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Using bosonization, which maps fermions coupled to a Z2 gauge field to a qubit system, we give a simple
form for the three-fermion nontrivial quantum cellular automaton (QCA) as realizing a phase depending on the
framing of flux loops. We relate this framing-dependent phase to a pump of eight copies of a p + ip state through
the system. We give a resolution of an apparent paradox, namely that the pump is a shallow depth circuit (albeit
with tails), while the QCA is nontrivial. We discuss also the pump of fewer copies of a p + ip state and describe
its action on topologically degenerate ground states. One consequence of our results is that a pump of n p + ip
states generated by a free Fermi evolution is a free fermion unitary characterized by a nontrivial winding number
n as a map from the third homotopy group of the Brilliouin Zone 3-torus to that of SU (Nb), where Nb is the
number of bands. Using our simplified form of the QCA, we give higher-dimensional generalizations that we
conjecture are also nontrivial QCAs, and we discuss the relation to Chern-Simons theory.
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I. INTRODUCTION

In recent years tools from quantum information theory
have shown to be useful in understanding and classifying
topological and symmetry-protected quantum phases of mat-
ter. One particularly important notion is that of local unitary
equivalence, with two states of a many-qubit Hilbert space
being equivalent if one can be obtained from the other, at least
approximately, by applying a shallow depth circuit of local
unitary operators. Here “shallow” means that the depth of the
circuit does not grow with system size in the thermodynamic
limit. This is an equivalence relation on short-range entangled
states and allows one to define phases; when the gates of the
circuit respect an underlying symmetry, the resulting phases
are symmetry protected. In particular, a symmetry-protected
topological (SPT) phase is nontrivial if it can be disentangled
into a symmetric tensor product state using a shallow depth
circuit but only at the expense of at least some of the gates in
the circuit being nonsymmetric.

A large class of SPT phases can be obtained by using the
group cohomology construction [1]. For these in-cohomology
phases, exact zero correlation length Hamiltonian models can
be written down explicitly, as can their corresponding dis-
entangling circuits. These circuits have the special property
that they are symmetric as unitary operators (despite some
of their gates not being symmetric). Soon after the discov-
ery of the in-cohomology SPT phases it became clear that
the cohomology construction does not capture all possible
SPT phases. One of the earliest examples of such a beyond-
cohomology SPT phase is that given by the three-fermion
Walker-Wang (3F WW) model, which defines a three-
dimensional bosonic SPT phase of time-reversal symmetry
[2]. This model is interesting because despite its seemingly
simple structure—it is a Pauli stabilizer Hamiltonian—the
construction of an explicit ground-state disentangler has
proved to be elusive, despite heuristic arguments showing

that such a shallow circuit disentangler should certainly
exist.

Despite this difficulty, it turns out that one can define an
automorphism of the local operator algebra that disentangles
the 3F WW Hamiltonian into that of a product state [3]. Such
an automorphism must be implemented by some unitary that
maps local operators to nearby local operators. However, it.
was shown in Ref. [3] that such a unitary cannot be a shallow
depth circuit; assuming otherwise would lead to a contra-
diction, namely the existence of a stand-alone commuting
projector model for the three-fermion topological order which
lives at the boundary of this phase [4]. Therefore, this unitary
is an example of a quantum cellular automaton (QCA): It is a
locality-preserving unitary that cannot be locally generated as
a shallow depth circuit.

Any two-dimensional realization of the three-fermion
topological order is necessarily chiral, i.e., has chiral transport
of energy along its edge [4]. One can construct an alter-
native boundary for the 3F WW model by condensing its
three-fermion topological order against that of a stand-alone
two-dimensional realization made out of ancilla quibits liv-
ing on the boundary (namely, one condenses bosons which
are bound states of the fermions in the two copies). This
alternative boundary has no topological order, but it is chiral.
Now the three-fermion QCA, or rather its inverse, has the
property that it creates a 3F WW model from a trivial product
state. Hence, in a certain sense, it pumps chirality out to the
boundary.

In this paper we make this idea of “pumping chirality”
more precise. First, we find a simple explicit form for the
3F QCA as a unitary operator.1 Namely, by building off the

1More precisely, the QCA is conjugation by this unitary, but for
brevity we will often say that a QCA is some unitary if it is realized
by conjugation by that unitary.
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simplified form of this 3F QCA introduced in Ref. [5], we
find another, circuit equivalent2 form of the 3F QCA whose
unitary action U is diagonalized by writing the 3d bosonic
spin Hilbert space as the Hilbert space of a fermion coupled
to a Z2 gauge field. Then any state |{ f }, {L}〉, where { f } is a
configuration of fermions and {L} a configuration of Z2 gauge
flux loops, is an eigenstate of U with eigenvalue (−1)framing(L),
where framing(L) is the framing3 of L. This uniquely defines
the action of the QCA. This exact description of the QCA
at the level of a unitary operator, rather than just an opaque
description as an algebra automorphism, is one of the contri-
butions of this paper.

Consider now a different unitary operator U ′ that creates
a bubble of eight copies of a p + ip state (coupled to the 3d
Z2 gauge field), pumps it through the entire 3d system, and
annihilates it. We explicitly construct such an operator below;
it can be thought of as a three-dimensional generalization of
the Thouless pump, except instead of a 0d charge pumped
across a 1d system, now a 2d chiral state is pumped across
a 3d system. This operator U ′ should be thought of as a
generalized symmetry, in the sense of the recent classification
of such generalized symmetry actions by gauged invertible
defects [6]. U ′ is interesting for our purposes because it seems
to have a similar action on the Hilbert space as the QCA U .
Namely, in the context of the pumping process defining U ′, a
configuration of Z2 gauge flux loops {L} can be viewed as a
braiding history of a magnetic flux particle; the sweeping pro-
cess then simply computes the braiding phase associated with
this configuration, and it is well known that in eight copies of
the p + ip state the magnetic flux particle is a fermion, so this
braiding phase should be (−1)framing(L) [4]. This is exactly the
same as the action of the QCA U , as we just discussed.

However, this results in an apparent paradox, since we
know that U ′, by virtue of its definition, is an approximate
shallow depth circuit, whereas the 3F QCA U cannot be a
such a circuit. We find that the resolution is the following: The
two operators only agree on the “no-fermion” subspace of the
Hilbert space. This is the subspace where all the fermion oc-
cupation numbers are 0, but the gauge flux configurations are
arbitrary. However, away from this “no-fermion” subspace, U
and U ′ are different. Indeed, whereas the 3F QCA U acts as
the identity on any configuration of fermions in the no flux
sector, we show that the 8(p + ip) pumping operator must act
nontrivially away from the “no-fermion” subspace.

The fact that pumping any number of p + ip states must
have a nontrivial action away from the “no-fermion” subspace
even while preserving the “no-fermion” subspace has a simple
free fermion interpretation that may be interesting in its own
right. Namely, in a fermionic lattice Hilbert space, the unitary

2That is, equivalent up to conjugation by some low-depth quantum
circuit.

3A framing is an assignment of 0 or 1 to framed curves (i.e., curves
with a choice of frame for normal vectors), which changes by 1
mod 2 when the frame is twisted by 2π . Note that we assign 0 or 1
rather than ±1, as some authors do. We use a particular assignment of
framing to curves, called the blackboard framing, which then assigns
0 or 1 to any given curve. The precise definition of framing for us is
given in Sec. IV A.

operator U p+ip that pumps a single copy of a p + ip state can
be constructed in a translationally invariant two-band model
and characterized by the fact that over the Brillouin zone the
unitaries U p+ip

�k , viewed as a map from T 3 to SU (2), has a
nontrivial winding number or degree (this relies on the fact
that π3[SU (2)] = Z). In particular, it cannot be the identity
operator, in contrast to the usual one-dimensional Thouless
pump. The nonzero quantized winding number also means
that U p+ip cannot be a shallow circuit of particle-number-
conserving fermions; however, we show that it is a shallow
circuit of Z2-conserved fermions and indeed such a circuit
just implements a pump of a p + ip state. This construction
answers a question posed in Ref. [7], where this winding
number was identified (see Eq. (4) in Ref. [7]) but no example
saturating it was given.

If we pump fewer than eight copies of a p + ip state, then
the gauge flux loop configuration L describes the braiding
history of a particle with some other statistics. In the case
of pumping a single copy of p + ip, a magnetic flux particle
behaves as a σ particle in the Ising TQFT and so is a non-
Abelian anyon. This is consistent with the fact that a magnetic
vortex in a two-dimensional p + ip state binds a zero mode.
In this case, the effect of braiding is more complicated, and
if flux loops link with each other, then the pump may transfer
charge from one to the other. However, even in the zero flux
state, the pump can still have a nontrivial effect if the ground
state of the system has a topological degeneracy, as we discuss
in Sec. II. Indeed, this gives a way to realize a non-Clifford
CCZ gate in a three-dimensional theory [6].

