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The shape of the Fermi surface, and the cyclotron effective mass of the kagome magnet GdV6Sn6 charge
carriers are investigated using de Haas–van Alphen (dHvA) oscillation measurements and electronic band
structure calculations. The temperature- and angle-dependent torque magnetometry measurements revealed at
least nine different frequencies ranging from ∼10 T up to ∼9000 T. These frequencies correspond to extremal
areas of the Fermi surface ranging from ∼0.2% up to 50% of the first Brillouin zone, qualitatively consistent
with the electronic band structure calculations. The angle-dependent dHvA oscillation frequencies indicate that
the smaller pockets of the Fermi surface have an almost three-dimensional character whereas the bigger pockets
of the Fermi surface are mostly two dimensional. We also find evidence of the presence of light [0.28(1) m0]
as well as heavy [2.37(18) m0] charge carriers through the analysis of the temperature dependence of dominant
frequencies. The comparison of the observed frequencies with the electronic band structure calculations indicates
that the heavy masses correspond to saddle-point-like features of electronic band structure at the M point. The
observation of the multiple low frequencies and the calculated contributions from various bands to such low
frequencies prevent the estimation of the topological nature of bands containing lighter fermions. In conclusion,
our work reveals the features of a Fermi surface containing enhanced mass fermions originating from saddle
points in the electronic band structure at the M point, which is inherent to kagome lattices.
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I. INTRODUCTION

The kagome lattice, a two-dimensional network of corner-
sharing triangles of metal ions, is known to be a source of
a variety of novel correlated electronic states [1–5]. The flat
bands representing the correlated electronic states, the Dirac
fermions featuring topological electronic states, and the
saddle point derived Van Hove singularities causing novel
electronic instabilities are typical features of kagome lattice
materials [4]. Chiral charge density waves [6], Chern topolog-
ical magnetism [7], and topological superconductivity [2,3,5]
are some of the new electronic phases that have been observed
in materials with kagome lattice structures.

The list of kagome metals includes chemically diverse
compounds such as Mn3Sn [8], Fe3Sn2 [9,10], Co3Sn2S2

[11–13], CoSn [14], FeSn [14], AV3Sb5 (A = Rb, Cs,
K) [14], RM6X6 (R = Li/Mg/Yb/Sm/Gd/Ho/Tb/Y, M =
Fe/Cr/Co/Ni/V, and X = Ge/Sn/Si) [7,15–22]. Such chem-
ical diversity combined with layered crystal structures allows
for fine tuning of intra- and inter-kagome-layer interactions
to realize novel electronic and magnetic phases. The family
that draws particular attention is RM6X6. The RM6X6 struc-
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ture contains two-dimensional parallel kagome layers of M
ions coordinated by X ions and separated by the triangular
planes of R ions. One advantage of such structure is that
the inter-kagome-layer distances can be tuned by changing
the size of R ions whereas the magnetic interactions can be
varied by choosing the magnetic and nonmagnetic R and M
ions. Furthermore, the intrinsic physics associated with the
kagome layer can be separated from the spacer layers by a
suitable choice of elements. The work presented in this paper
is focused on the study of GdV6Sn6, in which the nonmag-
netic V3Sn2 kagome layers are separated by magnetic GdSn
triangular planes and Sn atoms as shown in Fig. 1.

Previous studies on GdV6Sn6 indicate a noncollinear mag-
netic ground state (TN ∼ 5 K) arising from the f orbitals of
Gd ions along with a high-mobility multiband electrical trans-
port originating from the correlated electrons in the kagome
layers [18–23]. The electronic band structure calculations
as well as photoemission experiments indicate the presence
of chemically tunable Dirac surface states (DSSs) [21,23],
flat bands, and Van Hove singularities featuring the intrinsic
physics of the kagome lattice [21–23]. Despite such studies,
a detailed experimental investigation of the shape of the bulk
Fermi surface, cyclotron effective mass of carriers, and ob-
servables featuring the topologically nontrivial bands and the
saddle points causing Van Hove singularity are still missing.
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FIG. 1. Crystal structure of GdV6Sn6. (a) Crystal structure showing different layers of Gd, Sn, and V atoms. (b) Crystal structure viewed
along the c axis showing the kagome network of V atoms. The colored spheres indicate different atoms.

