+ (n- V¢)28,,6(pp —p). (4.31b)
— = (4.30)  We divide the diagrams into three parts:
m* 2pr

J

a. The SS) piece.

which leads to

P01 + 02,4y + 40 (=1, =4I (=2, —g0) g

P e n-(q,+q,)n-qn-q
=il [ 2+ g Bk L S , (432)
Q2m)* Jo m (w1 +wr —ven - (q; + g5)) (@1 — vEn - ¢ ) (@) — VER - @)

Q. -q)°
Reo; (2w, 2¢) = Re — i—25 f AL AL U (4.33)
Qr)2q* Jg m* (w — vpn - q)°
b. The Sg)zw piece.
(I (@) + w2, g) + g0 (—w1, —g I (—an, —0))s0
11 / il [ n-(q,+4q,)Q s-q, 1
=—i- ere" (q1 + g2 g (w2 + @1)
6 (27)% Jy w) +wy —vEn - (g +¢q,) 0y —VFR - q; Wy — VRN - ¢,
n-(q, +4,)< 1 s-q
— 09 2 (—wi +w)
oy +wy —Vven - (g +q;) @ — VER - g Wy — VFR - g,
s - (g, +¢2)€2 1 n-q,
9 (—w1 — o) — w)
@y +wy — VR - (g +q;) @ — VER - g Wy — VFR - q,
s - (g, +¢2)82 n-q, 1
9 (—w2 — w; — w3)
w1 +wy —Vrn - (g +q;) 1 —VFR - q; @) — VRN - ¢,
Q n-q 5s-q
+ 9y : 2 (—w — w — »)
w1 +wy — VER - (¢ +q,) w1 — VER - q| w2 — VFR - ¢,
Q s - n-
+ 9 o L () wn]. (434)
W) +wy —vpn - (g, +q,) W) — VpR - | @2 — VEA - g,
Upon integration by part, it leads to
C n-a)’—(s-a)
Reo;(2w, 2q) = Rei—r o / Qeilg, O~ D" (4.35)
227 )q* Jo (w — vpn - q)°
c. TheJ l(f) piece. Let us first consider the term proportional to 9,8(pr — p). We have
(2P @1 + w2, 41 + @)I " (—w1, g (—02, —q))
. ; n-q n-q
=i [ £Q0,8(pe — p)e (g1 + g2 . 2, (4.36)
P w1 — VRN - 4| W2 — VRN - 4,
and, by permutation of the triangle diagram,
(P (w1 + w2, 4y + @)D (—or, —q )T (—wn, —4,))
. i n-(q,+¢q,) n-q,
=i erQe’ (g1 + @)1 : (4.37)
(277)2/0 w; +wy — Vpn - (¢ +¢,) w2 — VER - g,
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and (Ji“)’dipJ,(l)J,Q)) is obtained by changing w,, ¢, — w2, q, in Eq. (4.37). Together, they lead to

