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Phase diagram and topology of the XXZ chain with alternating bonds and staggered magnetic field
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The XXZ spin-half chain has Heisenberg exchange interactions Jz (J⊥) in the z (x, y) direction. The model
has a transition from the spin-fluid phase for −J⊥ < Jz < J⊥ to the Néel phase for Jz > J⊥ > 0. When bond
alternation δ is included, the Néel phase transitions to the dimer phase for a finite value of δ. We determine the
phase diagram using simple topological indicators related to the polarization of both spins. When a staggered
magnetic field B is included, a contour plot of these indicators as a function of δ and B determine the amount of
topological quantized spin pumping around closed circuits in the (δ, B) plane.
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I. INTRODUCTION

In recent years there has been considerable attention in
topological aspects of matter [1–3]. In particular, topological
quantized charge or spin pumping can be realized in time-
dependent adiabatic evolution in a closed cycle in a certain
space of parameters [typically two-dimensional (2D)]. This is
known as a Thouless pump [4–7].

Usually, the 2D pump cycle encloses one or more critical
points at which a symmetry-protected topological number
jumps. Outside the critical points, the protecting symme-
try is lost allowing a continuous variation of charge or
spin Berry phases, the variation of which on the cycle
determines the transported amount of charge or spin. Ex-
perimentally, charge transport in Thouless pumps described
by the Rice-Mele chain [8,9] including interactions in some
cases [10,11] have been realized in chains of ultracold
atoms. Different variants of the model have been discussed
theoretically [7,12–21].

Quantum spin pumps have been also realized experimen-
tally [22] and discussed theoretically [19,22–27]. Different
realizations of Heisenberg-like chains have been achieved
with ultracold atoms [22,28–30] including an extremely
anisotropic Heisenberg model [30]. The XXZ chain is the
Heisenberg chain with anisotropic nearest-neighbor (NN) ex-
change interactions, Jz in the z direction and J⊥ in the other
two. While this model has been solved exactly [31], different
variants of the model have been studied using field theoretical
[32–36] and numerical [27,37–40] methods.

The phase diagram of the spin-1/2 model including next
NN interactions has been calculated using the method of
crossings of excited energy levels (MCEL), supported by
results of conformal field theory and the renormalization
group [37,38]. The corresponding diagram for the model with
alternating NN interactions [H0 in Eq. (1)] has been calcu-
lated using different numerical techniques [27,39]. In spite
of some quantitative differences, qualitatively the results of
both works coincide. Without alternating interactions (δ = 0),

there is a transition at Jz = J⊥ between the spin-fluid phase
for −J⊥ < Jz < J⊥ to the Néel phase for large Jz [31,37,38].
For an infinitesimal alternation, the spin-fluid phase is trans-
formed to a dimer phase, while a finite |δ| is needed for
the transition between the Néel phase and a dimer phase.
The dimer phases are different for opposite signs of δ. A
similar model with experimental relevance has been studied
numerically [40].

Recently, real-time dynamics of Thouless pumps in the
XXZ model with alternating NN interactions including a stag-
gered magnetic field B have been calculated with the infinite
time-evolving block decimation (iTEBD) method [27]. The
authors considered different circuits in the (δ, B) plane that
touch but do not cross the singular point δ = B = 0. The
authors find that quantized pumping takes place only for Jz >

J⊥, when the Néel phase separates the two dimer phases for
positive and negative δ.

The purpose of this paper is twofold: (i) to recalculate the
phase diagram of the model for B = 0 (which we call H0)
using topological indicators based on simple position oper-
ators, showing the power of this method; (ii) to show how a
contour plot of expectation values of the position operators in
the (δ, B) plane allows the prediction of the transported spin
in pumping circuits.

The paper is organized as follows. In Sec. II we present
the Hamiltonian of the model with its known limiting cases.
In Sec. III we define the topological indicators used to deter-
mine the phase diagram of H0 and discuss some simple cases
in which these indicators characterize the different phases.
Section IV presents the results for the phase diagram of H0

compared with the previous results obtained by Tzeng et al.
[39] using different sophisticated numerical methods, show-
ing a quantitative agreement. In Sec. V the contour plots of
the topological indicators in the (δ, B) plane show that these
can predict the evolution of the spin transport in adiabatic
Thouless pump cycles. At the end, a summary and discussion
can be found in Sec. VI.
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II. MODEL HAMILTONIAN

The Hamiltonian of the spin-1/2 alternating XXZ chain,
including a staggered magnetic field reads

H = H0 + HB,

H0 =
N∑

j=1

[1 + (−1) jδ]
[
J⊥

(
Sx

j S
x
j+1 + Sy

j S
y
j+1

) + JzS
z
jS

z
j+1

]
,

HB = −
N∑

j=1

(−1) jBSz
j, (1)

where S j = (Sx
j , Sy

j , Sz
j ) is the spin of the site j of the chain.