Such experimental investigations can be carried out using de
Haas–van Alphen (dHvA) oscillations or Shubnikov–de Haas
(SdH) oscillations. One previous study [19] of GdV6Sn6 uses
SdH oscillations measurement of electrical resistivity. That
previous study reports observations of two small frequencies,
150 and 200 T, accounting for small Fermi pockets occupying
about 2.5% of the area of the first Brillouin zone. However,
no other features revealing the relativistic nature of Dirac
fermions and the saddle points in the electronic band struc-
tures were reported. In this work, we have used high-field
torque magnetometry measurements to study the dHvA oscil-
lations. One advantage of the dHvA oscillations measurement
is that the magnetization oscillation directly originates from
the oscillations of the free electrons’ energy and does not
rely on scattering probabilities. By using a single-crystalline
sample of residual resistivity ratio (RRR ∼ 12), we are able to
observe dHvA oscillations on top of a magnetic background
of ∼7 μB. We have extracted several oscillation frequencies
ranging from 10–9000 T indicating the presence of small
and big pockets of the Fermi surfaces, consistent with the
multiband nature of electrical transport and the calculated
electronic band structure. The angular dependence of the
oscillation frequencies indicates the presence of mostly three-
dimensional (3D) small pockets and quasi-two-dimensional
(2D) type big pockets of the Fermi surfaces. The temperature
dependence of the oscillation amplitudes indicates the pres-
ence of both light electrons (0.28 m0) and heavier electrons
(2.37 m0). Some bands cross the Fermi level more than one
time giving different effective masses. The observation of
multiple low frequencies (<500 T), the calculated contribu-
tions from various bands, and crossing of the Fermi level by
the same band more than one time prevent the estimation
of the Berry curvature associated to topologically nontrivial
bands. However, we are able to clearly observe and resolve
other features associated with enhanced mass fermions that
characterize kagome materials such as the saddle points in the
proximity of the M point in the Brillouin zone.

II. EXPERIMENTAL DETAILS

Single crystals of GdV6Sn6 were synthesized via a flux-
based technique. Gd (pieces, 99.9%), V (pieces, 99.7%), and
Sn (shot, 99.99%) were loaded inside an alumina crucible
with the molar ratio of 1:6:20 and then heated at 1125 ◦C for

12 h. Then the mixture was cooled at a rate of 2 ◦C/h. The
single crystals were separated from the flux via centrifuging
at 780 ◦C. Crystals grown via this method were generally a
few millimeters long and <1 mm in thickness. The separated
single crystals were subsequently cleaned with dilute HCl
to remove any flux contamination. Crystals were then trans-
ferred into a small jar of mercury to remove any additional
tin contamination. Single-crystal x-ray diffraction measure-
ments were carried out on a Kappa APEXII single-crystal
diffractometer with a charge coupled device (CCD) detector
and a Mo source. The low-field magnetization measurements
were carried out using a Quantum Design Magnetic Prop-
erties Measurement Systems (MPMS-3). The resistivity was
measured using four probe methods employing the electrical
transport option (ETO) of the Quantum Design Dynacool
Physical Properties Measurement System.

High-field measurements were carried out at the National
High Magnetic Field Laboratory (NHMFL), Tallahassee,
Florida, with the maximum applied fields of 18 T (supercon-
ducting magnet), and 35 T (dc resistive water-cooled magnet).
In both experiments the lowest temperature of 0.35 K was
achieved using a top-loaded 3He insert. The magnetic torque
was measured using a miniature piezoresistive cantilever. A
tiny GdV6Sn6 crystal was selected and then fixed to the
cantilever arm with vacuum grease. The cantilever was sub-
sequently mounted on the rotating platform of a special probe
designed at NHMFL. The probe was then slowly cooled down
to the base temperature of 0.35 K. Two resistive elements
on the cantilever were incorporated with two other room-
temperature resistors to form a Wheatstone bridge, which was
balanced at base temperature before taking field-dependent
data. The angle-dependent torque data were obtained by rotat-
ing the sample in situ with the applied field. Magnetic fields
were swept at each fixed temperature at a rate of 2.7 T/min
(up) and 4.2 T/min (down).