1 ~ (n-q)° .2 / ; (n-q)
Reo;(2w, 2q) = Rei— | £Q3,8(pr — p)e — Qg ———. 4.38
0i(2w, 2q) 1q2/p£ p8(PE — p)e U gf @ S U o o ) (4.38)
Next, the term proportional to (s - V¢)?> gives
i . D i 5-q 5-q
(J,-(Z)’dp(an + w2, q + 42)11(1)(—601, —41)Jt(l)(—a)2, —42)) e ) /UFQG "aq + g2 . 2 . (439
27)* Jg @] — VRN - | @2 — VRN -
Upon permutation of the triangle diagram, we obtain
3 ‘ -q)°
Reoi (2w, 2q) = Rei—25_ / opQeilg— S0 (4.40)
2m)? Jo (0 — vpn - q)?
Last, the term proportional to dg¢p gives
(21 + w2, g1 + )0 (o1, —g )T (—02, —,))
1 op i s-q 1 s-q
=i- Fz/vFQGI(CI]-i-C]z)l[ — 0 n-(q, —q)+ 9 2 ——n-(q,—q,)|.
221 Jo W] —VFR - g, W) — VRA - g, W] — VRN - § W) — VRN - §,
(4.41)
and, by permutation,
<Ji(1)’dip(w1 + w2, q, +‘I2)Jt(2)(—w1» —‘Il)Jt(l)(_wZ’ _q2)>
1 pr / i [ Qs - (g, +95)
=1-—— | Up€ + n- +q, +
sane ), (g1 + g2 P P ———— (42 + 491 +42)
Q S-qs
+9 n-(g,+q ~|—q)i|, (4.42)
9601+602—UF’1'(¢I1+42)602—UF"'¢12 PR
and (Ji(l)’dipJ,(l)J,(z) ) is obtained by changing w, ¢, — wa, q,. Together, they lead to
3 . Qs -qn - 1 1 Q -gn -
Reo, (20, 2q) = Rei —LF f vpellg (22914 5 - sang (4.43)
2m)2qg% Jy W—UVER-q w—vVpR-q 2 @®— VRN -q @ — VRN - q
Gathering the diagram results, we arrive at the total second-order Hall conductivity
. prere” / (n-q)° PE g / (n-q)*
Reo; 2w, 2g) = Re — ! Q — ! Q40 Q)——
7202 = R e ) =gy gt @), P e T
+i£—Fe”q,/Q s-q % n-q 7 (4.44)
(2m)*q? § W—UFM-q ®— VRN -q

which is consistent with the kinetic theory as shown in Ap-
pendix C.

To compare with Eq. (4.26), we perform the relaxation time
approximation to one of the poles (w — vgn - q) — it~ To
justify it, we observe that the relaxation time will not enter
the pole of the linear Hall conductivity even in the presence
of collisions [12], and, therefore, we would expect that it will
not enter all the poles of the second-order Hall conductivity
due to the Hall effect carried by the dipole-moment-induced
current. In terms of the memory matrix formalism [36], the
time-reversal symmetric collision will not enter the overlap
between the dipole-moment-induced current and the normal
current, but only between two normal currents. Suppose we
can take the above relaxation time approximation, then we
find ,

"
Reoy(w =0, > 0)=1 Pr® /Qcos@—r Pr
2r)*vr Jo (2m)?

X / (Q+ v;la,,F(sFQ)) cosf+ ...,
0
(4.45)

(

where we took g = g%, so one interprets oy = 0y,. In the
above equation, we did not include the contribution from the
last term in Eq. (4.44), because the results depend on which
pole the relaxation time approximation is taken; it will lead
to either zero or a diverging integral. We leave a more careful
analysis of such a term including interaction into future work.

Together, we have the total second-order Hall conductivity
in the free fermion limit and within the relaxation time ap-
proximation as (g = gXx)

Reo® (& — 0,4 = 0) = — (’2’ ;‘;2 /0 Qcosh, (4.46a)
Reo)) (0 =0,9 — 0) = — (‘;:;2 feﬁcose

+Reoy(w = 0,9 — 0). (4.46b)

Unlike the linear longitudinal conductivity, the second-
order Hall conductivity behaves differently in the static and
dc limit within the relaxation time approximation. This is due
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to the additional Hall current in the static limit coming from
the orbital magnetization.

V. OUTLOOK

We have constructed an effective field theory for the Berry
Fermi liquid in the presence of electromagnetic fields. Us-
ing the extended phase space formalism, we are able to find
an exact action that incorporates the time-dependence of the
symplectic structure. This allows for a more general descrip-
tion of interactions on the Fermi surface by expanding Landau
parameters in derivatives using the modified Poisson bracket.
We identify these interaction effects as electric and magnetic
dipole moments, and derived the (non)linear Hall conductivity
in both static and dc limit, which are in agreement with the
kinetic theory.