The rest of this paper is structured as follows. In Sec. II, we
begin with the case of vanishing gauge flux and the fermions
in the ground state of a trivial atomic insulator. We construct
a free fermion quasilocal Hermitian operator whose evolution
pumps a p + ip paired state across the system. Even though
the endpoint of this evolution is described by some unitary
operator that preserves the atomic insulator ground state, we
show that this unitary operator cannot be the identity and
is in fact characterized by a nontrivial winding number. We
then show that, in the presence of a dynamical Z f

2 (fermion
parity) gauge field, this operator implements a CCZ gate
on the topologically degenerate ground-state subspace of a
spatial 3-torus. In Sec. III, we consider the case where the
fermions are in the ground state, but there may be nonzero
gauge flux and consider pumping different numbers of copies
of p + ip states. In Sec. IV, we review the construction of the
3F QCA from Ref. [5] and find a simple expression for the
action of this QCA as a unitary operator. We also construct
an even simpler unitary which is circuit equivalent to it and
show explicitly that these unitaries trivialize in the presence
of fundamental fermions. In Sec. V, we construct another
QCA which squares exactly to our simplified 3F QCA; we
call this the “two semion QCA” because it disentangles two
copies of the {1, s} Walker-Wang model. We conjecture that
it is a simpler, circuit-equivalent version of the square of the
semion QCA constructed in Ref. [5]. In Appendix A, we
give an alternative proof that the 3F QCA trivializes with
fundamental fermions, with a particularly simple circuit. In
Appendix B and Appendix C we give the details of the free
fermion computations from Sec. II.
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II. PUMPING p + ip: A THREE-DIMENSIONAL
GENERALIZATION OF THE THOULESS PUMP

In this section, we consider a finite-time evolution gen-
erated by a free fermion quasilocal Hermitian operator that
pumps a p + ip state through a three-spatial-dimensional sys-
tem of fermions in a trivial product state on a lattice. By
quasilocal we mean that we will allow for exponentially de-
caying tails in the Hermitian generator of the evolution. This
is the continuous-time version of a shallow depth quantum
circuit of local unitaries. For simplicity we will first consider
a pump of a Chern insulator, which is easier to work with
because it conserves particle number. It is topologically equiv-
alent to a pump of two copies of p + ip. We work in reciprocal
space, where a particle-number-conserving free fermion uni-
tary can be described as a function from the Brilliouin zone
to finite-dimensional unitary matrices, �k → U�k . We will con-
struct a continuous path U�k (t ) from the identity [U�k (0) = 1]
to U�k (1) = U�k . We can then recover the finite-time evolution
by writing down the time-ordered exponential,

U�k (t ) = T exp

[
i
∫ t

0
dτ K�k (τ )

]
,

where

K�k (τ ) = −iU�k (τ )−1∂τU�k (τ )

is the Hermitian operator that generates the path.
The main conclusion of this section is that the operator

U�k cannot be the identity, despite the fact that it describes
the endpoint of the pumping process, when the Chern insu-
lators have all been annihilated.4 Indeed, this conclusion must
hold even if the pumping unitaries are not free fermion, i.e.,
even in the interacting setting. The argument is as follows.
Suppose an interacting evolution pumping p + ip results in
some many-body operator U . Truncate this evolution to a
finite region of space. This truncation of U creates a Chern
insulator on the boundary of this region, starting from a prod-
uct state. If U were the identity, then the truncated operator
would be identity in the bulk of the region. In other words,
we would have a quasi three-dimensional unitary operator
that prepares a Chern insulator from a product state. But this
is a contradiction, because it would give us a commuting
projector Hamiltonian for the Chern insulator, obtained by
conjugating the trivial commuting projector Hamiltonian for
the product state. Such commuting projector Hamiltonians for
chiral states are believed not to exist [4].

We will show that, in the free fermion setting, the nontrivi-
ality of U�k is encoded in a nontrivial winding number defined
by U�k . Specifically, U�k will define a map from the Brilliouin
zone 3-torus to SU (Nb), where Nb is the number of bands.
Since π3[SU (Nb)] = Z for n � 2, this map is characterized
by an integer winding number or degree. We will show that
pumping a Chern insulator corresponds to a winding number
of 2, whereas pumping a p + ip state corresponds to the min-
imal winding number of 1. We note that this winding number
was identified in Ref. [7], though a physical interpretation was

4This is in contrast to the ordinary one-dimensional Thouless
pump.

not given there. This invariant also appears in a different phys-
ical context, namely that of the anomalous Floquet-Anderson
insulator [8].

Our approach to demonstrating this correspondence is to
construct a particular U�k (t ) that pumps a chiral state and
verify that the endpoint U�k has the correct nonzero winding
number. Then we argue that any other such pumping process
must be homotopic to it and hence have the same winding
number. Because the map π3[SU (2)] → π3[SU (Nb)] induced
by inclusion is an isomorphism for all Nb � 2, we will without
loss of generality work with a two-band model. The explicit
U�k (t ) that we construct will only be continuous in �k and t , but
we expect that there is no obstruction to making it smooth in
both �k and t . In that case, K�k (τ ) will be quasilocal in real space
with at most exponentially decaying tails.

A. Nucleating a pair of ±1 Chern insulators

Let us first discuss a single Chern insulator in a two-
dimensional model with two bands, corresponding to a
“flavor” index α = 0, 1. We let X fl,Y fl, and Zfl be the Pauli
matrices corresponding to this flavor index, with Zfl = (−1)α ,
and let �k2d = (kx, ky) be the 2d reciprocal wave vector. Con-
sider the Hamiltonian:

HC.I. = cX (�k2d)X fl + cY (�k2d)Y fl + cZ (�k2d)Zfl.

In order for this to be a Hamiltonian for a Chern insu-
lator with Chern number ±1 we choose the coefficients
cX (�k2d), cY (�k2d), cZ (�k2d) such that (cX )2 + (cY )2 + (cZ )2 = 1
and such that the function �k2d → (cX , cY , cZ ), viewed as a
map from T 2 to S2, has winding number 1. In Appendix B
we explicitly write down cX (�k2d), cY (�k2d), cZ (�k2d).

Now consider a stack of two such two-dimensional models.
Then there is an additional “layer” index l = 0, 1, so there
are now four bands total, again in two spatial dimensions.
We can view the Hilbert space C4 over each �k2d as C2 ⊗ C2,
with the two tensor factors corresponding to the flavor and
layer indices α and l , respectively. In addition to the Pauli
algebra generated by X fl, Zfl we now also have the layer Pauli
algebra generated by X lay, Z lay, with Z lay = (−1)l . Consider
the Hamiltonian

Hpair = cX (�k2d)X fl + cY (�k2d)Z layY fl + cZ (�k2d)Zfl.

Since cX (�k2d)X fl ± cY (�k2d)Y fl + cZ (�k2d)Zfl is a Hamiltonian
with Chern number ±1, Hpair describes a Chern number +1
insulator on the layer l = 0 stacked with a Chern number
−1 Chern insulator on l = 1. There is no Chern number
obstruction to trivializing the Hamiltonian Hpair, and indeed
in Appendix B we construct a unitary U nucl(�k2d) with the
property that

U nucl†HpairU
nucl = Zfl.

The unitary U nucl thus “nucleates” a pair of Chern number
±1 Chern insulators from the trivial product ground state
of Zfl. Because U nucl(�k) is a map from T 2 (since it only
depends on �k2d) to SU (4), and π1[SU (4)] = π2[SU (4)] = 0,
it is homotopic to a constant (to retain exponential locality we
really want it to be homotopic to a constant through a path of
smooth maps, which we believe is possible but do not show
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explicitly). Hence U nucl(�k) is the endpoint of a quasilocal
unitary evolution that starts at the identity.

B. Pumping Chern insulators

We are now ready to construct the unitary that pumps a
Chern insulator through a trivial three-dimensional system of
fermions. Our model will be defined on a cubic lattice, with
lattice constant set to 1 for simplicity, initially with two bands
per unit cell. These will again be labeled with a “flavor” index
α = 0, 1. The ground state is defined by the trivial insula-
tor Hamiltonian Htriv = Zfl. Our unitary evolution will break
translational symmetry in the z direction down to twofold
translational symmetry, while retaining full translational sym-
metry in the x and y directions. This is because our pumping
process will nucleate Chern insulators on two-dimensional xy
layers, with the Chern number being ±1 according to the
parity of the z coordinate of the layer. The Chern insulators
will be nucleated in pairs having z coordinates (2n, 2n + 1)
and will be annihilated with the complementary pairing [i.e.,
(2n − 1, 2n)]. On a system with a boundary this results in
Chern insulator states left over at the boundaries, showing that
this process is indeed a Chern insulator pump. The breaking
of z translational symmetry results in a doubled unit cell, and
hence four total bands, which can be labeled according to
(α, l ), where l = 0, 1 labels the position in the unit cell (i.e.,
is the parity of the z coordinate) and will again be referred to
as the “layer” index.

