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Topological nodal chains and transverse transport in the centrosymmetric
ferromagnetic semimetal FeIn2S4

Junyan Liu,1 Yibo Wang,1,2 Xuebin Dong,1,2 Jinying Yang,1,2 Shen Zhang ,1,3 Meng Lyu,1 Binbin Wang,1

Hongxiang Wei,1 Shouguo Wang,4,5,* Enke Liu ,1,† and Baogen Shen1,3

1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

3Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China
4School of Materials Science and Engineering, Anhui University, Hefei 230601, China

5School of Materials Science and Engineering, University of Science and Technology of Beijing,
Beijing 100083 People’s Republic of China

(Received 10 February 2024; revised 22 May 2024; accepted 31 May 2024; published 24 June 2024)

Nodal chain semimetals protected by nonsymmorphic symmetries are distinct from Dirac and Weyl semimet-
als, featuring unconventional topological surface states and resulting in anomalous magnetotransport properties.
Here, we reveal that ferromagnetic FeIn2S4 is a suitable nodal chain candidate in theory. Centrosymmetric
FeIn2S4 with nonsymmorphic symmetries shows half metallicity and clean band crossings with hourglass-type
dispersion tracing out nodal lines. Owing to glide mirror symmetries, the nontrivial nodal loops form a nodal
chain, which is associated with the perpendicular glide mirror planes. These nodal chains are robust against
spin-orbital interaction, giving rise to the coexistence of drumhead-type surface states and closed surface Fermi
arcs. Moreover, the nodal loops protected by nonsymmorphic symmetry contribute to large anomalous Hall
conductivity and the anomalous Nernst conductivity. Our results provide a platform to explore the intriguing
topological state and transverse transport properties in a magnetic system.
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I. INTRODUCTION

Recently discovered topological nodal-line metals [1–4]
and topological semimetals including Dirac and Weyl
semimetals [5–9] have interested more and more researchers
because they host robust low-energy fermionic excitations.
The low-energy excitations described by Dirac or Weyl
Hamiltonians are different from the electrons in conventional
materials, such as high mobility [10], opposite chirality [11],
and topological robustness [12], and give rise to many fasci-
nating properties in topological metals and semimetals [3,13].
For example, the Weyl fermions in nonmagnetic materials
present topological surface Fermi arcs [14,15], and the mag-
netic Weyl semimetals lead to the realization of the chiral
anomaly [9] and Fermi arcs [16,17]. The special “drumhead”
surface states [7,18–20] and the anomalous Landau level spec-
trum [21] have been proposed in nodal-line metals whose
nodes extend along one-dimensional (1D) lines instead of
discrete points in the three-dimensional (3D) Brillouin zone
(BZ). However, such 1D nodal loops (closed nodal line) pro-
tected by certain symmorphic symmetry operations, such as
mirror or inversion [22–25], are usually vulnerable against
spin-orbit coupling (SOC), and can be removed without al-
tering the symmetry [26]. There is a series of works on
the absence of extended degeneracies with SOC in different
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space groups. For example, the fourfold double Weyl points
of orthorhombic crystal Ag2Se in SG 19 become twofold
degenerate under SOC [27].

Compared with the symmorphic symmetry operations, the
nonsymmorphic glide-plane symmetry g = {σ/t}, formed by
a reflection σ , followed by a translation by a fraction of a
primitive lattice vector t , plays a critical role in stabilizing the
band-crossing points [1,4,28–31]. This band-crossing points
are robust against SOC and may entangle multiple bands
together, resulting in inevitable crossing points. The entangled
multiple nodal loops can form nodal chain configurations in-
cluding the outer nodal chain (two nodal lines are on opposite
sides of the touching point) [2,4,28], inner nodal chain (two
nodal lines are on same sides of the touching point) [32],
as shown in Fig. 1, and hourglass Dirac chain (the fourfold
degenerate neck crossing point) [4,33–35]. A variety of outer
nodal chain metals proposed in a noncentrosymmetric system
always enclose a time-reversal invariant momenta (TRIM),
which was predicted in paramagnetic IrF4 material [1]. Fur-
thermore, IrF4 also exhibits an antiferromagnetic semimetal
with the nodal line [36]. The hourglass Dirac chain metal
is enabled by two orthogonal glide mirror planes combined
with T and P symmetries, which was predicted in the rhe-
nium dioxide [4]. Moreover, the outer and inner nodal chains
can coexist in ferromagnetic Heusler Co2MnGa material [2].
Recently, the outer nodal chain in a metallic-mesh photonic
crystal and Dirac nodal chain in a layered structure cen-
trosymmetric TiB2 have been observed by the angle-resolved
photoemission spectroscopy (ARPES) measurements [19].
So far, the proposed inner nodal chain semimetals are still
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limited, and it is urgent to discover more suitable candidates
to explore their intriguing properties.