III. COMPUTATIONAL METHODS

The electronic band structure calculations were done us-
ing the Vienna Ab Initio Simulation Package (VASP) [24–26].
The electron-electron nonclassical exchange-correlation in-
teractions were modeled using the generalized gradient
approximation under the Perdew-Burke-Ernzerhof (PBE)
parametrization [27]. Projected augmented wave potentials
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[25,28] were used with an optimized cutoff energy of 520 eV.
Energy and force criteria were applied to reach structural
relaxation, where the energy and norms of all forces must
be less than 10−6 eV and 0.01 eV/Å, respectively. A dis-
crete equally spaced mesh [29] of 10 × 10 × 6 k points was
used to evaluate the electronic states during the ionic re-
laxation process. For the electronic band structure analysis,
the convergence criterion was taken as the condition
where the total energy change between two successive itera-
tions in the self-consistent loop became smaller than 10−8 eV.
For the converged calculations, a k-point mesh of 15 × 15 ×
12 was used. Since we are treating atoms with large atomic
mass—where relativistic effects take importance, spin-orbit
coupling interactions are mandatory—we also included it in
the relaxation and electronic properties of the GdV6Sn6 struc-
ture. Also, f orbitals of the Gd atom with highly localized
electrons must be accounted for. To do so, we included the
Hubbard interaction in the simplified approach proposed by
Dudarev et al. [30], with an on-site Coulomb parameter U = 6
eV for the Gd atom. To calculate the Fermi energy in a
dense k mesh (121 × 121 × 123), we have used the Hamil-
tonian based on the Wannier functions obtained using the
WANNIER90 code [31]. We modeled the GdV6Sn6 material
considering the hexagonal P6/mmm space group in its ferro-
magnetic structure. The dHvA frequencies and their angular
dependencies were calculated via the SKEAF code [32].

IV. RESULTS

The room-temperature x-ray diffraction pattern from the
flat surface of a single crystal of GdV6Sn6 is presented in
Fig. 2(a). The peaks can be indexed with hexagonal structure
with space group P6/mmm. The diffraction pattern contains
only peaks corresponding to Miller indices (00l , l = 1, 2,
3 · · · ) indicating that the flat surface is perpendicular to the
crystalline c axis. The magnetic susceptibility of a single crys-
tal under a field of 1 kOe applied along the c axis is presented
in Fig. 2(b). The susceptibility follows a typical Curie-Weiss
behavior at higher temperatures; however, it enters a long-
range magnetic phase around TN ≈ 5 K. The inset in Fig. 2(b)
displays the fitting to Curie-Weiss behavior 1

χ
= χ0 + C

T −θC

(T > 20 K) with the Curie constant (C), a Curie-Weiss
temperature (θC), and a small background term (χ0). The
fitting yields C = 7.307(2) emu mol−1 Oe−1 K, θC = 7.96 (2)
K, and χ0 = 0.002(1) emu mol−1 Oe−1 K. This gives effective
moment μeff = 7.7(2) μB/f.u. consistent with the expected
full moment from the Gd3+ ion (7.94 μB). The positive
Curie-Weiss temperature indicates the dominant ferromag-
netic interactions along the c axis. Figure 2(c) presents the
zero-field electrical resistivity as a function of temperature for
a GdV6Sn6 single crystal with current within the ab plane.
The resistivity exhibits typical metallic behavior with a small
downturn at the magnetic transition (5 K), indicating the in-
teraction between 3d itinerant electrons in the kagome layer
and the Gd spins in the spacer layer. The residual resistivity
ratio (RRR ≈ 12) allows the measurement of the dHvA os-
cillations in the presence of a uniform magnetic background.
A more detailed investigation of the structural, electrical,
and magnetic properties of GdV6Sn6 indicating the onset of

FIG. 2. Single-crystal characterization of GdV6Sn6. (a) X-ray
diffraction pattern observed from the flat surface of a single crystal
(shown in inset) of GdV6Sn6. The presence of only sharp (00l) type
reflections indicates a high-quality single-domain crystal with the c
axis perpendicular to the flat surface. (b) Magnetic susceptibility χ

as a function of temperature measured at 1 kOe field applied parallel
to the c axis. The inset shows Curie-Weiss law fitting for T > 20 K.
(c) Zero-field electrical resistivity ρ with current within the ab plane.

long-range magnetic order with a large, saturated moment
(∼7 μB) is reported in a previous electrical transport study
[22]. Our computational findings (7.07 μB per Gd ion and
multiband nature) are consistent with the results of that
previous electrical transport study [22].