This setup can be viewed as an infinite stack of the bilayers
of Sec. II A. We first nucleate identical pairs of ±1 Chern
number Chern insulators on all the bilayers of the stack. The
corresponding unitary operator is just U nucl, now viewed as a
function of the three-dimensional reciprocal lattice vector �k =
(kx, ky, kz ) but having no dependence on the kz coordinate. We
then annihilate complementary pairs of Chern insulators. The
operator U annih(�k) which does this can be constructed as the
conjugation by a translation by one lattice constant in the z
direction, in the original nondoubled unit cell, of an operator
that performs the annihilation on the same pairs of layers
as the nucleation. Viewed in terms of the doubled unit cell,
the translation by 1 is accomplished by swapping the layer
index and then translating one of the layers by 2 (i.e., by a
single doubled unit cell). On the other hand, the operator that
performs the annihilation can be taken to be the conjugate of
U nucl by the operator X lay, which swaps the layers.

The end result of the nucleation and annihilation process
is given by U (�k) = U annih(�k)U nucl(�k). The same arguments as
before show that U (�k) is the endpoint of a quasilocal unitary
evolution. In Appendix B we explicitly construct U annih(�k)
and U (�k). In particular, we show that U (�k) commutes with
Zfl and hence is block diagonal in flavor space:

U (�k) =
[
Uα=0(�k) 0

0 Uα=1(�k)

]
(1)

with Uα (�k) in SU (2). This is consistent with the fact that U (�k)
should preserve the ground state of the trivial Hamiltonian
Htriv = Zfl. We also show in Appendix B that the winding
number, or degree, associated with Uα : T 3 → SU (2) ∼ S3,

defined in Ref. [7] as

ν3(Uα ) =
∫

d�k
24π2

εi jlTr
{[

Uα (�k)−1∂kiUα (�k)
]

× [
Uα (�k)−1∂k jUα (�k)

][
Uα (�k)−1∂klUα (�k)

]}
,

is equal to ν3(Uα ) = (−1)α . Hence pumping a Chern insulator
does indeed correspond to a nontrivial unitary, with a nontriv-
ial winding number in one of the blocks. In the next subsection
we perform a particle-hole transformation that shows that this
process is equivalent to two identical copies of a process that
pumps a p + ip state, each of which having the same winding
number 1.

C. Unitaries with nontrivial winding number pump p + ip states

Let us now perform a particle-hole conjugation C only
on the bands α = 0, l = 0, 1. This is the antiunitary opera-
tor that performs aα=0,l (�k) ↔ a†

α=0,l (�k) but does nothing to

aα=1,l (�k), a†
α=1,l (�k), where aα,l (�k), a†

α,l (�k) are creation and

annihilation operators on Fock space. Conjugating U (�k) in
Eq. (1) by Cα=0 we obtain:

CU (�k)C =
[
Uα=0(�k) 0

0 U ∗
α=1(�k)

]
. (2)

Note that it is the α = 1 bands whose unitary gets com-
plex conjugated, since C acts like complex conjugation there,
whereas the unitary for the α = 0 bands is fixed because if
we write it as the exponential of i times a Hermitian operator,
then the Hermitian operator is negated by particle-hole conju-
gation, as is the factor of i. Equation (2) describes an SU (4)
unitary that is block diagonalized into two SU (2) unitaries of
the same winding number +1, since complex conjugation re-
verses the winding number. Furthermore, this unitary CU (�k)C
is the endpoint of a unitary evolution that pumps a Chern
insulator in the background of the completely empty state.
Since the SU (2) matrices in the two blocks have the same
winding number, we can perform a homotopy from one to the
other, which can be implemented by a unitary evolution in
one of the blocks; the end result is that we can assume the two
blocks are identical, Uα=0(�k) = U ∗

α=1(�k) for all �k.
Thus, CU (�k)C is the tensor product of two independent

identical unitaries acting on the α = 0 and α = 1 bands, re-
spectively. Let us now consider just one of these, say, Uα=0(�k),
on its own. Because it has a nonzero winding number, a
quantized invariant of particle-number-conserving unitaries,
we know that Uα=0(�k) is not a finite-time quasilocal unitary
evolution. However, if we allow all quadratic Hamiltonians,
including pairing terms, then Uα=0(�k) must be a finite-time
quasilocal unitary evolution. This is because otherwise it
would be a nontrivial free fermion QCA, which does not exist
in this dimension and symmetry class (d = 3, no symmetry
other than fermion parity conservation) [9].

The natural question then is What does Uα=0(�k) pump
when written as a finite-time quasilocal unitary evolution with
pairing? Since two identical copies of it pump a state topo-
logically equivalent to a Chern insulator, the only possibility
is that one copy pumps a p + ip state. This result is easily
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generalized to show that a free fermion unitary with winding
number ν pumps ν copies of a p + ip state.

D. Pumping a p + ip state induces a CCZ gate

In this subsection we turn to a general analysis of the
unitary evolution that pumps a p + ip state. Let us put our
3 + 1-dimensional lattice fermionic system, with a trivial
product state Hamiltonian, on a spatial 3-torus T 3 and gauge
the fermion parity symmetry, i.e., perform minimal coupling
to a Z f

2 gauge field. Specifically, we can take Nb fermions per
site �r on a cubic lattice, described by 2Nb Majorana modes
γ

j
�r , γ̄

j
�r , j = 1, . . . , Nb, as well as a Z2 gauge field on links

between nearest-neighbor sites �r, �r + μ̂, described by a qubit
acted on by Pauli operators X�r,μ, Z�r,μ. Here μ = 1, 2, 3 is a
spatial index and μ̂ the unit vector in the μ direction. The
trivial Hamiltonian can then be taken to be

H0 =
∑

�r

Nb∑
j=1

iJγ
j

�r γ̄
j

�r − J ′ ∑
�r,μ,ν

F�r,μ,ν, (3)

where F�r,μ,ν = Z�r,μZ�r,νZ�r+μ̂,νZ�r+ν̂,μ is the Z f
2 gauge flux in

the plaquette determined by �r, μ, ν. The second term in the
Hamiltonian above means that the Z f

2 gauge field has trivial
dynamics. There is also a Gauss law constraint,

Nb∏
j=1

(
iγ j

�r γ̄
j

�r
)∏

μ

X�r,μX�r−μ,μ = 1.

The combined system of fermions and gauge fields, together
with this Gauss law constraint, can be viewed as being built
out of bosonic spin degrees of freedom [4], as we will explic-
itly describe later.

We now consider a finite-time unitary evolution that pumps
a p + ip state through the system. This evolution can be
coupled to the Z f

2 gauge field and hence is some unitary
operator in the combined system. Specifically, if the evolution
in the fermionic sector of the Hilbert space is generated by a
quasilocal Hermitian operator K (which will generally have a
dependence on a parameter τ which we leave implicit), then K
can be minimally coupled to the Z f

2 gauge field in the standard
way. Namely, K can be decomposed as a linear combination
of local terms, each of the form

γ
j1

�r1
. . . γ

jk
�rk

γ̄
jk+1

�rk+1
. . . γ̄

j2n

�r2n
,

where {�r1, . . . , �r2n} lie in some region D of bounded size.
Then let

PD =
∏
�r∈D

(1 − F�r,μ,ν )

be the projector onto flat gauge field configurations (i.e., no
fluxes) in the region D, and let S be a set of links in D that
pairwise connect all the {�r1, . . . , �r2n} (i.e., S is a Z2-valued
1-chain with ∂S = {�r1, . . . , �r2n}). We then define the corre-
sponding gauged term in the Hamiltonian as

PD ·
(
γ

j1
�r1

. . . γ
jk

�rk
γ̄

jk+1

�rk+1
. . . γ̄

j2n

�r2n

)
·
⎡
⎣ ∏

(�r,μ)∈S

Z�r,μ

⎤
⎦ · PD.