In this work, using first-principles calculations, we pre-
dict the ferromagnetic centrosymmetric semimetal FeIn2S4

as a candidate of inner nodal chain material. Ferromagnetic
FeIn2S4 intrinsically shows the half-metallic feature and clean
band crossing with high Fermi velocity near the Fermi level.
The effective model and symmetry analysis combining with
calculations reveal that FeIn2S4 is characterized by inner
nodal chains, which are protected by orthogonal glide mirror
planes. The band crossing points trace out nodal loops and
the connected nodal loops form inner nodal chains in the
momentum space, being robust against SOC. The coexistence
of drumhead-type surface states and closed surface Fermi arcs
are observed by the surface Green’s function method. More-
over, these nontrivial nodal loops contribute to the intrinsic
anomalous Hall conductivity and the anomalous Nernst con-
ductivity. The result suggests that ferromagnetic FeIn2S4 is
a potential candidate for exploring the intriguing topological
state and transverse transport properties in a magnetic system.

II. METHOD

First-principles calculations based on the density-
functional theory (DFT) were performed using the
projector-augmented wave (PAW) method [37] as
implemented in the Vienna Ab Initio Simulation (VASP)
Package [38]. The generalized gradient approximation
(GGA) of Perdew-Burke-Ernzerhof (PBE) [39] for the
exchange-correlation functional was used. The cutoff energy
of plane wave basis was set 600 eV and the first Brillouin zone
of the reciprocal space was sampled with Monkhorst-Pack
k-point meshes [40] of 11 × 11 × 11 for structural relaxation
and 15 × 15 × 15 for static self-consistent calculation. The
structure was fully relaxed until the force and energy was
smaller than 0.001 eV/Å and 10−6 eV; the optimized lattice
constant is 10.694 Å for FeIn2S4. The band representation
analysis was performed using the SPACEGROUP package [41].
The Fe d , In s, and S p orbitals were used to construct
the tight-binding model with the maximally localized
Wannier functions (MLWF) by WANNIER90 code [42].
Energy dependence of the anomalous Hall conductivity
(AHC) σ z

xy in terms of the z components of Berry curvature
was obtained by the WANNIERBERRI code [43]. The anomalous
transverse thermoelectric conductivity αA

xy was obtained from
the integral formula of the Mott relation [44]. The calculation
of topological surface spectrum and surface states are based
on the surface Green’s function method as implemented in
the WANNIERTOOLS package [45].

III. CRYSTAL STRUCTURE, SYMMETRY,
AND MAGNETIC CONFIGURATION

The crystal structure of FeIn2S4, synthesized by the
method of directional crystallization of an almost stoichio-
metric melt and obtained bulk single crystal in experiment
[46], belongs to face-centered-cubic lattice and is composed
of Fe-S tetrahedrons and In-S octahedrons, with each Fe atom
surrounded by four sulfur atoms and each In atom surrounded
by six sulfur atoms, as shown in Fig. 2(a). Without spin-orbit

FIG. 1. Schematic figure of the (a) outer and (b) inner nodal
chains.

coupling (SOC), spin rotations and the symmetry operations
of lattice can be a combination of a spatial operation and
an arbitrary spin rotation that is compatible with the group
structure, classifying the spin group as a spin space group
(SSG) [47] and a spin point group (SPG) [48]. Here, the
symmetries of space and spin degrees of freedom are consid-
ered separately. The space group Fd-3m (no. 227) symmetry
of the FeIn2S4 structure includes the following nonsym-
morphic symmetry operations: two glide mirror planes with
fraction translations M̃z : (x, y, z) → (x + 1