The results of typical magnetic torque measurements are
presented in Fig. 3. Figure 3(a) presents the magnetic torque
(τ ) as a function of magnetic field (H) at θ = –10◦ and +7◦
measured using the 18 T superconducting magnet and the
35 T resistive magnets, respectively. Here, θ is the angle be-
tween the magnetic field and the c axis of the crystal as shown
in the inset of Fig. 3(a) and the sign of θ represents the sense of
rotation of the magnetic field with respect to the c axis of the
crystal. Figure 3(b) displays the third-order polynomial back-
ground subtracted signal (�τ ) as function of inverse magnetic
field (1/H) at given angles indicating quantum oscillations
that are periodic in 1/H. Figure 3(c) displays the Fourier
transformation of background subtracted signals at θ = 0◦,
T = 0.35 K for different fast Fourier transformation (FFT)
ranges.

The x axis of Fig. 3(c) is displayed in a logarithmic
scale to highlight the low frequencies. At θ = 0◦, we ob-
serve nine dominant frequencies, F1 =(13 ± 7) T, F2 =(32 ±
10) T, F3 =(95 ± 10) T, F4 =(176 ± 6) T, F5 =(200 ± 10)
T, F6 =(850 ± 20)T, F7 =(1470 ± 30)T, F8 =(8440 ± 50) T,
and F9 =(8850 ± 60) T, that are consistent with the electronic
band structure calculations. These frequencies correspond to
four different bands (α, β, γ , and δ) present at the Fermi
level. We also observe frequencies having weak amplitudes
around 55, 290, 390, 1040, and 1370 T. However, due to the
presence of nearby frequencies with strong amplitudes, we are
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FIG. 3. Magnetic torque measurements: (a) The magnetic torque
(τ ) as a function of magnetic field (H) taken using the 18 T (blue)
and the 35 T (red) magnet at given angles. The inset figure shows
the schematic of the magnetic field direction relative to crystal axes.
(b) The polynomial background subtracted signal (�τ ) as a function
of the inverse magnetic field (1/H). (c) The fast Fourier transform
(FFT) spectra (amplitude vs frequency) at θ = 0◦, T = 0.35 K,
for FFT ranges of 6–18 T, 18–35 T, and 33–35 T. The x axis is
plotted in logarithmic scale to highlight features at low frequencies.
The frequencies F1 − F9 in (c) represent dominant frequencies. The
symbols (α, β, γ , δ) represent possible bands contributing to those
frequencies as indicated by shaded regions.

unable to track down the temperature and angle dependence
of all frequencies. We therefore focus on the analysis of six
frequencies (F1, F3, F6, F7, F8, F9) mentioned above and dis-
played in Fig. 3(c). After identifying the frequencies at θ =
0◦, the angle-dependent torque measurements are performed
to understand the shape of the Fermi surface. Figure 4 displays
the results of angle-dependent measurements at T = 0.35 K.
For the analysis of low frequencies (F < 500 T), the FFT
range of 6–18 T is used whereas for frequencies F > 500 T,
the FFT range of 18–35 T is used. As is clear from Figs. 3(c)
and 4, we observe many frequencies below 500 T, making it
difficult to follow the angle dependence of every frequency.

The low frequencies (F1, F2, F3, F4, F5) survive at all angles
between 0◦ and –90◦ with some angle dependence. The fre-
quencies F6 and F7 appear only between θ = 0◦ and θ = –10◦
and disappear quickly. The high frequencies F8, F9 disappear
above θ = –50◦. This indicates that the Fermi surface contains
small pockets of mostly 3D shape and bigger pockets of 2D
shapes. It is important to note that out of these frequencies
observed in this work, only two nearby frequencies of 150
and 200 T were reported in the previous work [19] using SdH
oscillations.

The observed frequencies are compared to those expected
from electronic band structure calculations. The results are
summarized in Fig. 5. The electronic structure calculated
frequencies from the different bands are plotted as colored
symbols (orange upward triangle, gray downward triangle, red
diamond, green left triangle) whereas the observed frequen-
cies are plotted as a black circle. The calculated frequencies
for the four bands (α, β, γ , and δ) closely match those
observed experimentally. The next step is to study the temper-
ature dependence of these frequencies. By suitably choosing
the FFT range and the angle, the temperature dependences
of F1, F3, F6, F7, F8, and F9 are studied in this work. The
temperature dependences of F1, F3, F8 and F9 are studied
using data taken at θ = –10◦ whereas the temperature depen-
dences of F6 and F7 are studied using data taken at θ = 0◦.
We used an FFT range of 6–8 T to study the temperature
variations of F1, F3, and F5 whereas we used a FFT range
of 14–18 T to study the temperature variations of F6 and
F7. The variations of normalized FFT amplitudes with tem-
perature for F1, F3, F6, F7, F8, and F9 are presented in Fig. 6.
These variations can be described by the damping part of the
Lifshitz-Kosevich (LK) formula [33,34] (solid lines in Fig. 6).
Fitting with the LK formula gives six different effective
masses m∗