Because we project onto flat gauge field configurations in
D, this definition is independent of the choice of S and just
amounts to the standard minimal coupling procedure. Note
that the Z f

2 gauge field is still nondynamical during this pump-
ing process, i.e., all terms in the Hamiltonian commute with
F�r,μ,ν . This allows us to consider the evolution independently
in each gauge flux sector.

Now the combined system of fermions and gauge fluxes
described by H0, viewed as a spin system, is topologically
ordered, with a ground-state degeneracy of 23 = 8. A basis
for the ground-state subspace can be taken by picking ±1 Z f

2
gauge field holonomies in the three directions of the torus.
Here the holonomy around a particular cycle is defined as
the product of Z�r,μ around that cycle. We claim that, in this
basis, up to a nonuniversal overall phase, the gauged evolution
implements a CCZ gate in the thermodynamic limit of large
system size. Specifically, if all three of the holonomies are
−1, then there is an additional π phase shift compared to all
the other cases, which all have the same phase as each other.
To say it differently, the system encodes three logical qubits,
and the pump induces a CCZ gate on these qubits, in a basis in
which the Z state of each logical qubit gives the corresponding
holonomy for one of three directions.

We can see this as follows. First, consider a Kitaev chain
with periodic boundary conditions. This state has the property
that the fermion parity of its ground state changes on imposing
−1 holonomy. Now consider a p + ip state on a cylinder.
Inserting a π flux through the cylinder, i.e., imposing −1
holonomy around the cylinder, results in a Majorana zero
mode at the ends of the cylinder, turning this dimensionally
reduced system into a Kitaev chain. Thus the fermionic parity
of a p + ip state on a 2-torus changes when −1 holonomy is
inserted along both directions of the torus.

Now let us return to our three-dimensional system. Let us
take a T 3 whose dimensions are large in lattice units. We will
discuss the gauged evolution in a continuum limit, so let us
parametrize the three directions along the T 3 by continuous
coordinates x, y, z, each periodic modulo 1. One way to view
the pumping process is as follows. First, the process creates
a small bubble of p + ip superconductor near some point,
say, (1/2, 1/2, 1/2). The bubble then expands in the x and y
directions until it gives two planes of p + ip superconductor,
one at z = 1/2 + ε and one at z = 1/2 − ε for some small
ε (but still large compared to the lattice scale). The planes
are oppositely oriented; equivalently, one may say they are
oriented the same way but one plane is p + ip and one plane is
p − ip. Now, if the holonomies in both x and y directions are
equal to −1, then each plane has odd fermion parity by the
discussion above; otherwise, they have even fermion parity.
Finally, move the upper plane further upwards, increasing its
z coordinate, until it annihilates against the lower plane from
below. An additional π phase shift is induced if the plane has
odd fermion parity and if the z holonomy is −1, since this
is then effectively a Z f

2 charge being taken around a cycle of
nontrivial holonomy. Hence, the claim follows.

We can also understand this from a continuum field the-
ory point of view, as follows. In d spatial dimensions (here,
d = 3), we can pump some system S with d − 1 spatial di-
mensions. The pump then sweeps out some d-dimensional
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volume. Since the system S has d − 1 spatial dimensions,
its Euclidean path integral is d dimensional, and the phase
induced is given by this Euclidean path integral in the back-
ground of the given gauge field. This is a general principle
valid for pumping other theories coupled to a gauge field.

To compute this phase, we need the effective action for a
p + ip superconductor coupled to a gauge field. Now, because
a p + ip superconductor is a chiral invertible state and thus has
a nontrivial thermal Hall response, its corresponding effective
action contains geometric terms that depend on the spacetime
curvature [10]. To avoid these, it is convenient to introduce
a second state, namely a p − ip superconductor, that cancels
this thermal Hall response but is not coupled to the gauge
field. That is, on each bubble we have two decoupled systems,
one p + ip and one p − ip. There are thus two individual Z2

symmetries that are preserved. We introduce a gauge field for
only one of these, namely the one associated to p + ip. Note
that the diagonal combination is the overall fermion parity,
which is not gauged, so we should view this as a pump of a
2d fermionic SPT phase of a unitary Z2 symmetry; such SPT
phases have a Z8 classification [11]. The effective action in
this case depends on the Rokhlin invariant, a mod 16 invariant
on three-manifolds with spin structure [12]. With background
spin structure α, and gauge field x, the effective action gives
a phase π [R(α + x) − R(α)/8] [13,14]. This difference of
Rokhlin invariants is 0 mod 8 [15], so the effective action
gives a phase 0 or π . In the case of a three torus, the difference
of Rokhlin invariants gives the CCZ gate.

The fact that pumping a p + ip state gives a CCZ gate
on a three torus can also be verified by an explicit compu-
tation, using a free fermion form of the unitary circuit that
pumps p + ip. This free fermion unitary circuit can be made
translationally invariant, so the computation ends up taking
place in some (particle-hole symmetric) band structure over a
Brilliouin zone. This computation is done in Appendix C.

III. PUMPING WITH GAUGE FLUX AND FERMIONS
IN GROUND STATE

We now consider the case of pumping k copies of p + ip,
for some integer k, in a state with nonvanishing gauge flux,
but with the fermions in the ground state of the trivial product
state Hamiltonian H0 [see Eq. (3)]. This just means that the
fermions are in the zero occupation state. We consider k =
1, 2, 4, 8, but our results for these respective values of k will
apply to others that are equal to them modulo 2k.

One difficulty in analyzing such pumps is the inherent
ambiguities in defining them. For example, two pumps may
differ by a local quantum circuit which does not itself pump
any chirality. Defining a pump as an adiabatic evolution of
some Hamiltonian still leaves open the precise choice of adi-
abatic path. However, we will argue that regardless of how
these choices are made, for k = 1, 2, the pump process will
inevitably produce some excitations in the fermionic sector of
the Hilbert space at its endpoint. Furthermore, we will argue
that for k = 4, 8 it is possible to define the pump in some
way so that the fermionic state is not excited if it starts in
the zero-fermion occupation state.

For k = 1 we have a single p + ip state. A vortex in
a p + ip state binds a Majorana zero mode. To get some

intuition for the implications of this fact, consider first a
simple geometry where there is a circular gauge flux, with
the circle sitting in the xz plane. If we orient the p + ip state
parallel to the xy plane and pump it in the z direction, then
the corresponding braiding history describes creating a pair
of Majorana zero modes and then annihilating them. In this
case the overall fermion parity of these two Majorana modes
is clearly conserved, and there is no obstruction to having all
the fermions remaining in the zero-fermion occupation state
at the end of the process. However, consider now a more
complicated gauge flux geometry, consisting of two linked
loops. The corresponding braiding history will then describe
creating two pairs of Majorana modes, braiding one member
of one pair with another member of the second pair and then
annihilating the pairs. In this case, the overall fermionic parity
is preserved, as it must be, but we may create two fermions,
one on each loop, when we do the annihilation. Note that it
is possible to unambiguously define the parity near a loop, so
long as the fermions away from the loops stay in their ground
state. This possible creation of fermions will be a general
feature of any pump for k = 1.

For k = 2, the flux lines describe the braiding history of
anyons in U (1)4 Chern-Simons theory [4]. This is an Abelian
theory with Z4 fusion rules. Label the anyons by 0,1,2,3,
with the vortices corresponding to either 1 or 3, with 0
being the identity particle and 2 being the fermion. Even
though the theory is Abelian, we argue that it is still im-
possible, in general, to define the pump while remaining in
the zero-fermion occupation state. This is because whether a
gauge flux loop represents a 1 or a 3 particle depends on a
choice of orientation along the loop, since these two anyons
are each others’ antiparticles. However, it is impossible to use
only local information to give a consistent orientation to an
a priori unoriented loop. Hence, we will inevitably have flux
configurations which describe fusing two 1 particles into a 2
particle; the 2 particle is the emergent fermion.

For k = 4, we U (1)2 × U (1)2 Chern-Simons theory [4],
which has Z2 × Z2 fusion rules. Namely, the anyons can be
parametrized as {1, s1} × {1, s2}, where s1, s2 are semions and
f = s1s2 is the emergent fermion. The flux lines describe the
braiding history of either s1 or s2 = s1 f particles. If we choose
them all to be s1, which we can do locally, since both s1 and
s2 are their own antiparticles, then this keeps the fermions in
their zero occupation state.

Finally, for k = 8, the theory again has Z2 × Z2 fusion
rules and is the SO(8)1 Chern-Simons theory, also known as
the three-fermion theory [4]. The fusion group of the anyons
is {1, e} × {1, m}, where e, m are both fermions. The flux lines
describe the braiding history of m particles, while f = em is
the emergent fermion.