4 , y + 3
4 ,−z + 1

2 ),
M̃xy : (x, y, z) → (−y + 1

4 ,−x + 3
4 , z + 1

2 ). The correspond-
ing first Brillouin zone (BZ) and 2D BZ for (001) surface
are shown in Fig. 2(b). To obtain the magnetic ground state
of FeIn2S4, the total energies for nonmagnetic (NM), ferro-
magnetic (FM) [only give (001) direction due to isotropy],
and antiferromagnetic (AFM; possible AFM configurations
in Fig. S1, see the Supplemental Material [49]) are calcu-
lated and the result reveals that the FM state is the most
stable energetically, as shown in Table I. Notably, FeIn2S4

shows an antiferromagnetic state in experiment [50], in
which the magnetic moments are arranged in spin antipar-
allel collinearly [51]. The difference between experiment
and calculation may due to small strain during experimental
preparation, such as stress, defect [52], or disorder, which
make FeIn2S4 fail to adopt the FM state. From our calcu-
lations, the total energy of FM state is very close to that
of AFM state and the spin-flip transition from FM state to
AFM state can be achieved by only 1% tensile strain in
Fig. 2(c). If ferromagnetic FeIn2S4 can been obtained by
experiment, it will show an interesting topological state, as
discussed in Sec. V. Therefore, it deserves a deep theoretical
exploration on the potential FM state and the striking non-
trivial topological states in the FeIn2S4 compound. For FM
state, each Fe atom has a nominal magnetic moment of 4μB.
According to the Pauling electronegativity, the value of elec-
tronegativity of the S atom (2.58) is greater than that of the
In atom (1.78) and the Fe atom (1.83), resulting in two In
atoms donating six electrons from 5p and 5s orbitals and
the Fe atom donating two electrons from the 4s orbital to
the S-3p orbital in Fig. 2(d). As a consequence, the S-3p or-
bital is occupied by two spin-antiparallel electrons, exhibiting

TABLE I. Total energy per unit cell of FeIn2S4 with NM, AFM,
and FM configurations (unit in eV).

FM AFM NM

Total energy −66.084 −66.035 −63.967

235144-2



TOPOLOGICAL NODAL CHAINS AND TRANSVERSE … PHYSICAL REVIEW B 109, 235144 (2024)

FIG. 2. (a) Structure of FeIn2S4 with space group Fd-3m (no. 227). The In-S octahedron and Fe-S tetrahedron structure units are
displayed in the top right and bottom right, respectively. (b) Three-dimensional (3D) Brillouin zone (BZ) and 2D BZ for (001) surface.
(c) Strain dependence of the difference of the total energy between FM and AFM configurations. (d) Schematic diagram for the origin of the
nominal magnetic moment of Fe atoms, 4μB per Fe atom in the FM configuration.

nearly zero magnetic moment. According to the eight-electron
rule, the Fe atoms would completely hold six valence
electrons, leaving four unpaired electrons with a magnetic
moment of 4μB.

IV. ELECTRONIC STRUCTURE

The spin-resolved band structure of FM FeIn2S4 exhibits
a half-metallic nature because the spin-up channel shows a
semiconductor behavior, while the spin-down channel dis-
plays a metallic property, where the conducting electrons
have a 100% spin polarization, as shown in Figs. 3(a) and
3(b). The spin-down channel mainly attributes to Fe-d or-
bitals, being similar to that of Co3Sn2S2 [9]. Significantly,
for the spin-down channel, the highest valence bands cross
the lowest conduction bands linearly along �-X, �-K, L-U,
and L-K high symmetry lines, of which the band crossing
along the �-X direction is far away from the Fermi level.
The band along the W-L direction opens a tiny band gap
though it shows a linear band crossing visually. Figure 3(c)
presents the enlarged plot of linear dispersion between energy

and momentum near the Fermi level for the spin-down chan-
nel. The band-crossing points locating at X-�-K-L-U lines
are referred to as BC1, BC2, BC3, and BC4, respectively.
BC3 and BC4 are symmetrically distributed in K-L-U lines.
The linear dispersion indicates high carrier mobility and the
excellent performance of a half metal. From the two linear
bands highlighted in Fig. 3(c), the Fermi velocity νF of the
carriers can be evaluated using linear fitting [53]: νF ≈ 1

h̄
∂E
∂k .