Our field theory offers a systematic approach to study
various magnetoelectric responses in Berry Fermi liquid. One
technique point is how to diagonalize the Gaussian action
in Eq. (3.17). Working in the angular momentum basis, the
Green’s function satisfies a 1d hopping equation and can be
solved with an appropriate ansatz (see, e.g., Ref. [37]). Mean-
while, we considered a clean Fermi liquid (despite of using
the relaxation time approximation), but collisions in a parity-
violating system can also trigger the anomalous Hall effect
[3,38]. Including the collision integral to the effective action
is also important to understand the relaxation of Fermi liquids.
For example, the relaxation of conserved quantities can be
captured using the memory matrix formalism. We find that,
with some appropriate assumptions, the orbital magnetization
will give rise to a different nonlinear Hall response in the static
limit compared to the dc limit, but a systematic understanding
generalizing the memory matrix formalism beyond the linear
response regime is still lacking.

The interactions in a Fermi liquid can contribute to the
anomalous Hall effect other than the Berry curvature. There-
fore, it is interesting to revisit the experimental data for the
anomalous Hall conductivity in a Fermi liquid to see if there
remains deviations from the theoretical prediction purely from
the Berry curvature, albeit the interaction effect might be
small compared to the Berry curvature effect [39]. A more
direct probe is to compare the anomalous Hall conductivity in
the static limit to that in the dc limit. As we have shown, the
electric and magnetic dipole moments will lead to different
behaviors in these two limits. Similar test can be applied to
the nonlinear Hall conductivity. Recent experimental data on
time-reversal symmetric WTe, [40] seems to have a relatively
large deviation from the prediction in Ref. [4] which only con-
tains the Berry curvature effect. Since WTe, showed features
of hydrodynamic electron flow at low temperature [41,42],
there could be a strong electron-electron interaction that might
be responsible for the mismatch. Meanwhile, the experiment
[40] is in the dc limit, so it is interesting to see if a static
measurement would result differently.

The starting point of our effective action is the symme-
try group of canonical transformations. However, this is the
classical limit (¢ < pg) of the full quantum phase space al-
gebra whose multiplication is given by the Moyal product
[11,13,24]. It is interesting to see if the full Moyal algebra
can generate responses beyond the canonical transformations,

and how the Berry Fermi liquid action would be possibly
generalizing [43] to multiband systems.
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APPENDIX A: SINGLE-PARTICLE
SYMPLECTIC MECHANICS

The action for a single particle moving under the Hamilto-
nian H (x, p, t) is given by [18]

S= [ hads® - He 0t (A1)
where we denote collectively £ = (x', p/). The first term
Aqd§“ is known as the symplectic part, and in the absence of
external fields, it is given by A,d&“ = p'dx'. In the presence of

the electromagnetic fields and Berry curvature, the symplectic
part changes to [6,8,25,44]

/ hadEY = / pldx' + Al (p)dp' + A'(t, x)dx'

~ / (P +A)d(x' — A — AVD,AT) + O(€%, €7).
(A2)

In the second equality, we approximate the symplectic part
to a pair of canonical variables to the leading order in the
background fields, and this is possible in a local neighborhood
thanks to the Darboux’s theorem. Using this set of canonical
variables, we have constructed the effective action in Sec. III B
that reproduces the correct Boltzmann equation perturba-
tively. However, we wish to find a nonperturbative action. The
symplectic form corresponding to Eq. (A2) is given by (in
d=2)

Wyipi = —Wpiyi = —5,'_,', Wyiyi = B(t,x)e",
Wppi = —QUp)e”,

with a modified phase space volume +/detw =1+
B(t, x)Q2(p) giving rise to the Poisson bracket

(A3)

{F, G) (VF-V,G—V,F-VG

1+ Bt 0)Q)p)
— Q(p)e’9;F3;G+ B(t,x)€73,Fd,G). (Ad)

As is evident, the coadjoint orbit action will take the same
form as in Eq. (2.11):

S— / dt (fo, U~'[3 — H(x. p)IU), (A5)
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but with the Poisson bracket given in Eq. (A4) and (f, F) =
fx oV detwf(x, p)F (x, p). However, by varying U, the equa-
tion of motion is given by