IV. SIMPLIFIED THREE-FERMION QCA

We now turn to nontrivial QCA, which are locality preserv-
ing unitaries which are not local unitary evolutions. We will
construct QCA which have the same action on the Z f

2 gauge
field fluxes as the k = 4 and k = 8 local unitary evolutions
discussed in Sec. III but which act trivially on the fermions.
This is in contrast to the local unitary evolutions discussed
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FIG. 1. Definition of fermion string operators Ũe.

above, which have a nontrivial winding number characterizing
their action on the fermion degrees of freedom.

A. Review of {1, f } Walker-Wang model

In this section we again consider fermions in three spatial
dimensions, but this time we couple them to a dynamical
Z f

2 (fermion parity) gauge field. The resulting Hilbert space
is bosonic and may be explicitly described as the Hilbert
space of the Walker-Wang model based on the premodular
category {1, f }, where f is a fermion. Concretely, this is the
Hilbert space of a cubic lattice model, with periodic boundary
conditions in x, y, z, with one qubit per edge e, acted on
by the Pauli algebra generated by Xe, Ze. The Hamiltonian
of the {1, f } Walker-Wang model is given by H{1, f } WW =
−∑

v Av −∑
p Bp, where Av is the vertex term Av ≡ ∏

e∼v Ze

and Bp the plaquette term Bp ≡ ∏
e∈∂ p Ũe. Here Ũe are short

fermionic string operators and are defined in Fig. 1. We also
define fermionic string operators associated to a path of edges
by Ũpath ≡ ∏

e∈path Ũe, with the sign convention that all of the
Pauli Z operators act before any of the Pauli X ’s. This notation
and convention is identical to that of Ref. [5]; we discuss the
relation between our QCA and that of Ref. [5] below. We
note that one can view the Hilbert space of this spin model
as the Hilbert space of a fermion coupled to a Z f

2 gauge
field, and under this interpretation the short string operators
are precisely fermionic hopping operators. We will not need
the explicit dictionary between the fermionic and bosonic
operators in this work, but we encourage the interested reader
to consult Ref. [16] for more details.

We will not work with the Hamiltonian of the {1, f }
Walker-Wang model directly. Rather, its purpose is to pro-
vide a convenient orthonormal basis of states for the Hilbert
space. This basis is parametrized by specifying the locations
of the fermion excitations and the magnetic fluxes. Specifi-
cally, we consider the vertex terms Av and the plaquette terms
Bp, together with three homologically nontrivial “holonomy-
detecting” string operators Hi ≡ ∏

e∈path i Ũe, where path i is
a fixed, homologically nontrivial path in the direction i =
x, y, z. As is known from the study of the {1, f } Walker-
Wang model, or from the bosonization duality in Ref. [16],
specifying the eigenvalues ±1 of the operators {Av, Bp, Hi}
uniquely determines a state in Hilbert space, up to phase. The
eigenvalues of Bp are constrained so that the −1 eigenvalues
form closed loops of plaquettes; the eigenvalues of Av and
Hi are unconstrained. Informally, we may say that we can
specify a state uniquely by specifying the locations of the
fermion excitations, the magnetic flux lines, and the nontrivial
holonomies.

We will also need the following property of the {1, f }
Walker-Wang Hamiltonian. Let |ψ0〉 be the ground state of

H{1, f } WW with trivial holonomies in all three directions. Let us
view this ground state in the basis that diagonalizes {Ze}. This
is the electric flux line basis, and it is known that |ψ0〉 is, up
to normalization, a superposition of all closed, homologically
trivial electric flux loop configurations C, weighted by a sign
(−1)framing(C). Here the framing of a loop configuration C is
defined as follows. We translate C by (− 1

2 ,− 1
2 ,− 1

2 ) to obtain
a copy of C, denoted C′, on the dual lattice. We then compute
the modulo 2 linking number of C and C′ by counting the
parity of the number of times C crosses C′ when the whole
picture is projected on a plane.

This (−1)framing(C) amplitude is just a reflection of the
fact that, in the {1, f } Walker-Wang model, the electric flux
lines are to be viewed as 2 + 1-dimensional worldlines of
the fermion f . Note that based on our choice of |ψ0〉, C
is homologically trivial. However, the above definition of
(−1)framing(C) is well defined even for homologically nontrivial
C. One consequence of the above fact is the following. Let C
be a closed loop configuration. Then

ŨC |ψ0〉 = (−1)framing(C)|ψ0〉. (4)

More generally, this is true for any state with a flat gauge
field and trivial holonomy (i.e., no magnetic fluxes). This
is because this space of states is dual to fermions by the
bosonization duality in Ref. [16], and such states can be built
up by acting with fermionic creation operators on the ground
state; the claim can then be verified by the Majorana commu-
tation relations.

For an arbitrary eigenstate |ψ〉 of the vertex, plaquette,
and holonomy operators, we have the following more general
formula:

ŨC |ψ〉 = (−1)link(C,L)(−1)framing(C)|ψ〉, (5)

where L is the magnetic flux line configuration associated
to |ψ〉. The braiding phase (−1)link(C,L) in fact also depends
on the holonomy eigenvalues. An easy way to see this is to
note that the information in L and the holonomy eigenvalues
associated to three specific paths generating π1(T 3) can alter-
natively be packaged as an assignment of a homology class of
2d membranes M with ∂M = L. We then have

(−1)link(C,L) = (−1)int(C,M ).

For conciseness we will, however, stay with the notation
(−1)link(C,L) for the braiding phase.

B. Definition of locality preserving unitary Uframing

We now define a locality preserving unitary Uframing, which
we later show is stably equivalent to the nontrivial three-
fermion QCA. Uframing is diagonal in the basis of eigenvectors
of Av, Bp, Hi discussed above, with eigenvalue ±1. Specifi-
cally, the eigenvalue is defined to be (−1)framing(L), where L is
the loop configuration of magnetic fluxes defined by the −1
eigenvalues of Bp. Note that L lives on the dual lattice, but we
may still use the definition of framing above, just shifted by
( 1

2 , 1
2 , 1

2 ).
There are several ways to see that Uframing, so defined, is

locality preserving. Let us consider first a direct argument. Let
O be some operator supported on some ball B. We describe the
magnetic flux L by two pieces of data, the flux within O(1)
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distance from B, and the flux further away; these two pieces
of data are subject to a constraint of course as the flux lines
are closed. The operator O commutes with the second piece
of data but may change the first piece. Crucially, while the
framing of the magnetic flux L cannot be computed just from
the first piece of data, the change in the framing can be and so
indeed Uframing is locality preserving.

An indirect way to see this is from the fact that on
introducing ancilla fermions, Uframing can be written as a shal-
low depth circuit of local unitaries that tunnel these ancilla
fermions along the magnetic flux loops, picking up a sign of
(−1)framing(L). More precisely, this can be done by introducing
a second copy of the {1, f } Walker-Wang Hilbert space on
the dual lattice and defining a shallow depth circuit U ′ on the
tensor product of these two by acting with Ũ anc

L in the ancilla
copy conditioned by the magnetic flux configuration L in the
original copy:

U ′ =
∑

L

PL ⊗ Ũ anc
L .

Here PL projects onto the subspace of states with magnetic
flux loops along L, and Ũ anc

L is the closed string operator of
ancilla fermions. Note that this definition makes sense since
the magnetic loops L and the ancilla fermion tunneling opera-
tors both live on the dual lattice.

A standard argument shows that U ′ is indeed a shallow
depth circuit as follows. We pick an n-coloring of the edges
of the dual lattice such that no two edges sharing a vertex are
the same color for some finite n.5 We then build up ŨL by
acting sequentially with the product of Ũe for edges e in L with
color i, for i = 1, . . . n. To ensure that all the Z’s act before
the X ’s, we insert extra signs when this is not the case: These
signs are associated to endpoints of the edges and are locally
determined from the coloring of all the other edges ending at
those endpoints, as well as the configuration L. Namely, when
acting with Ũe for e with color i, we act with an additional
factor of −1 for each edge e′ adjoining e at either vertex
satisfying the conditions (1) the color of e′ is i′ < i and (2)
there is a Pauli Z in Ũe acting on edge e′.

Now let us see why U ′ being a shallow depth cir-
cuit implies that Uframing is locality preserving. For any
state |ψanc〉 of the ancilla Walker-Wang model in the no
magnetic flux and trivial holonomy subspace, we have
by (4) U ′|χ〉|ψanc〉 = (−1)framing(L(|χ〉))|χ〉|ψanc〉, so that
U ′|χ〉|ψanc〉 = Uframing|χ〉|ψanc〉 for all |χ〉. This means that
for any two local well-separated operators A and B in
the original system, (UframingAU −1

framing)|ψanc〉〈ψanc| commutes

with B|ψanc〉〈ψanc|, which implies that UframingAU −1
framing com-

mutes with B, which in turn implies that Uframing is locality
preserving.