The Fermi velocity in Fig. 3(d) reveals that (i) the half metal
FeIn2S4 possesses high carrier mobility with Fermi velocity
of about 2 × 105 m/s, and (ii) double degenerate points along
the �-K, K-L, and L-U directions are inclined Weyl cones.
Moreover, according to the band representation analysis of
the symmetric operations, the band crossing points locating
at �-X and �-K lines are P-WNLs, i.e., the Weyl nodal-line
net (WNL net) contains multiple twofold NLs, which share
(at least) one nodal point in momentum space, and then the
joint nodal points are termed as P-WNLs. The quadratic con-
tact triple points (QCTPs, i.e., threefold band degeneracy)
at the � point are ignored due to the topological charge
C = 0 [54].
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FIG. 3. (a),(b) Orbital-projected spin-polarized bands structure of FeIn2S4, Fe-d orbitals mainly contribute to the band near Fermi level
for spin-down channel, band representation and topological state at � and X points from symmetry analysis. (c) The enlarged band structure
around the twofold-degenerate band-crossing points near Fermi level for spin-down channel. (d) Fermi velocity of the band crossings along
�-K, K-L, and L-U directions.

V. NODAL CHAINS WITHOUT AND WITH SOC

To further analyze the topological character of FeIn2S4

suggested by Fig. 3(c), the linear band crossings are traced
out in more detail. Without SOC, the spin-up and spin-down
channels are decoupled, and thus the time-reversal symmetry
can translate between the two spin channels. For the spin-
down channel, all crystalline symmetries are preserved, such
as nonsymmorphic glide mirror symmetries, inversion sym-
metry P, and time-reversal symmetry T. Figure 4(a) displays
two kinds of nodal lines, in which the red nodal loops at the
kx = 0 (ky = 0 and kz = 0) plane are protected by the glide
mirror plane M̃z(M̃x, M̃y), and the black-green nodal loop at
the kx−z plane is protected by the mirror plane Mz. Remark-
ably, these nodal loops are interconnected and the red nodal
loops are connected to red and black-green ones to form inner
nodal chains. At the kx−y plane, the nodal lines throughout
the Brillouin zone from top to bottom are protected by M̃xy

in Fig. 4(b). These nodal loops can be argued from effective
model and symmetry analysis. The presence of red nodal
loops centered at the X point are protected by the glide mirror
plane M̃z : (kx, ky, kz ) → (kx + 1

4 , ky + 3
4 ,−kz + 1

2 ) and are
caused by band inversion. To protect this nodal loop, the two
crossing bands should have opposite eigenvalues of M̃z, which
has a matrix representation as M̃z = σz. The two-band k · p
Hamiltonian is given by

H =
∑

i=x,y,z

di(k)σi, (1)

where σi is the Pauli matrix denoting the space of the two
crossing bands, one with positive parity and the other with

negative parity, and di(k) are real functions and the vector k
is relative to the � point. To satisfy the commutation relation
between M̃z and H,

M̃zHM̃−1
z = H� (kx, ky,−kz ), (2)

which leads to dx,y(k) being even functions of k and dz(k) are
odd functions of k,

dx,y(kx, ky, kz ) = −dx,y(kx, ky,−kz ), (3)

dz(kx, ky, kz ) = dz(kx, ky,−kz ). (4)

When the nodal loops lie on the kz = 0 plane,
dx,y(kx, ky, kz ) = −dx,y(kx, ky,−kz ) vanishes, and thus the
nodal loops are determined by dz(k). Considering the cubic
symmetry and the second order of k, dz(k) can be generally
expressed in the following form:

dz(k) = m − b
(
k2

x + k2
y + k2

z

)
. (5)