(14 BQ)3, f+ Qd,Bf + ;fd,H— 3, fO:H + B3, f3,,H
— Q€3 fo;H =0, (A6)

which does not agree with the Boltzmann equation in
Ref. [2] due to the term proportional to 9,B. Is it pos-
sible to cancel this term through the Maxwell relation
0B =—V x E? To this end, we must introduce the elec-
tric field into the action through § = f dt (fo, U8, +x' —
H(x, p)JUE, ;(t,x)) and, at the same time, demand E =
UE,U~". Obviously, this cannot be correct since the Maxwell
equation is not invariant under canonical transformations.
Therefore, we conclude that the action (A5) cannot de-
scribe the Berry LFL in a time-dependent magnetic field
Appendix A}

APPENDIX B: NONLINEAR RESPONSE THEORY

Consider a time-dependent Hamiltonian
H =Hy+AV(1), B1)

where L < 1. We take V(t <0) =0 and p(t < 0) = pp =
e PH /7, where for T =0, py is the ground state of Hy. At
t > 0, the expectation value of an operator O us given by

(0(1) = tr(poU " (1)OU 1), (B2)

where, using time-dependent perturbation theory,

U@t) =T exp <—if dt'H(t’))
0

t
— e—iHot _ 1)\’/\ dt/e—iHU(l—t’)V(t/)e—iHot/
0

_)\'2 /tdt//t dt//e—iHo(t—t’)V(t/)
0 0
x e—iHo(t/—t”)V(t//)e—iHot” +O()\3) (B3)

Plugging in Eq. (B2) and using [pg, Hy] = 0, we obtain

(0(®)) = (0o + iA fo dr'([V@"), 0t — )

)\'2 t 5
- ?/0 dar'dt"([V('), V", 1), 0@ —t)]1)o
+ 00, (B4)

where V (1", 1) = "=y (1)~ 1Ho@" =) Tn most cases, we
shall assume

AV () =—h()0, (B5)

3When the magnetic field is time independent B = B(x), and the
electric field is space independent E = E (), we are able to construct
an action S = [dt (fo,U™'[0, +E(t)-x — H(x,p)]U) that gives
rise to the correct Boltzmann equation.

where h(t) is a time-dependent function (not an operator!) and
0 is a time-independent operator. Then, the expectation value
becomes

+00

) = N = [ ar Glglt ~ e

—00

| [+
+ 5/_00 d'dt" Gy,
x (t =t t —t"HhEHh(t"), (B6)

where
Go(t) = 1{[0@), Q1)O), (B7a)
Gopo(t: 1) = —([[0@), O —1")], Q1)e®®)O("), (BTb)

are the retarded Green’s functions.
To compute the conductivity, we apply a constant electric

field. This amounts to
h(t) =Ai(t) = —tE;, Q=1J. (BB)

Let us first derive the linear conductivity. Assuming (J;)o = 0,
we have

J:(0)) = —fdt’t’Gﬁjl_(t —1)E;. (B9)
Applying  Fourier transformation twice and using
[dt(—t)e”" = 2718 (w), we arrive at
;@) = iE_,«/a’wS’(a))GI;iJj (w)e !
.0
= —lEja—wai,/ (@)|weo — tEjGﬁjj (0). (B10)

The second term represents charge susceptibility and the first
term gives the dc conductivity

.0 e
Odc,ij = _I_Gjijj(w)|a)=0' (BI1)

Jw

The derivation of the second-order nonlinear conductivity pro-
ceeds in a similar manner. We have

1 ! 3.1 ~R / 1IN 1
(J:(2)) = > dt'dt G,ijjjk(z —tt —t"OtE;E. (B12)

Applying Fourier transformations, we arrive at

EjE;

(i) = —

_ EE ([ ¥
2 \dwiw

/dwdw’é’(w)S/(w’)Gfi,/Jk (o, w/)e—i(aH-w')t

Gl (@, & )lw=w=o
9

_ lta(G‘;Mk (@,0) + Gy, (0, @), _

—1°G}; 0, 0)>. (B13)

The first term determines the dc second-order conductivity

92 ,
Odc,ijk = — P Glji]}.],((a)» ®)|w=w'=0- (B14)