Constraining the ancilla Walker-Wang model to this sub-
space with trivial holonomy and no magnetic fluxes is
equivalent to tensoring with fundamental fermions. So the

5One way to do this is to consider the coordinates (x, y, z) of the
center of each edge, which are all in Z/2, and assign a different color
to (x mod 2, y mod 2, z mod 2). This requires at most n = 43 =
64 colors, although more efficient schemes are certainly possible.

statement that U ′ is a shallow depth circuit is equivalent to
saying that Uframing trivializes in the presence of fundamental
fermions. In the next subsection, we show that Uframing is
circuit equivalent to the three-fermion QCA, implying that
that QCA trivializes in the presence of fundamental fermions
as well, meaning that on tensoring the Hilbert space with
additional ancilla fermions, the product of that QCA with the
identity on those additional fermions is equivalent to conjuga-
tion by a circuit. We give an alternative, more direct, proof of
this in Appendix A.

C. Uframing is circuit equivalent to the nontrivial
three-fermion QCA

We will now show that the locality preserving unitary
Uframing is circuit equivalent to the nontrivial three-fermion
QCA. We will actually show this for the operator

Ulink ≡ U ′(Uframing ⊗ 1anc),

which is in the same QCA equivalence class as Uframing. Note
that now we do not constrain the ancilla Walker-Wang model
to be in the trivial holonomy subspace.

The operator Ulink has a simple interpretation in the electric
charge and magnetic loop basis. Namely, when acting on a
state |χ〉|χ anc〉, with |χ〉 and |χ anc〉 having magnetic loop
configurations L and Lanc, respectively, it gives a factor of
(−1)link(L,Lanc ). This arises simply from the fact that U ′ tunnels
ancilla fermions along L, and these pick up the usual Berry
phase from braiding with ancilla magnetic fluxes Lanc, in
addition to the factor of (−1)framing(L) due to the fermionic
nature of the ancilla gauge charges; see Eq. (5). The additional
factor of (−1)framing(L) in the definition of Uframing then results
in Ulink acting as (−1)link(L,Lanc ).

Thus we just have to show that Ulink is circuit equivalent
to the three-fermion QCA. To do this, we show that, up
to a shallow depth circuit, this operator is the same as the
three-fermion locality preserving unitary α̃3F constructed in
Ref. [5]. α̃3F is defined through its action on Pauli Xi and Zi

operators in two copies i = 1, 2 of the {1, f } Walker-Wang
Hilbert space, illustrated in Figs. 7 and 8 of Ref. [5]. In our
notation i = 1, 2 correspond to the original system and the
ancilla, respectively. We will refer to an operator acting on
system i as an “operator of type i,” and similarly we will refer
to “charge of type i” or “flux of type i” if they correspond to
copy i.

We first note that the orthonormal basis defined by the
location of fermions and magnetic fluxes of both types, as
well as their holonomies, is an eigenbasis of α̃3F . To see
this it is sufficient to show that the vertex, plaquette, and
long fermionic string operators are all preserved by α̃3F . This
follows by inspection of Figs. 7 and 8 of Ref. [5]; for the
plaquette term this is also explicitly verified in Ref. [5]. In
particular this means that α̃3F acts as the identity on the
ground-state subspace.

All that is left is computing the eigenvalue ±1 of α̃3F

on such a basis state. Now any such state can be built from
a ground state of the two {1, f } WW models by applying
open membrane operators to create the flux loops and string
operators to create the fermionic point charges. So we just
need to conjugate all these operators by α̃3F . We build up the

235142-8



PUMPING CHIRALITY IN THREE DIMENSIONS PHYSICAL REVIEW B 109, 235142 (2024)

state step by step, starting with the flux excitations. Now one
thing we can explicitly verify using Figs. 7 and 8 of Ref. [5]
is that conjugating a membrane operator of type 1 gives that
same membrane operator times a string operator that tunnels
a charge of type 2 along its boundary and vice versa. Thus,
every time we put in a flux, we pick up a sign if there is an odd
linking number of that flux with the fluxes of the other type
that are already there, and an additional sign corresponding
to the framing of the flux. All together, we get a sign corre-
sponding to the mod 2 linking number of the configuration of
type-1 and -2 fluxes and signs corresponding to the framing
of type-1 and type-2 fluxes. However, by multiplying by the
operator U ′ and its partner under the exchange of the original
system and the ancilla, we can get rid of the framing signs,
leaving us with just the linking sign.

Now let us deal with the charges, i.e., violations of the
vertex term. Any such charge configuration can be created by
acting with open string operators. Conjugating such an open
string operator by α̃3F results in that same string operator
multiplied by some closed loop operator decorations of the
other type near the endpoints. Since closed string operators
are invariant under α̃3F , these decorations depend only on the
endpoint vertex and nothing else. Thus, the contribution of the
charges to the eigenvalue is equal to the product, over all occu-
pied vertices, of these decorations acting on the magnetic loop
configuration. We do not need to work out this contribution in
detail since it is manifestly a shallow depth circuit.

We have thus shown that Uframing, Ulink, and α̃3F are all
circuit equivalent.

D. Action of Ulink and Uframing on the trivial product state

It is interesting to also directly examine the action of Ulink

and Uframing on the trivial product state. In this section we will
use the subscripts i = 1, 2 to refer to the original and ancilla
systems, respectively. The trivial product state |ψprod〉 is then
the one with Zi,e = 1 for all edges e and i = 1, 2. We will
directly check that Ulink produces the ground state of the three-
fermion Walker-Wang model in the electric line basis, and we
will also make some comments about the action of Uframing on
the trivial product state.

The trivial product state |ψprod〉, corresponding to all elec-
tric fluxes being confined, is an equal amplitude superposition
of all magnetic flux loop configurations:

|ψprod〉 = C
∏
i,e

(
1 + Zi,e

2

)
|ψ0,0〉 (6)

up to some normalization constant C, where |ψ0,0〉 is the
tensor product of the Walker Wang ground states in i = 1, 2,
say, in the trivial holonomy sector. Expanding out the above
product, each term corresponds to some collection of edges
for copy 1 and for copy 2. It will be useful to work in the
dual picture, where we have a collection of dual plaquettes
for both copies. These dual plaquettes form some membrane
Mi with the two magnetic flux configurations corresponding to
the ∂Mi. Since by Gauss’s law |ψ0,0〉 is a +1 eigenvalue eigen-
state of all such terms corresponding to closed, homologically

trivial Mi, we may rewrite the above equation as

|ψprod〉 = C′ ∑
{Mi}

ZM1 ZM2 |ψ0,0〉, (7)

where C′ is some other constant and ZMi is shorthand for the
product of all Pauli Z operators making up the membrane
Mi. The sum is taken over all homology classes of Mi (the
equivalence relation is that Mi is equivalent to M ′

i if their
union is closed and homologically trivial). The fact that we are
summing over homology classes of membranes, rather than
membranes themselves, is consistent with the fact that we are
not directly accessing the Z2 vector potential as a local degree
of freedom. Thus

Ulink|ψprod〉 = C′ ∑
{Mi}

(−1)int(M1,∂M2 )ZM1 ZM2 |ψ0,0〉. (8)

We now want to express this state in the electric line basis.
Note that |ψ0,0〉 is a superposition of all closed electric loop
configurations E1, E2 in both copies, weighted by the product
of their framing signs. Thus, a state of the form ZM1 ZM2 |ψ0,0〉
is also a superposition of all closed electric loop configura-
tions, but in addition to the framing signs there is also a factor
of (−1)int(M1,E1 )(−1)int(M2,E2 ). Inserting this into Eq. (8) we
obtain:

〈{vi,e}|Ulink|ψprod〉
= C′′ ∑

wi,e

(−1)int(w1,∂w2 )+int(w1,v1 )+int(w2,v2 )+framing(v1 )+framing(v2 ).