dz(k) = 0 can be satisfied only when mb > 0, indicating the
nodal loops at the kz = 0 plane due to the band inversion.
Interestingly, the nodal loops at the kx = 0 and ky = 0 plane
are orthogonal to each other, and they touch and constitute the
inner chain in the momentum space [Fig. 4(a)]. Interestingly,
the nodal chains on perpendicular glide mirror planes are in
contrast to the Hopf link, which represents 3D band crossings
characterized by the simplest topologically nontrivial link and
consists of two rings that pass through the center of each
other [2], involving only two bands, and both glide mirror
eigenvalues flip from one region to the other, as shown in
Fig. 4(c). The analysis of nodal lines [Fig. 4(b)] throughout the
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FIG. 4. (a) Schematic figure of two types of nodal loops forming
inner nodal chains. (b) Energy gap �E between the lowest con-
duction band and the top valence band without SOC at kx−y = 0
plane, i.e., the nodal line throughout the Brillouin zone from top to
bottom. (c) Schematic figure of two independent nodal loops on two
perpendicular glide mirror planes. The below panel shows the nodal
loops with glide mirror eigenvalues along ky axis. (d) A nonsymmor-
phic symmetry {g|t} leads to band crossings on a mirror-invariant
line �-X. The Kramers pairs (� and X points) exchange the glide
eigenvalues along any path connecting � and X points, leading to an
essential crossing point.

Brillouin zone from top to bottom at the kx−y plane protected
by the glide mirror plane M̃xy are similar.

At the kx−y plane, the presence of black-green nodal loops
are protected by the mirror plane Mx−y : (x, y, z) → (y, x, z).
Since M1−10 : (kx, ky, kz ) → (ky, kx, kz ) satisfies (Mx−y)2 =
1, then Mx−y has eigenvalues ±1.

It is worth noting that the presence of glide mirror sym-
metries results in a band switching between two time reversal
invariant momenta (TRIM) � (0,0,0) and X (0, π , 0) points,
forming the double-fold degeneracy hourglass type dispersion
along the �-X path [Fig. 4(a)]. For the mirror-invariant line
�-X on the kz = 0 plane, since M̃4

z = T310 = e−3ikx−iky , thus
the eigenvalues of M̃z are gz = ±1 at the � point and gz = ±i

at the X point. Without SOC, each spin channel can be re-
garded as a spinless case and the band dispersion is Kramer
degeneracy at the � and X points. At the � point, every Bloch
state on the plane kz = 0 can be chosen as the eigenstate |u〉 of
M̃z; it shows a double degeneracy, {|u〉,T|u〉}. For example,
|u〉 have the same eigenvalue gz = +1 (or gz = −1) as its
Kramer partner T|u〉. Notably, at X = (0, π , 0) each Kramer
pair |u〉 and T|u〉 shares different eigenvalues gz (one is gz = i
and the other one is gz = −i). Therefore, there must be a
partner switching when going from � to X, leading to an
hourglass band crossing, as shown in Fig. 4(d).

When considering the SOC effect that couples the two
spins and allows them to hybridize, the above-mentioned band
crossings are not fully gapped, such as the crossing-points
along the �-X and �-K directions, as shown in Fig. 6(a) and
Fig. S2 of the Supplemental Material [49]. Since all the glide
mirrors and mirror symmetries except M̃z, M̃xy and Mx−y are
broken under the magnetic moments of Fe atoms aligned in
the (001) direction, the red nodal loops at kz = 0, the green
nodal loops at kx−y plane and the nodal lines throughout the
Brillouin zone from top to bottom at k−x−y plane are retained.
This illuminates that the band-crossing points along �-X and
�-K directions enabled by nonsymmorphic symmetries are
robust against SOC and referred to as essential. The red nodal
loops at kx = 0 and ky = 0 are gapped and the SOC-induced
gap opened at the nodal loops is extremely small of 1.3 meV.
Therefore, the SOC effect is quite weak. Considering the
negligible SOC gap, it is very likely that the inner nodal chains
structure will be obtained in FeIn2S4. In addition, the crossing
points along the L-U and L-K directions protected by mirror
symmetry Mx−y are fully gapped and the SOC-induced gaps
are 19.8 and 27.7 meV, as shown in Fig. 6(a).