1
2 dwd
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Let us compute Green’s functions in the frequency domain.
Using iO(1) = [ g—n Hﬁe’lz’, we have

(@) = / dz ([0(2), Qo

27 w—z+18

dzd7 ([[O(z — '), Q(z)], Qo

Qe (w—z+i8)7 + o +i8)
(B15b)

(B15a)

Gogo(®, @) = =

At T = 0, only the auto-correlation in the commutator will
not be suppressed by e #, therefore, we can write the Green’s
functions as

(B16a)
(B16b)

ImG5 (@) = (0(@)Q)o,
ReGfpp(@, @) = —(0(w + ) Q(—)Q)o,

J

ReUij — Re/ <Ji(0), q, 9)]1(_60, —-q, 9))
0

VER - ¢

RCO’,‘jk =Re—

|w,qe0a

which is also known as the zero-temperature fluctuation-
dissipation theorem [45]. Hence, the real part of dc conduc-
tivity is given by

0
Reoyc,ij = RC@(Ji(w)Jj(—w)Hw:o, (B17a)
1 92 , ,
Reoqe,ijk = Rezm(-’i(w + o)W (—) i (=) |w=w=o0-
(B17b)

Now, let us generalize the Kubo formula to the bosonic action
for the Fermi surface. Write the current as
Ji(t, x) = /ji(t,x,e), (B18)

0
where j; is the phase-space current. In the absence of external
fields, the correlation is always a § function of 8, and the on-

shell condition is @ = vgn - g. With the above, we can rewrite
Eq. (B17) as

(B19a)

2
2vg

The crucial change of the Kubo formula is to divide the
correlation functions by the kinetic energy vgn - ¢ upon using
the on-shell condition; this will be justified in the main text
by calculating the conductivity. Notice that the Hamiltonian
formalism of the bosonization guarantees that there is no
singularity in Eq. (B19).

APPENDIX C: KINETIC THEORY

In this section, we calculate the linear and nonlinear re-
sponses from the Boltzmann equation (3.8). We focus on free
fermions, but the interaction effects would be included in the
electromagnetic dipole moment.

The free fermion energy in the presence of electromagnetic
dipole moment is given by [6,12]

H(t,x,p) = &(p) — i(p)E'(t, %) — 5B(t, X)€" i (p),
(ChH

where 1 and ¥ are electric and magnetic dipole moments,
respectively. Since the only antisymmetric tensor in 2D is
€, we can write '/ = e/, Under this energy shift, the
distribution function becomes

f&x,p,t)=0O(pr(x,0,t) — p)

1 .
+ U—FwiE' + uB)8(pr(x, 6,1) — p) + O(€?).
(C2)

1 / (jilw+ o', qg+4.0)jj(-0, —¢q,0)ji(-', —¢', 0))
0 n-qn-q

(B19b)

|w,w/,q,q’—>0~

(

Expanding around a spherical Fermi surface pr(x, 6,1) =
PF + 8pr(x, 0,1), we have

8f = O(pr(x,0,t) — p) — O(pg — p)
= 8(pr — P)SPr + 39, 8(pr — P)EpPE)* +..., (C3)

and

1 .
f@.p.t)=0(pr—p)+5f + U—F(mE’ + uB)(3(pr — p)

+ 9p.8(pr — P)SPE +...). (C4)

Notice that the energy correction is separated from Fermi
surface fluctuations in our definition [6]. Since the Hall con-
ductivity is higher-order in derivatives in perturbative theory,
we keep the gauge field A; = O(e) and the wave vector and
frequency w, ¢ = O(§) as separate small parameters. Hence,
the fluctuation can be expanded as

Spr = 8pi +8pi” +8p) +8pP + 0(8%, €Y. (C5)

We shall compute the currents only from fluctuations but not
from equilibrium.