1 = 0.28(1) m0, m∗
3 = 0.36(1) m0, m∗

6 = 1.20(6) m0,
m∗

7 = 0.79(5) m0, m∗
8 = 2.25(15) m0, and m∗

9 = 2.37(18) m0.
The details of the LK fitting are presented in Appendix B.

Along with the determination of the effective mass (m∗)
using the LK formula, the different areas associated with
different sections of the Fermi surface are estimated using
the Onsager relation [34]. We then calculate the Dingle tem-
perature TD (an additional temperature factor that accounts
for the damping of oscillations amplitude with inverse field).
The estimation of the Dingle temperature is presented in
Appendix B. After calculating the extremal area (Sf ), Fermi
wave vector (kf ), effective mass (m∗), and Dingle temperature
(TD), we estimate the Fermi velocity (vf ), quantum scattering
time (τs), mean free path (lD), and the quantum mobility (μ).
We define μ as quantum mobility to distinguish it from the
classical mobility arising from the Drude model that can be
present without a magnetic field. In this case, mobility is
related to the cyclotron motion of carriers. These quantities
are presented in Table I.

After establishing the presence of multiple pockets of
the Fermi surface, the next conventional step in such anal-
ysis would be the estimation of the Berry phase (φB) by
analyzing the oscillatory part of the LK formula [34,35]:
sin[2π ( F

〈H〉 + ϕB

2π
− 1

2 + δp)] where the factor δp depends upon
the dimensionality of the Fermi pocket and takes the value
+ 1

8 for the minimal and − 1
8 for maximal cross sections of a
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FIG. 4. Angle dependence of dHvA oscillation frequencies at T = 0.35 K. (a), (b) Frequencies obtained with FFT range of 6–18 T. (c),
(d) Frequencies obtained with FFT range of 18–35 T.

FIG. 5. (a) Angle dependence of electronic band structure calculated frequencies (α, β, γ , δ) and observed frequencies (•). The observed
frequencies are taken at T = 0.35 K. Different colors of calculated frequencies represent different bands. (a) Observed and calculated
frequencies below 2000 T. The shaded region in (a) contains at least two frequencies (F6 and F7) related to two orbits containing the β

band. The other frequencies in (a) contain contributions from at least three different orbits associated to α, β, and γ bands. (b) All observed
and calculated frequencies. The frequencies above 5000 T in (b) correspond to γ and δ bands (F8, F9), respectively.
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TABLE I. Results of dHvA oscillations showing observed frequencies (F), extremal orbit area (Sf ), Fermi wave vector (kf ), effective mass
(m∗), Fermi velocity (vf ), Dingle temperature (TD), quantum scattering time (τs), mean free path (lD), and quantum mobility (μ). The numbers
in parentheses indicate the errors.

Sf kf vf TD lD μ

F (T) (Å−2) (Å−1) m∗/m0 (×104 m s−1) (K) τs (×10−13 s) (nm) (cm2 V−1 s−1)

95 (10) 0.009(1) 0.053(2) 0.36(1) 17(1) 13.1(2) 0.92(1) 16(1) 453(14)
850 (20) 0.081(1) 0.161(1) 1.21(1) 15.3(2) 10.2(3) 1.19(3) 18(1) 173(5)
1470 (30) 0.141(2) 0.211(2) 0.79(5) 31(2) 22(1) 0.55(2) 17(1) 123(9)
8440 (50) 0.802(4) 0.506(1) 2.25(15) 26(2) 4.1(2) 2.9(1) 77(4) 231(19)

three-dimensional Fermi surface. The factor of 1
2 comes from

Maslov correction and applies to the case where the orbits are
compressible to circles [36].