Since we use periodic boundary conditions, the number of
sites N should be even for the system to contain an integer
number of unit cells.

The Hamiltonian for B = 0 (H0) has been studied before
[39,41] and can be experimentally realized with cold atoms,
where the bond alternation is achieved by fine tuning the
intensity of the Raman laser beams [28,42].

Two limits of the model are well known. Without bond
alternation (δ = 0) the model has been solved exactly using
the Bethe ansatz [31]. If in addition Jz = 0, the model can
be mapped to a simple fermionic tight-binding chain using a
Jordan-Wigner transformation [39]. Thus this limit provides
a simple picture of the spin-fluid phase, where the spins are
delocalized in the chain. Instead, for large positive Jz in an
infinite system, there is a spontaneous symmetry breaking to
a Néel or anti-Néel state (↑↓↑↓ . . . or ↓↑↓↑ . . . plus fluctu-
ations). For a finite system, the ground state is a mixture of
both. The transition between the spin-fluid and the Néel phase
is exactly at the isotropic point Jz = J⊥ [31,37,38]. The gap in
the Néel phase is exponentially small near the transition and
behaves as � ∼ Jz − 2J⊥ for large Jz [31].

Introducing δ for Jz = 0, the system can still be mapped
onto a noninteracting fermionic chain [39,43]. A dimerized
phase in which the expectation value of the NN singlets is
larger (smaller) at the odd bonds with respect to the even
ones is formed for δ < 0 (δ > 0). The odd bonds are those
between sites j and j + 1 with j odd. The difference between
both expectation values as well as the energy gap are both
proportional to δ. Instead, in the isotropic case Jz = J⊥, it has
been shown by bosonization [44] that the bond-order parame-
ter 〈(S1 − S3) · S2〉 ∼ δ1/3, while the energy gap � ∼ δ2/3.

For Jz > J⊥, the Néel phase competes with the dimer
phases [39], as described in detail in Sec. IV. Including mag-
netic field, pumping circuits in the (δ, B) plane were studied,
which are discussed in Sec. V.

III. METHODS

Our calculations for the model Eq. (1) are based on two
phases for the model defined in a ring

αs = α(1,−1), α↑ = α(1, 0), (2)

where

α(m↑ , m↓) = Im ln〈U (m↑, m↓)〉 mod 2π, (3)

FIG. 1. Schematic representation of simple states and the corre-
sponding values of α↑ and αs. The gray circles represent the sites,
arrows represent the spin degree of freedom, and dashed ellipses
indicate dimerization between sites.

is the phase of the expectation value of the following operator:

U (m↑ , m↓) = exp

⎡
⎣i(2π/L)

∑
j

x j (m↑n̂ j↑ + m↓n̂ j↓)

⎤
⎦, (4)

where x j is the position of the site j, n̂ j↑ = 1/2 + Sz
j , n̂ j↓ =

1/2 − Sz
j , ms (where s =↑,↓) can take the values −1, 0, or

1 and L = Na/2 is the length of the system, where a is the
lattice parameter for δ �= 0 (two times the NN distance) and N
is even.

For fermionic systems it has been shown that changes in
α(1, 1) [45–47] (or more appropriately α(l, l ) with suitably
chosen l [19,48]) are proportional to the average displacement
of the particles and, in the thermodynamic limit, coincide
with the charge Berry phase (the phase obtained changing
the twisted boundary conditions from 0 to 2π ), which in turn
gives information on the polarization of the system (changes
in polarization are proportional to the corresponding changes
in the charge Berry phase) [47,49]. Similarly, α(1,−1) is an
approximation to the spin Berry phase [50], which is pro-
portional to the difference of polarizations between electrons
with spin up and down [51]. Performing the Jordan-Wigner
transformation mentioned in Sec. II, it is easy to show that α↑
is related to the charge Berry phase of the equivalent spinless
fermionic model. In recent years, similar expectation values
been used in different cases [21,34,35,52–56].