(9)

Here {vi,e = 0, 1} define the closed electric loop config-
urations Ei: vi,e = 1 corresponds to Zi,e = −1. The sum
on {wi,e = 0, 1} is a sum over all homology classes of
membranes (with boundary) with the equivalence relation
described above; for each such equivalence class, we pick
a specific membrane M represented by wi,e = 1 for all the
edges defining M. Alternatively, we may simply sum over
all possible {wi,e = 0, 1}, since this just introduces an extra
overall multiplicative factor equal to the number of membrane
configurations in each equivalence class (note that this is
independent of the equivalence class). For homologically non-
trivial vi,e we immediately see that the sum in Eq. (9) is 0; for
homologically trivial vi,e we can perform the sum by noting
that the intersection is a Z2 quadratic form and completing
the square. Specifically, shifting wi,e → wi,e + yi,e, we get

int(w1, ∂w2) → int(w1, ∂w2) + int(y1, ∂w2)

+ int(w1, ∂y2) + int(y1, ∂y2)

= int(w1, ∂w2) + int(w2, ∂y1)

+ int(w1, ∂y2) + int(y1, ∂y2),

so choosing yi such that ∂yi,e = vi,e we see that the terms
linear in wi in the exponent of Eq. (9) are eliminated, and we
obtain

〈{vi,e}|Ulink|ψprod〉
= C′′ ∑

wi,e

(−1)int(w1,∂w2 )+int(y1,∂y2 )+framing(v1 )+framing(v2 ),

(10)
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= C′′ ∑
wi,e

(−1)int(w1,∂w2 )+link(v1,∂v2 )+framing(v1 )+framing(v2 ),

(11)

= C′′′(−1)link(v1,∂v2 )+framing(v1 )+framing(v2 ). (12)

Thus we see that the amplitude in the electric line basis con-
sists of factors of (−1)framing(wi ), which ensure that i = 1, 2 are
both fermions, as well as a factor of (−1)link(v1,∂v2 ), which en-
sures that the two fermions braid nontrivially with each other
(which means also that their fusion product is a fermion).
This is precisely the braiding amplitude of the three-fermion
theory or the ground-state amplitude of the corresponding
Walker-Wang model.

Now let us use the same formalism to determine the electric
basis amplitudes of Uframing|ψpr〉. This calculation involves
only a single copy of the {1, f } Walker-Wang Hilbert space,
so there is no more index i. The same arguments as above lead
to the expression

〈{ve}|Uframing|ψpr〉 = C′′ ∑
we

(−1)framing(∂w)+int(w,v)+framing(v).

(13)

Now we can write (−1)framing(∂w) = (−1)int(w,∂w), where be-
cause w and ∂w now live on the same lattice we define the
intersection by first translating w by ( 1

2 , 1
2 , 1

2 ). Shifting the
variable w → w + y now results in

int(w, ∂w) → int(w, ∂w) + int(w, D(∂y)) + framing(∂y),

where D acts on closed homologically trivial 1-chains z by
“doubling” them. That is, D(z) = z + T (z), where T is the
translation in the (1,1,1) direction.

Now let us assume that the dimensions of the 3-torus are all
odd and relatively prime. Then we claim that D is invertible
on closed homologically trivial 1-chains. To see this, note that
the kernel of D consists of z that are translationally invariant
in the (1,1,1) direction. Because the dimensions of the torus
are relatively prime, this means that for each type of link
(x, y, z), they must all be occupied or all unoccupied. Let us
focus first on the x links. If they are all occupied, then all the
homologically nontrivial lines in the x direction are occupied.
But the number of these lines is the product of the y and z
dimensions of the torus, which is odd. This is a homologically
nontrivial configuration, and hence not allowed. Similarly the
links in the y and z directions cannot be occupied, so the kernel
consists of just the empty configuration, i.e., D is invertible.

This means that we can choose y such that ∂y = D−1(v),
which cancels the linear term and results in

〈{ve}|Uframing|ψpr〉 = C′′′(−1)framing(D−1(v))+framing(v). (14)

Unfortunately there does not seem to be a simple topological
interpretation for framing[D−1(v)]. Indeed, even for simple
short closed 1-cocycles, the application of D−1 yields compli-
cated nearly space-filling curves.

V. OUTLOOK: TWO SEMION QCA
AND HIGHER DMENSIONS

A. Two semion QCA

We have given a particularly simple form of the three-
fermion QCA as conjugation by Uframing, up to a circuit, or
alternatively as conjugation by Ulink. The calculation of Ap-
pendix A suggests an interesting way to think about why these
QCAs are nontrivial. Namely “they would be trivial if we
had access to the gauge fields, but we do not.” For example,
suppose we had two bosonic Z2 gauge theories on interpen-
etrating lattices. Each theory has qubit degrees of freedom
on links of some lattice, with the Pauli Z operator on a link
called a “gauge field,” and the product of gauge fields around
a link being called a “gauge flux.” Then, a unitary given by
(−1) raised to the power of the linking of the two gauge
flux configurations is a circuit, as this is equivalent to (−1)
raised to the power of the intersection of type-1 gauge fields
with type-2 gauge fluxes or vice versa. This gives us a circuit
representation, indeed as a product of controlled-Z gates.

However, the individual gates in this circuit representation
do not respect gauge invariance, i.e., they do not commute
with vertex operators which are products of Pauli X on edges
incident to a vertex. Indeed, any way to write (−1)linking as a
circuit with gauge-invariant gates should immediately give a
way to write Ulink for the bosonized fermionic gauge theory as
a circuit also, so if indeed conjugation by Ulink is a nontrivial
QCA, then conjugation by (−1)linking for the bosonic gauge
theory is nontrivial as a 1-form symmetry-protected QCA, i.e.,
it has no representation as a shallow depth circuit if we require
that the gates respect gauge invariance.

In our case, with the Walker-Wang model, we do not im-
pose any such gauge invariance requirement on the circuit, but
the gauge fluxes are not products of some set of “gauge fields”
which commute with each other; rather, bosonization means
that the operators we have access to in the qubit theory are
products of gauge fields times Majorana hopping operators,
and these operators do not commute with each other. So, this
has a similar effect to imposing gauge invariance.

Given any QCA for a bosonic gauge theory protected by
1-form symmetry, then it is natural to define analogous QCAs
for the gauge fields arising from bosonization. For example,
consider the unitary Usemion (on a single copy of the bosonized
theory, i.e., a single copy of the {1, f } Walker-Wang model)
which multiplies any configuration of Z2 gauge flux lines L by
the braid amplitude for a set of semionic world lines following
L. This is a local QCA by roughly the same argument as the
“direct argument” in Sec. IV B: Under a local change in flux,
the change in the braid amplitude can be computed locally.

The operator Usemion acts on a bosonic Hilbert space which
we interpret as the Hilbert space of the {1, f } Walker-Wang
model. Let us examine the action of Usemion on the trivial
product state where all the electric f lines are confined. Given
the complicated nature of the same state under the action
of Uframing, as discussed in Sec. IV D, we anticipate that the
answer will be similarly unenlightening here. However, just
as in the case of Uframing, the situation simplifies when we in-
troduce two copies of the {1, f } Walker-Wang model. Indeed,
we will see that in this situation (1 ⊗ Usemion)Ulink produces
the {1, s̄} × {1, s̄} Walker-Wang ground state when acting on
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a trivial product state. Here s has topological spin i and s̄ has
topological spin −i. Since Ulink is, up to a circuit, just Uframing,
this means that, again up to a circuit, (1 ⊗ Usemion) produces
the {1, s} × {1, s} Walker-Wang ground state.

To see that (1 ⊗ Usemion)Ulink produces the {1, s̄} × {1, s̄}
Walker-Wang ground state when acting on a trivial product
state |ψ0,0〉, we first note that Ulink|ψ0,0〉 is a superposi-
tion of tensor products of all states where the electric flux
configuration in copy 1 is identified with the magnetic flux
configuration in copy 2, weighted by (−1)framing. Acting with
Usemion on the second copy turns those magnetic fluxes—and
hence the electric fluxes of type 1—into semions. Expressing
everything in the electric flux basis, we see that the electric
fluxes of type 1 are semions, those of type 2 are fermions, and
they have mutual braiding. This means that the bound state of
the type-1 and type-2 electric fluxes are again semions of the
same topological spin, so we have the desired {1, s̄} × {1, s̄}
Walker-Wang ground state.

We now make the above sketch more formal, as follows.
We start with Eq. (8):

Ulink|ψprod〉 = C′ ∑
{Mi}

(−1)int(M1,∂M2 )ZM1 ZM2 |ψ0,0〉. (15)

We then note that

ZM1 ZM2 |ψ0,0〉 = D
∑

closedE1

(−1)int(M1,E1 )+framing(E1 )|E1〉ZM2 |ψ0〉,

where D is some constant and E1 a configuration of closed
electric flux loops in copy 1. This is just expressing the
magnetic state ZM1 |ψ0〉 in the first copy in the electric basis.
Plugging this into Eq. (15), we obtain

Ulink|ψprod〉 =C′ ∑
M1,M2,E1

(−1)int(M1,∂M2 )+int(M1,E1 )+framing(E1 )

× |E1〉ZM2 |ψ0〉,
where C′ is another constant. Performing the sum on M1 yields
a delta function that sets E1 = ∂M2, in particular ensuring that
it is homologically trivial:

Ulink|ψprod〉 = C′′ ∑
M2

(−1)framing(∂M2 )|E1 = ∂M2〉ZM2 |ψ0〉.