The linear response requires solving § pif) and 6 pgs) from
Eq. (3.8). At O(¢), we have

(8 + ven - V)8pi8(pr — p) — E*n*8(pr — p) = 0,

. EX(w, g)n*
= 59 (0. q) = 9 (C6)

—iw +ivgn - g~
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At O(e6), we have

1 , .
(@ + ven - V><8p§f‘”6(pF =P+ - (iE & 1B)S(pr — p)) —n-V(wE' + uB)(pr — p) = 0,

(ed) 1 1 . i e i
= 0pp (0, 9) = —————— (iowE' (0, 9) + ne’ (ig)E’ (0, 9)), (€7
VF —1w + 1VER - ¢
where we used the Maxwell equation 9;B = —(V x E),. The zeroth-order current (4.4) involves equilibrium distribution
function, so the resulting conductivity is unchanged from Eq. (4.11). The current from Eq. (3.33) is given by

TP (.q) = / v + [ (ne”(ig)) + w'(—iw))8 £

P P
= 2 / (i — )+ (e — e, (C8)
2r)? Jow—vpn - q ® — vpn - q
from which we obtain a linear Hall conductivity
1) . n-
on(@. q) = ——— f R —— ) (C9)
2r)* Jo o —vpn - q W — Vpn - q
In the two different limits, we find
ou(@— 0,4 =0) = _ﬂfe,,-nw’, (C10a)
@r)* Jo
oy(w =0,qg — 0) = Pr /pL (C10b)
! ’ Q@m)ve Jo'

So far, we have obtained a general expression of linear Hall conductivity due to electromagnetic dipole moments in Eq. (C10). In
the following, we study the second-order response and restrict to the dipole moments of free fermions: u' = 0 and pu"/ = eQe".
The second-order response coming from Eq. (4.22) is given by

k
T (@) + an) = / QEVE;5f© =it / Qe E (1) ————E* (a). (C11)
» 2m)* Jy @y — VEN - ¢,
Upon permuting w; <> w; and using Eq. (4.19), the conductivity reads
Reojj = (2':)2 fa Q(en* + ") — ven - ), (C12)

in agreement with Eq. (4.25).

The other second-order response requires solving & pgz) and § pifz's) from Eq. (3.8). Since they correspond to the three-point
current correlation functions, we should take the same restriction as in Sec. IV B 2 to compare them to the diagram approach.
The restriction is to set B = 0 and project the conductivity onto Eq. (4.27). Now, we do not need to compute § pifz‘s) which comes

from B-dependent energy shift (C1). At O(e?), we have

Ek k
(@ + ven - VISP 8 (pr — p) + —— 805 f O +&"5pim - VS £© =0,
PF

E2
= p () +an) =

-1 (Eksk E'n! p E*n* in - g,E'n! >

: : : - + & — : : ;
—i(w; + wy) +iven - (g, +q,) \ PE i, + ivpn - 0 —lw; + 1Vpn - ¢ —lw; + 1VER - q,

(C13)
We obtain the current operator as
2 ij €2 ij 1 €
JED = /sgefajaf( >+/aszefa_,-<§a,,F5(pF —p)(ap;>)z>
p P
_PF f —veQe’i(q1 + q2)i ki Ejn/
2n)? Jg —i(w1 + @) +iven - (q, + q5) e —iwy +iven - q,
PE / —epQei(qr + qo) , Efnt in - q,Eln
2n)? Jo —i(w) + @) +iven - (g, +q,) —iw| +ivEn - q; —iwy + iven - q,
- fa (o — PeQeli(q + gy ——17 Bn ) (C14)
— — p)eQeti w1, q, < w1, q,),
2 ), prO(PF — P q1 T q2 l—ia)l ¥ lopn g, i + ivpn - 4, 1,91 2, 4>
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which leads to

2 7(€%8) . .
Reo;(2w, 2q) = Re— ——¢/ g :ReiS—Fe”qI/Q il | Y |
2 8E;SE; (27 )2¢> g W—UVER-q @ — VRN - q

prees” [ (-q)

Yo ent 1 —on o)
(2m)*q 9 (0—vpn-q)
. PF il (n : q)z

—1———€ VE2 + 0,,.(egR))———. Cl15
e q /0( F o (EF ))(a) T (C15)
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