VI. DRUMHEAD SURFACE STATES

For a topological nodal line material, there should exist
surface states despite not having an exact bulk boundary cor-
respondence; typically boundary modes are observed in IrF4

[1], ReO2 [4], and Mg2VO4 [34]. Its topological surface spec-
trum along high symmetry paths in the surface BZ have been
established as the so-called drumhead surface states. A nodal
line projected into a plane should fill the entire area inside the
nodal line. The topological surface states fill the area shared
by the two nodal lines for the nodal lines connecting with

FIG. 5. (a) Topological surface states for (001) surface in FeIn2S4 with Fe termination. The sharp features are surface states and the shaded
region are projections of bulk bands. (b) The projection of nodal features onto the (001) surface at 50 meV below the Fermi level. (c) Schematic
illustration of projected topological nodal features observed in (b).
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FIG. 6. (a) Energy dispersion of electronic bands structure of FeIn2S4 along high-symmetry paths in the Brillouin zone with SOC, Berry
curvature projected band structure along high-symmetry paths except L-K direction to highlight the SOC effect on the band crossing, the size
of the blue and red dots corresponds to the magnitude of negative and positive Berry curvature on a logarithmic scale. (b) Energy dependence
of the anomalous Hall conductivity in terms of the components of 	z

yx (k). (c) Energy and temperature dependence of the anomalous Nernst
conductivity αz

yx in terms of σ z
yx (ε), right panel (d) is the enlarged view of ANC below the Fermi level; the illustration shows the curve of ANC

at the Fermi level with temperature.

each other and forming nodal networks and the two drumhead
surface states are coupled together. Interestingly, nodal chain
semimetals feature unconventional topological surface states.
Figure 5(a) displays the surface spectrum near the Fermi level
for the (001) plane [Fig. 2(b)] in FeIn2S4 with Fe termination.
The sharp surface bands along �̄-X̄-K̄ paths are observed and
they actually are the drumhead surface states stemming from
the projected bulk band-crossing point. Both the hourglass
dispersion and the surface states are close to the Fermi level,
indicating that they could be directly imaged by ARPES ex-
periment in ferromagnetic FeIn2S4, and could dominate the
electronic and thermal transport behaviors of the compound.

In Fig. 5(b), the projected loops in the surface BZ for
the constant energy slice at 50 meV below the Fermi level
[Fig. 5(a)] are obtained by the tight-binding model. In order to
clearly present the surface states of the nodal loops, the nodal
loops outline the profiles projected onto the (001) surface
in Fig. 5(c). The opened circle surface states marked by the
shaded region for the red nodal loop on the (001) surface are
indeed observed, with the projected loops centering around
the X point. Other projected loops fill the cross-shaped area in
the shaded region. An interesting coexistence of a drumhead-
type surface state and closed surface Fermi arcs are observed.

VII. TRANSVERSE TRANSPORTS

The inner chain is essential, robust against SOC, indicat-
ing that the interplay of magnetism and topology may open
up the possibility for exotic linear response effects, such as
the anomalous Hall effect and the anomalous Nernst effect.
The energy-dependent anomalous Hall conductivity (AHC)
and the anomalous Nernst conductivity (ANC) obtained from
the Berry curvature [55] and the generalized Mott relation
[44] αA

xy(T, μ) = − 1
e ∫ dε

∂ f (ε−μ,T )
∂ε

ε−μ

T σ A
xy(ε) are shown in

Figs. 6(b) and 6(c). The gapped band crossing points along
the U-L-K directions [Fig. 6(a)] correspond to a peak of
192 (	 cm)−1 in σyx at the energy of 15 meV below EF

[Fig. 6(b)]. The SOC-induced gapped nodal loops indeed cre-
ate the anomalous Hall effect. Considering the energy shift

away from the charge neutral point in a range of 250 meV, the
maximum of σyx −648(	 cm)−1 may appear at the energy
of −83 meV owing to the possible vacancies, defects, or
off-stoichiometric composition in real materials. The energy-
dependent anomalous Nernst conductivity in Fig. 6(c) shows
that the maximum of αyx can reach 2.0 (A m−1 K−1) and
−2.3 (A m−1 K−1) at a low temperature of 50 K, correspond-
ing to the largest energy derivative of the AHC. Moreover,
the maximum of αyx is separated on either side of σyx, in-
dicating that a small shift in the energy can also greatly
enhance or decrease the ANC value and its sign change.
The maximum of αyx at an energy of 15 meV below the
Fermi level can trace back to the SOC-induced gapped nodal
loops. As the temperature increases, the ANC changes from
negative to positive value at the Fermi level [Fig. 6(c)], the
low-temperature Mott relation is valid, and the αyx can still
maintain a high value of 2.30 (A m−1 K−1) at 200 K. The
maximum ANC of 2.0 (A m−1 K−1) at T = 50 K is much
larger than that in traditional ferromagnets [56] [typically
αyx = 0.01−1(A m−1 K−1)] once T � 50 K.