To gain some intuition we discuss α↑ in simple cases,
which are schematically represented in Fig. 1. Assume for the
moment that N is multiple of four and that the origin of coor-
dinates is chosen so that x j = ja/2. Assume that the ground
state is a pure Néel one with spins up occupying the odd sites
(represented in the second row of Fig. 1). Then the factor
entering in the exponent of Eq. (4) becomes (2π/N )� j (2 j +
1) = πN/2 ≡ 0 mod 2π and α↑ = 0. The anti-Néel state is
obtained shifting all spins half a lattice parameter (a/2) to
the left or to the right (fourth row of Fig. 1). This amounts
to replacing 2 j + 1 by 2 j or 2 j + 2 above and in both cases
α↑ = π . More generally, it is easy to realize that the change in
α↑ under a displacement d of all spins up is �α↑ = (d/a)2π .
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Therefore for a completely dimerized state in which the spins
up are on average at the center of the odd bonds (third row
of Fig. 1), displaced a/4 with respect to the Néel state, one
expects α↑ = π/2. For the other dimer state (fifth row of
Fig. 1) one expects α↑ = 3π/2 ≡ −π/2. Explicit calculations
done in Ref. [19] confirm these values.

Extending this argument to αs is straightforward and one
obtains αs = 0 for both extremely dimerized states and αs =
π for both pure Néel states. Shifting the origin of coordinates
or choosing N not multiple of 4 does not affect the differences
between the α for different states [19].

For a ring, if δ = 0, H is invariant under the reflection R
that passes through two opposite sites. In addition, for any
value of δ, H0 is invariant under the reflection R̃ that passes
through the middle point of any two opposite NN bonds.
This has important consequences on the α. The reflection
R̃ is equivalent to a change of sign of x j plus a translation
in a NN distance a/2. This change of sign is equivalent to
a complex conjugation in Eq. (4), while the translation, as
explained above, modifies the exponent of U (1, 0) [U (1,−1)]
by π (2π ≡ 0). This implies

R̃U (1, 0)R̃† = −U (1, 0),

R̃U (1,−1)R̃† = U (1,−1). (5)

Since the ground state for any finite ring is unique, both α

should remain invariant under inversion and this implies that
α↑ can only by either π/2 or −π/2 mod 2π , while αs can
only be 0 or π mod 2π . Thus both α become Z2 topological
numbers.

As explained above, the two extremely dimerized phases
are characterized by α↑ = ±π/2 with the sign depending
if the singlets occupy odd or even NN bonds. However, by
continuity, for each dimer phase, the same topological number
characterizes the whole dimer phase until a phase transition
or level crossing takes place. In fact, for |Jz| < J⊥ it jumps
at δ = 0 signaling the transition between both dimer phases.
This jump is related to the jump in the winding number and
charge Berry phase (Zak phase for Jz = 0) [12,27] that takes
place in the fermionic Su-Schrieffer-Hegger model obtained
using a Jordan-Wigner transformation [39].

In contrast, α↑ is unable to detect the transition to the Néel
phase. As explained with the simple arguments above, the
extreme Néel and anti-Néel states have α↑ = 0 or π . For a
finite system the unique ground state contains a measure of
both states and α↑ = ±π/2 as required by the topological pro-
tection by the reflection symmetry. Instead, as also discussed
above, αs = 0 for both extreme dimer phases and αs = π for
both pure Néel states. By continuity, the same values extend
to the whole dimer and Néel phases and therefore the jump
in αs denotes the dimer-Néel phase transition. In fact, in the
thermodynamic limit, this jump coincides with the jump in
the spin Berry phase [50]. In turn, the latter jump corresponds
to a crossing of excited energy levels used by the MCEL to
determine the transition [37,38].

The MCEL coincides with jumps of the Berry phases also
in other models [57]. Furthermore, it has been shown that for
a general extended Hubbard model including NN repulsion,
density-dependent hopping, pair hopping and exchange, in a
wide range of parameters with weak interactions, for which

continuum-limit field theory techniques are expected to be
quantitatively reliable, the bosonization results for the phase
diagram coincide with those obtained numerically from jumps
in charge and spin Berry phases [58].

The key point for what follows is that α↑ and αs com-
plement each other and characterize the three different
topological phases of H0. In Sec. IV we determine the phase
diagram of H0 using these topological indicators.