It has been suggested in recent works [35,37,38] that the
precise estimation of Berry phase requires understanding the
details of crystalline and magnetic symmetries of materials.
Therefore, a phase of π should not be taken as smoking gun
proof of nontrivial topology. In our experimental study, we en-
countered a notable complication stemming from the presence
of numerous closely spaced frequencies, all falling below the
500 T threshold. This intricate frequency landscape presents a
significant challenge, rendering the precise estimation of the
Berry phase inconclusive. However, unlike the Berry phase
that could be blurred by multiple close frequencies, the mass
enhancement associated to the saddle points in electronic band
structure is clearly observed and reproduced by electronic
band structure calculations.

V. DISCUSSION AND CONCLUSIONS

Our dHvA-based analysis of GdV6Sn6 revealed sev-
eral important features revealing this kagome material’s
Fermi surface properties. We observed nine dominant fre-
quencies {F1 = (13 ± 7) T, F2 = (32 ± 10) T, F3 = (95 ±
10) T, F4 = (176 ± 6) T, F5 = (200 ± 10) T, F6 = (850 ±
20) T, F7 = (1470 ± 30) T, F8 = (8440 ± 50) T, and F9 =

FIG. 6. Temperature dependence of amplitudes of dominant fre-
quencies. Data for F6 and F7 were taken from θ = 0 measurements
while the rest of the data were taken from θ = –10◦. The solid lines
fit to the damping part of the LK formula described in Appendix B.

(8850 ± 60) T], when the magnetic field is applied perpen-
dicular to the kagome plane (θ = 0◦). These frequencies are
consistent with electronic band structure calculations. In ad-
dition, we observed frequencies with weak amplitudes around
55, 290, 390, 1040, and 1370 T. However, due to the presence
of nearby strong amplitude frequencies, we are unable to fol-
low the temperature and angle dependence of all frequencies.
The lowest frequency, F1, corresponds to less than two periods
of oscillation in the FFT range of 6–18 T, but it shows a
discernible temperature dependence close to the calculated
frequencies from the α and γ bands. The comparison of the
observed frequencies with the calculated frequencies indicates
that the frequencies F1 and F4 are most likely related to or-
bits originating from the α band; F2 and F8 are related to
orbits originating from the γ band; F3, F5, F6, and F7 from
the β band; and F9 from the δ band. Furthermore, the an-
gle dependence of dHvA frequencies indicates that the low
(F < 500 T) frequencies survive when the magnetic field is
rotated θ = 0◦ to θ = 90◦, indicating small Fermi pockets
of mostly 3D shape. We also observed large pockets of the
Fermi surface. The two frequencies related to such large Fermi
pockets disappear at high angles indicating their quasi-2D
nature. These facts are also supported by the calculated fre-
quencies from electronic band structure calculation (Figs. 5
and 7) and the projected Fermi surface presented in Fig. 7(b).
Notably, α and β bands exhibit holelike characteristics, while
the γ and δ bands predominantly demonstrate electronlike
behavior. Regarding the Fermi surface shapes, the α and β

bands exhibit irregular lobes or pockets along the M-L high-
symmetry path whereas the bands γ and δ display barrel-like
shapes with prominent and open regions along the same M-
L high-symmetry path, as illustrated in Figs. 7(a) and 7(b).
It is to be noted that the FFT range for angle dependence
presented here is 6–18 T for low frequencies (F < 500 T) and
18–35 T for high frequencies (F > 500 T). While changing
the FFT window, we are also able to observe (not presented
here) the second harmonics at some angles especially for high
frequencies (F > 500 T).

Furthermore, from the temperature dependence of ampli-
tudes of dominant frequencies, we have estimated the cy-
clotron effective masses [m∗

1 = 0.28(1) m0, m∗
3 = 0.36(1) m0,

m∗
6 = 1.20(6) m0, and m∗

7 = 0.79(5) m0, m∗
8 = 2.25(15) m0,

and m∗
9 = 2.37(18) m0]. The light masses correspond to α and

β bands whereas the heavy masses (m8 and m9) correspond
to relatively flat bands (γ and δ) near the saddle point around
the M point. Notably, these enhanced mass fermions corre-
spond to vanadium d orbitals near the Van Hove singularity
(VHS2) that is clear from the density of states plot presented
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FIG. 7. (a) The electronic band structure of GdV6Sn6 in the ferromagnetic state; (b) Fermi surface representation illustrating distinct
pockets. The four electronic bands (α, β, γ , and δ) crossing the Fermi level are depicted in distinct colors.

in Fig. 8(b). It is also observed that the calculated quantum
mobilities are relatively small compared to other nonmagnetic
kagome materials such as CsV3Sb5 [39,40]. This is most
likely caused by the scattering of electrons from the magnetic
background.