To investigate the origin of the anomalous Hall and Nernst
effects, the integral Berry curvature 	z

xy(k) (BC) along kz

in the Brillouin zone is obtained. First, the AHC of 192
(	 cm)−1 can be traced to the SOC-induced gapped nodal
loop protected by Mx−y in Fig. 6(b). Figure 7(a) shows that
the distribution of the BC in the Brillouin zone that is focused
only around the nodal loop, i.e., the integrated BC is primarily
determined by the shape of the nodal lines, and the positive
BC mainly contribute to the AHC. This is because the corre-
sponding nodal lines along the nodal loop have less dispersive
energy, while the dispersion nodal lines cause negative BC,
which is the reason that maximum σyx does not coincide with
the crossing along the U-L-K line. Consequently, the gapped
band crossing points exhibit a peak in AHC and ANC around
the Fermi level. To find out the contribution of the maximum
σyx, one can look into the BC distribution in the Brillouin
zone. Figure 7(b) shows that the negative BC at kz = 0 and
kx−y planes, forming a nodal line in the nodal loop case, are the
dominating contribution to AHC of −648 (	 cm)−1. Finally,
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FIG. 7. (a) Berry curvature distribution in the Brillouin zone along the 3D band structure [E(eV) − kx (2
√

2π/a) − ky (2π/b)] of a green
nodal loop at kx−y plane. (b) Berry curvature distribution projected to the kz = 0 plane and kx−y = 0 plane.

we also examine other ferromagnetic and antiferromagnetic
systems possessing nodal lines and nodal planes protected
by nonsymmorphic symmetries and having similar transverse
transport mechanisms. For example, the AHC of ferromag-
netic CuCr2Se4 stems from a large Berry curvature due to the
splitting of the nodal line via spin-orbit coupling [57]. The
Berry-curvature “hot spots” lying along the gapped nodal lines
via spin-orbit coupling enhance the anomalous Hall effect in
collinear C-type antiferromagnetic CaCrO3 [58]. The slightly
gapped nodal plane enforced by a screw axis symmetry gener-
ates the spontaneous Hall and Nernst effects in compensated
antiferromagnets CoNb3S6 [59].

VIII. SUMMARY

In summary, the intriguing topological state and transverse
transport properties of ferromagnetic FeIn2S4 are revealed
by first-principles calculations. The centrosymmetric FeIn2S4

shows the fully spin polarized half-metal feature, mainly con-
tributed from the Fe-d orbital. The clean and linear band
crossing near Fermi level traces out nodal lines and possesses
high carrier mobility with a Fermi velocity of 2 × 105 m/s.
The nodal lines protected by the glide mirror plane M̃z and
the mirror plane Mx−y form inner nodal chains in momentum
space and the glide mirror plane M̃xy enables the nodal lines
throughout the Brillouin zone from top to bottom. The effec-
tive model and symmetry analysis further demonstrate this
interesting topological state. Remarkably, the band crossing
along the �-X high symmetry line tracing out the nodal loops

are robust against SOC due to the protection of nonsymmor-
phic glide mirror symmetry and the SOC effect on the inner
nodal chains can be negligible. Moreover, the inner nodal
chain leads to the coexistence of drumhead-type surface states
and closed surface Fermi arcs on the (001) surface. These
nontrivial nodal loops mainly contribute to the maximum
AHC of −648 (	 cm)−1 and the flat energy dispersion of the
3D nodal lines are beneficial to the AHC of 192 (	 cm)−1

at the energy of 15 meV below Fermi level. The maximum
αyx can reach to 2.0 (A m−1 K−1) and −2.3 (A m−1 K−1) at a
low temperature of 50 K. These findings provide a magnetic
semimetal candidate to investigate the transport properties
dominated by nodal chain.
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