When a staggered magnetic field B is included, the reflec-
tion symmetry R̃ is broken and the α lose their topological
protection for δ �= 0, but they continue to give information
on the change in the position of the spins under changes
in the parameters. In particular, a contour plot of them in a
two-dimensional parameter space allows us to predict these
changes under an adiabatic cycle. This is shown in Sec. V.

For δ = 0, the reflection R is a symmetry of the Hamilto-
nian for any B, and an argument similar but simpler to that
used to analyze the consequences of R̃, shows that both α↑
and αs can only be either 0 or π mod 2π .

At this point, we explain why we use periodic boundary
conditions (PBC). When open boundary conditions (OBC) are
used, in general both reflection symmetries R and R̃ are lost.
If either δ or B are different from zero, the unit cell contains
two sites and in order to have an integer number of unit cells,
the number of sites N should be odd. Therefore the only pos-
sible reflection symmetry is R through the site (N + 1)/2 at
the middle of the chain. However, the exchange interactions
are different at the left and the right of this point. Therefore,
the topological protection is lost. One might expect that for a
long enough chain similar results are obtained. However, for
the charge transition in the ionic Hubbard model, results for
the charge gap near the charge transition with N ∼ 30 using
PBC seem superior to N ∼ 400 using OBC [18]. Also, as
discussed at the beginning of the next section, for our system
αs becomes smooth and does not jump for N ∼ 60 using OBC
[27].

While the information above is enough to understand the
results presented below, in the rest of this section we dis-
cuss more technical points, in particular in relation with
continuum-limit field theory. Using bosonization techniques,
it has been shown that the operator U (m↑, m↓) takes the form

U = exp [−icφa], φa = 1

L

∫
dxφ(x), (6)

where φ(x) is a charge or spin field, φa its average and c,
like φ(x), depends on the particular mσ [59,60]. A similar
expression that differs in an irrelevant constant was derived
more recently [35].

The scaling of the expectation value of U in gapless phases
of the XXZ chain [34,35] and’t Hooft anomalies [36] of the
model have been studied using conformal field theory and
renormalization group (RG). In addition, similar models were
studied with RG [32,33].

IV. PHASE DIAGRAM OF H0

The phase diagram of H0 has been calculated by Tzeng
et al. using Rényi entropies and the second derivative of the
ground-state energy obtained with density matrix renormal-
ization group (DMRG) in systems with up to N ∼ 120 [39].
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FIG. 2. Phase diagram of H0 obtained from the jump αs (blue
triangles) and compared with previous results (red circles) [39].
Dimer I (II) corresponds to larger 〈S j · S j+1〉 in the odd (even) bonds.

Recently a calculation of the phase diagram also using DMRG
with N ∼ 60 has been reported [27].

From these works, as well as the jump of α↑, it is clear
that the boundary between both dimer phases for |Jz| � J⊥ is
at δ = 0. In Ref. [27], a calculation of the Zak Berry phase
ϕ (which in principle should give the same information as α↑
except for a constant [19,21]) is reported. Instead of a jump
in π at δ = 0, ϕ shows a continuous evolution with a total
change of π as δ is varied. This is likely due to the use of open
boundary conditions in Ref. [27], under which the protecting
symmetry R̃ is lost [see Eq. (5)].

For Jz > J⊥, the Néel phase appears at δ = 0 and the
boundary between this phase and any of the dimer phases is
not trivial to determine. In particular, there is a quantitative
discrepancy between Refs. [39] and [27] for small Jz − J⊥.
The extent of the Néel phase is larger in the latter.

Here we use αs as a topological indicator to detect the tran-
sition, extrapolating the value of δ at which αs jumps in rings
of N sites with even N in the range 12 � N � 24 using exact
diagonalization. For Jz < 1.5J⊥ we also include N = 26. The
extrapolation was done using a quadratic function in 1/N , as
in Ref. [18]. To estimate the error, we repeated the extrap-
olation taking out the point with largest N . The difference
between both values of δ is always less than 1.5 × 10−3 and,
in general, less than 5 × 10−4 for Jz/J⊥ � 2.

The resulting boundaries of the Néel phase are shown
in Fig. 2, and compared with previous ones obtained using
finite-size scaling of the Rényi entropies S2 and the second
derivative of the ground-state energy, obtained with DMRG
in systems with up to N ∼ 120 sites [39]. The agreement is
noticeable. This shows the power of our method, which is
computationally much less expensive. However, we believe
that the results so far are not accurate enough in the region
near Jz/J⊥ = 1.