Finally, the electronic band structure presented in the cur-
rent work (Figs. 7 and 8) is in the ferromagnetic state, but it
remains largely unchanged in the vicinity of the Fermi level
when compared to electronic band structure calculated in the
paramagnetic state of TbV6Sn6 [41] and GdV6Sn6 [22].

This stability is attributed to the f orbitals, crucial for the
material’s magnetism, being located away from the Fermi
level. Moreover, the topological features and saddle points
around the Fermi level are dominated by the kagome layer
of V atoms.

In summary, our work reveals the Fermi surface of kagome
magnet GdV6Sn6 with small and big pockets of the Fermi
surface consistent with the multiband nature of electrical
transport measurements [22]. We found the existence of both
lighter (0.28 m0) and heavier (2.37 m0) fermions. While the
topological nature of bands contributing to light mass is un-
certain, we found clear evidence of enhanced mass fermions
originating from the saddle-point-like feature of electronic
band structure at the proximity of the M point that led to VHS
in the density of states at the Fermi level. The appearance

of such saddle point and corresponding VHS (VHS2) in the
proximity of the Fermi level implies that this system is sus-
ceptible to various electronic instabilities.

Note added. Recently, we became aware of similar Fermi
surfaces with light and heavy fermions in sister material
YV6Sn6 [42] reflecting the features of topological nontrivial
bands and saddle-point-like features of the electronic band
structure of kagome materials.
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APPENDIX A: ANGLE DEPENDENCE AROUND θ = 0◦

The angle dependencies of FFT frequencies around θ =
0◦ are presented in Figs. 9(a) and 9(b). The data were col-
lected using 18 T superconducting magnets at intervals of
θ = 3◦–6◦.

APPENDIX B: LIFSHITZ- KOSEVICH (LK) FORMULA,
DINGLE TEMPERATURE (TD), ONSAGER RELATION,

FERMI VELOCITY (vf ), SCATTERING RATE (τs), MEAN
FREE PATH (lD), AND QUANTUM MOBILITY (μ)

The oscillatory part of the torque is given by [34,43,44]

�τ ∝ Hλ
A
(

m∗
m0

)
T
〈H〉

sinh
[
A
(

m∗
m0

)
T

〈H〉
]exp

{
−A

(
m∗

m0

)
TD

〈H〉
}

× cos

(
πg

m∗

2m0

)
sin

[
2π

(
F

〈H〉 + ψ

)]
,

where
A( m∗

m0
) T

〈H〉
sinh(A( m∗

m0
) T

〈H〉 )
is the thermal damping factor,

exp{−A( m∗
m0

) TD
〈H〉 } is the Dingle damping factor, TD is the

Dingle temperature, cos(πg m∗
2m0

) is the spin reduction factor,
g is the Lande “g” factor, m∗ is the effective mass of
electrons (holes), m0 is the mass of free electrons, and
the exponent λ ∼ 0 for the 2D Fermi surface, and λ ∼ 1

2
for the 3D Fermi surface [34]. The constant A is given
by A = 2π2 kB m0

eh̄ = 14.69 T/K. Here 〈H〉 is the harmonic
mean of the minimum and maximum field used in FFT

[ 1
〈H〉 = ( 1

Hmin
+ 1

Hmax
)

2 ]. The phase factor ψ is given by

ψ = (ϕ− 1
2 ).The factor ϕ is given by ϕ = ∅B

2π
+ δp. Here

∅B is the Berry phase and δp is 0 for 2D and ± 1
8 for 3D

Fermi surfaces with minimal and maximal cross sections,
respectively [44]. The effective mass (m∗) is calculated by
fitting the normalized amplitude of oscillations to the thermal

damping factor term
A( m∗

m0
) T

〈H〉
sinh(A( m∗

m0
) T

〈H〉 )
. The Dingle temperature

TD is obtained by fitting the Dingle damping factor term
[exp{−A( m∗

m0
) TD
〈H〉 }]. In practice this is done by finding the

slope of ln[�τ H0.5 sinh(A( m∗
m0

) T
〈H〉 )] vs 1/H plot and dividing

the slope by the factor A( m∗
m0

) (Fig. 10). For the calculation of
the extremal area of the Fermi surface, we use the Onsager
relation, F = ( ∅0

2π2 )Sf ; here ∅0 = 2π h̄/e is the flux quantum,
and Sf = πk2

f is the extremal area of the Fermi surface normal
to the magnetic field. Here kf is the Fermi wave vector. The
Fermi velocity is calculated using vf = h̄kf

m∗ . The scattering
rate (τs) is calculated from the Dingle temperature using the
relation τS = h̄

2πkBTD
, the mean free path is given by lD = vf

τS, and the mobility is calculated using the relation μ = eτ
m∗ .