A characteristic of the phase diagram is that the region
of the Néel phase is very narrow for small Jz/J⊥ − 1. This
is expected, since at the point Jz/J⊥ − 1 = δ = 0, the effect
of a small increase in Jz opens a gap exponentially [31],
while an increase in δ opens a gap proportional to δ2/3 [44].

FIG. 3. Critical value of Jz/J⊥ − 1 at the Néel-dimer transition as
a function of δ (black triangles) and compared with previous results
(red circles) [39].

However, the detailed behavior of the boundary in this zone
is difficult to predict. Our value for the transition at Jz/J⊥ =
1.2, |δ| ∼ 5 × 10−4 is less than the above estimated error
1.5 × 10−3. Instead, the value that we obtain for Jz/J⊥ = 1.4,
|δ| = 8.17 × 10−3 (slightly smaller than that of Tzeng et al.)
is more reliable.

In Fig. 3 we display the results of Fig. 2 for Jz/J⊥ � 1.4
and δ > 0 using a log10 scale for both axis. Our results and
those of Tzeng et al. [39] suggest that approximately the
boundary for 1.4 � Jz/J⊥ � 2.4 (0.0082 � δ � 0.124) corre-
sponds to Jz/J⊥ − 1 ∼ δ0.46. Instead, the results of Ref. [27]
suggest Jz/J⊥ − 1 ∼ δ.

V. CONTOUR PLOTS OF THE PHASES

In Fig. 4 we show a contour plot of both α for Jz > J⊥.
The sharp transitions between the Néel and the dimer phases
are evident in αs but imperceptible in α↑. To understand this
behavior, let us analyze the change in both position indicators
as the system changes slowly from the point (δ, B/J⊥) =
(−1, 0) to (0, B/J⊥) with small positive B. The first point
corresponds to a perfectly dimerized phase with singlets at
the odd bonds. As discussed in Sec. III, this corresponds to
α↑ = π/2. Since the down spins in this phase are localized
at the same places as the up spins, their difference vanishes
and therefore αs = 0. As δ increases beyond the transition to
the Néel phase, the ground state is a mixture of the Néel and
anti-Néel states for small B. As a consequence, the spin up
continues to be mostly centered at the odd bonds. Near the
critical value of δ, only for large positive B the up spins move
to the right (increasing x j) occupying the even sites forming an
anti-Néel state with α↑ = π . Instead, αs jumps abruptly at the
transition for B = 0, since the difference between positions
of up and down electrons moves from 0 to the NN distance
as the system enters the Néel phase. When δ = 0 is reached
even for small positive B the anti-Néel phase is favored with
α↑ = αs = π .

Summarizing, in the displacement from (δ, B/J⊥) =
(−1, 0) to (0, 0+), one starts with α↑ = π/2 and αs = 0
reflecting the fact that both spins are centered at the even
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FIG. 4. αs (top) and α↑ (bottom) as a function of dimerization
parameter δ and staggered magnetic field for Jz/J⊥ = 2. C1 and C2
curves represent the pumping cycles used.

bonds, and at the end α↑ (αs) has increased by π/2 (π ) as
a consequence of the displacement of the spins up (down) by
a quarter of a unit cell to the right (left).

One can continue the evolution to a point (0.6,0), for exam-
ple, to the other dimerized phase, implying a displacement of
the spins another quarter of a unit cell in the same direction,
reaching the values α↑ = 3π/2 and αs = 2π ≡ 0 mod 2π .
Finally, one can close the circuit with any path with B < 0
with a total change of 2π in α↑, which means a quantized
transport of a spin up to the next unit cell to the right, and a to-
tal change of αs in 4π indicating that the spins down moved in
the opposite direction. In fact, all closed circuits that enclose
once the critical segment between critical points (−δc, 0) and
(δc, 0), without crossing it, in the same direction, are topo-
logically equivalent and lead to the same spin transport in an
adiabatic time cycle. This is also the case for a circuit studied
recently in which this critical segment is touched but not
crossed [27].

As examples, in Fig. 5 we show the change in αs and α↑
for pumping circuits defined by

δ(θ ) = −0.9 sin (θ )

B(θ ) = −B0 cos (θ ), (7)

FIG. 5. α↑ and αs as a function of the adiabatic parameter θ

through the pumping circuits defined by Eq. (7) for Jz/J⊥ = 2.
Dashed (full) lines correspond to C1 (C2).

as θ is increased adiabatically from 0 to 2π closing the circuit.
We have chosen B0/J⊥ = 0.9 (0.02) for the circuits C1 (C2)
indicated in Fig. 4.