APPENDIX C: ELECTRONIC BAND
STRUCTURE CALCULATION

We modeled the GdV6Sn6 material considering the hexag-
onal P6/mmm space group in its ferromagnetic structure. The
optimized lattice parameters a = 5.518 Å and c = 9.265 Å
are close to the experimental values a = 5.5348(7) and c =
9.1797(11) Å [22]. The obtained magnetic moments in the
V d and Gd f orbitals are −0.147 μB and −6.928 μB, re-
spectively. This indicates that the Gd f states dominate the
ferromagnetic state in this material.

After optimization of the structure, we calculate the elec-
tronic band structure through band structure and projected
density of states. Figure 11(a) depicts the band structure at the
high-symmetry points in the irreducible Brillouin zone. The
band structure depicts the well-known flat bands induced by
the kagome structure (∼0.35 eV), mainly due to the vanadium
d orbitals [22]. Near the Fermi level, Dirac-like dispersion
relations are observed at the K symmetry point due to the
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FIG. 10. Dingle temperature calculation for (a) frequency F3, (b) F6, (c) F7, and (d) F8.

hexagonal symmetry of the kagome lattice. We also note that
bands have some linear dispersion at the M point and in the
�-K path. The band structure evidences an apparent metallic
anisotropic behavior with a large band gap energy at the �-A
path but conduction states along the L-M [Fig. 11(b)] and H-K
paths.

In Fig. 8, we plot the band structure and the projected
density of states to evidence the appearance of multiple Van
Hove singularities (VHSs) near the Fermi level. In the density
of states, VHSs appear as sharp changes like peaks, valleys,
or cusplike structures, while in the band structure, they ap-
pear as local extrema such as saddle points, points with large
curvature, or band edges. Both characteristics coincide in
energy, as shown in Fig. 8. Previous density functional the-
ory (DFT) calculations not including spin-orbit calculations
evidenced the appearance of four VHSs which were labeled

as VHS1, VHS2, VHS3, and VHS4 [21], in agreement with
our findings, in which we have included the spin-orbit cou-
pling (SOC) effect and considered the ferromagnetic phase.
As expected, the SOC effect generates band splitting and a
potential change in the VHS form, energy of appearance, and
quantity. For example, we also observed one more VHS5 and
potentially another at −0.5 eV. All these points appear at the
M high-symmetry point. Our SOC calculations evidence that
the VHSs are mainly formed by the d orbitals of the vanadium
kagome lattice.

APPENDIX D: FERMI SURFACE

We have obtained the Fermi surface through first-principles
calculation, employing the optimized ferromagnetic structure.

FIG. 11. (a) Band structure of ferromagnetic GdV6Sn6 and (b) band structure along the L-M line of the Brillouin zone, zoomed in from
+100 to −100 meV. The four electronic bands (α, β, γ , and δ) crossing the Fermi level are depicted in distinct colors.
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FIG. 12. Projection of the Fermi surfaces of ferromagnetic GdV6Sn6 at the Fermi energy: (a) band α, (b) band β, (c) band γ , (d) band
δ, and (e) all Fermi surface pockets. In (e) is depicted the high-symmetry path followed to plot the band structure. All bands are depicted in
different colors.

In this analysis, we have discerned four distinct electronic
bands: α, β, γ , and δ. The Fermi surfaces have been projected
at the Fermi energy, indicating that all observed bands
intersect with this critical energy level. Notably, band α and
band β exhibit holelike characteristics, while band γ and band
δ predominantly demonstrate electronlike behavior. Regard-

ing the Fermi surface shapes, bands α and β exhibit irregular
lobes or pockets along the M-L high-symmetry direction (see
band structure of Figs. 7(a) and 10(a)]. Conversely, bands
γ and δ display barrel-like shapes with prominent and open
regions along the same M-L high-symmetry direction, as il-
lustrated in Fig. 12.
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