For the circuit C1, the indicators change smoothly passing
through topologically protected points when θ is multiple
of π/2. Specifically for θ = 0, the system is at the point
(δ, B/J⊥) = (0,−0.9), where the ground state is the Néel
state plus fluctuations, with α↑ = 0 and αs = π , as described
in Sec. III. Increasing successively θ in π/2, the changes
in thermodynamic phase and the values of α↑ correspond
to those represented in Fig. 1 jumping to the next row: odd
dimers with α↑ = π/2 at (−0.9, 0), anti-Néel with α↑ = π at
(0,0.9), and even dimers with α↑ = π/2 at (0.9,0). At the end
of the cycle a spin up has been transported to the next unit cell,
corresponding to a total change in α↑ by 2π . The spin down
is displaced in the opposite direction with a total change of αs

by 4π .
For the circuit C2, the total spin transported and the values

of both α at the topologically protected points are the same
as for C1. There are, however, important differences at the
intermediate points. The small value of B0/J⊥ implies that
moderate values of |δ| dimerize the system more easily and
this fact is reflected in the values of both α. In addition,
there is a large slope in αs at the points where αs = π/2 and
αs = 3π/2. This is reminiscent of the jump in αs at the Néel-
dimer transition for B = 0 between αs = π and αs = 2π ≡ 0
mod 2π .

For Jz < J⊥, the contour plots are similar, but the segment
between critical points collapses to the origin. An example
is shown in Fig. 6 for α↑, which gives more information
than αs because the former is able to distinguish between
both dimer phases and between the Néel and anti-Néel states.
Adiabatic pump cycles that enclose the origin have the same
topological properties as the ones discussed above, and again
the contour plot allows us to predict the spin transport along a
time dependent path.

However, a time-dependent calculation in a circuit that
touches but does not cross the origin has shown recently that
quantized spin transport is lost in this case [27]. We believe
that the difference is that for Jz < J⊥, the gap is closed at
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FIG. 6. α↑ as a function of dimerization parameter δ and stag-
gered magnetic field for Jz = 0.

the origin, and pumping with finite velocity necessarily leads
to spin excitations losing the adiabatic condition. In fact,
oscillations in the transported spin indicate that this is the
case. In contrast in the Néel phase, the Néel and anti-Néel
states are separated from the rest by a finite gap [31]. One
might wonder if the quasidegeneracy between these two states
(degeneracy in the thermodynamic limit) could also affect
quantized pumping. However, the mixture between both states
decreases exponentially with system size, and one can ex-
pect that even crossing the segment between critical points
(−δc, 0) and (δc, 0) by a small amount does not spoil the quan-
tized pumping. Time-dependent calculations in the interacting
Rice-Mele model also obtained that the addition of an Ising
term (Jz) to the model stabilizes pumping (of charge in this
case) despite the quasidegeneracy of the ground state [16].

VI. SUMMARY AND DISCUSSION

We have used two position indicators α↑ and αs, to study
the XXZ ring with interactions with alternation proportional
to δ and staggered magnetic field B. The value of α↑ provides
information on the shift in the position of the spins ↑ under
changes in the parameters, while αs accounts for the differ-
ence in displacements between both spins.

For either δ = 0 or B = 0, both indicators become topo-
logical Z2 numbers protected by a reflection symmetry. For
B = 0 we have used αs to calculate the phase diagram of the
system, obtaining results that agree quantitatively with those
of one of the groups, which calculated the diagram before
[39], but with a smaller computational cost. The topological
indicators α↑ and αs provide complementary information on
the thermodynamic phases of the model.

We have calculated contour plots of both α↑ and αs in
the (δ, B/J⊥) plane, which permit us to predict the evolution
of the spin transport in adiabatic Thouless pump cycles. The
transported spin is quantized in the cycle and only the inter-
mediate values depend on the specific cycle for topologically
equivalent cycles. Again α↑ and αs provide complementary
information. Since experimentally the occupation numbers
in different sites are measured simultaneously [22], it is in
principle possible to observe differences in the behavior of
α↑ and αs for pumping circuits that pass near critical points
and for small number of particles, for which the entanglement
is larger.
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