Thus we have

(1 ⊗ Usemion)Ulink|ψprod〉 = C′′ ∑
M2

(−i)framing(∂M2 )|E1

= ∂M2〉ZM2 |ψ0〉.
Writing ZM2 |ψ0〉 in the electric basis we then obtain

(1 ⊗ Usemion)Ulink|ψprod〉
= C′′ ∑

M2,E2

(−i)framing(∂M2 )

× (−1)int(M2,E2 )+framing(E2 )|E1 = ∂M2〉|E2〉.
Finally, we can rewrite the sum over M2 as the sum over
E2 = ∂M2 at the expense of another overall constant and the
sum over E2 becoming a sum over homologically trivial E2

(homologically nontrivial E2 have 0 amplitude because of

interference between the different homology classes of M2).
Thus

(1 ⊗ Usemion)Ulink|ψprod〉
= C′′′ ∑

E1,E2

(−i)framing(E1 )(−1)link(E1,E2 )+framing(E2 )|E1〉|E2〉,

where the sum is over closed, homologically trivial E1 and
E2. This is just the ground-state wave function of the {1, s̄} ×
{1, s̄} Walker-Wang model. E1 is identified with the first
semion, and E1E2 with the second semion; E2 is a fermion.

It is natural to conjecture that conjugation by Usemion is (up
to a circuit) the square of the QCA of Ref. [5] which creates a
single copy of the 1, s Walker-Wang model acting on a trivial
product state. After all, the square of a QCA is equal to (up to
a circuit) two copies of that QCA, and two copies of the QCA
of Ref. [5] produces the same Walker-Wang model as Usemion

does. However, this is a conjecture as we do not know that the
action on other states is the same. At the same time, one may
verify that the three-fermion QCA is the square of conjugation
by Usemion, up to a circuit, by computing the square of the
semion braid amplitude.

B. Higher dimensions

The form Ulink suggests a natural generalization to higher
dimensions. Consider any odd dimension d = 2k + 1. Con-
sider k + 1 different hypercubic lattices of qubits, each
lattice slightly displaced in some generic direction, and apply
the bosonization duality in Ref. [16] to each lattice. Then
we have k + 1 different magnetic fluxes on copies labeled
1, 2, . . . , k + 1. Each magnetic flux is a 2-cocycle. Dually,
magnetic fluxes are (d − 2)-cycles. The intersection of mag-
netic fluxes 2, 3, . . . , k + 1 is a 1-cycle that we call C. Then,
consider a higher-dimensional unitary Uhigher that applies a
phase equal to −1 to the linking number of the type-1 flux
with the chain C.

Equivalently, the type-1 magnetic flux in this dual picture
is the boundary of some closed (d − 1)-cycle F . Then, the
phase is equal to −1 to the intersection number of F with C or
equivalently the intersection of F with fluxes 2, 3, . . . , k + 1.
Since C is closed, this intersection number is the same for all
homologically equivalent F .

We can immediately establish that Uhigher is a QCA by the
same “direct argument” in Sec. IV B: Under a local change in
flux, the change in phase can be computed locally.

This form of Uhigher is reminiscent of higher-dimensional
Chern-Simons theory. Indeed, perhaps this is no surprise:
Both nontrivial QCAs and Chern-Simons theory are related
in that they both involve quantities that cannot be computed
locally but whose variation can be computed locally.

We conjecture that Uhigher is nontrivial. It would be interest-
ing to understand if there is any relation between Uhigher and
the nontrivial Clifford QCAs in Ref. [17] for qubits in odd
dimensions �3. The expression we have given for Uhigher is
not Clifford for d � 5, and these QCAs might not be circuit
equivalent. If so, then Uhigher would represent a new class
of QCA in odd dimension 5 and higher. It is possible that
the Clifford QCAs in Ref. [17] are related to higher form
Chern-Simons theory.
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C. Beyond cohomology phases

Finally, it is interesting to speculate whether the simplified
form Ulink can help simplify the construction in Ref. [18].
There, a model for a 4 + 1-dimensional beyond cohomol-
ogy phase was constructed, whose boundary action was the
three-fermion QCA. However, the construction was quite
complicated as it required decorating three-dimensional do-
main walls (of four-dimensional Ising degrees of freedom)
with a three-fermion Walker-Wang model and hence required
defining the three-fermion Walker-Wang model and QCA on
arbitrary closed three-dimensional geometries. We conjecture
that one can define a simpler theory whose boundary action is
in the same phase as follows. Take two hypercubic lattices of
qubits in four dimensions, slightly displaced from each other,
and apply the bosonization duality in Ref. [16] to each lattice,
giving two gauge fields, labeled 1,2. We can regard the fluxes
as 2-cycles. Take one more hypercubic lattice of qubits, again
displaced from the others, and call the qubits on this lattice
the “Ising” degrees of freedom. The domain walls of the Ising
degrees of freedom give a 3-cycle. The intersection of this
3-cycle with the type-2 flux is a 1-cycle we call C. Define a
unitary V which is equal to −1 to the linking number (in four
dimensions) of type-1 flux with this cycle C. Then, V 2 = 1,
and we regard V as the disentangler for a symmetry-protected
phase which has an Ising symmetry. This symmetry flips all
Ising degrees of freedom, and hence commutes with V on any
closed manifold.
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APPENDIX A: TRIVIALIZING THE QCA
BY TENSORING WITH FERMIONS

We have shown that the 3F QCA is a circuit if we tensor
with the identity QCA acting on fundamental fermions. In this
Appendix, we give a particularly simple form for this circuit,
writing it as a product of gates which commute with each
other.

Before giving this simple form, let us first give a brief ab-
stract argument that it trivializes with fundamental fermions.
The 3F QCA α3F , corresponding to the unitary Ulink squares
to the identity. So α3F ⊗ α3F is a circuit acting on two copies
of the system. Suppose on the second copy of the system that
there is no gauge flux. Then, the QCA α3F act trivially on
that copy, and so the action of α3F ⊗ α3F is the same as α3F

tensored with the identity QCA. However, tensoring with a
copy of the system constrained to have no gauge flux is the
same as tensoring with fundamental fermions.

1. Trivializing the QCA

We trivialize the unitary Ulink in the presence of funda-
mental fermions. Recall that under the bosonization duality
in Ref. [16], the qubit system is dual to one where each 3-cell
c has two Majorana operators, γc and γ ′

c . Gauge fields live on
2-cells, while there is gauge flux on 1-cells. The operator iγ ′

cγc

is gauge invariant. Other gauge-invariant operators include the

operator iγcγd , for two different 3-cells c, d connected by a
face, multiplied by the gauge field on a face, and so these
operators have an image as some local bosonic operator. Let
us denote that bosonic operator by Uc,d for any two 3-cells
c, d which are incident on some 2-cell.

The gauge flux on a 1-cell is equal to, up to a sign,
Uc,dUd,eUe, f Uf ,c, where c, d, e, f are the four different 3-cells
incident to that 1-cell, taken in order going around the 1-cell
in an arbitrary direction, so that c, d are incident on a 2-cell as
needed to define Uc,d . and similarly for the other pairs.

The set of operators {Uc,d} do not commute with each other.
Now we tensor in ancilla fundamental fermionic degrees of
freedom by tensoring in operators η, η′ on the 3-cells of one
of the two cubic lattices which we will arbitrarily pick to be
lattice 1.

We consider the unitary Ulink tensored with the identity on
the ancilla fermions and will show that it can be represented
by a circuit. In fact, we will only need the degrees of freedom
η and not those η′ to do this.

Define the operator Tc,d by

Tc,d = iUc,dηcηd .

Now the set of operators {Tc,d} enjoy the following properties:
They are mutually commuting, they have eigenvalues ±1, and
for any 1-cell, the flux on that 1-cell is equal to, up to a
sign, Tc,d Td,eTe, f Tf ,c, where c, d, e, f are four different 3-cells
incident to that 1-cell as before.

The fact that they are mutually commuting may be explic-
itly checked, but the intuitive explanation is that two operators
Uc,d and Ug,h have been constructed to reproduce the Majorana
anticommutation relations of operator γcγd with γgγh so that
they anticommute if the set {c, d} ∩ {e, f } has one element.
The fact that the eigenvalues are ±1 follows since each Uc,d

has eigenvalues ±1, as does iηcηd . The fact that the gauge
flux is equal to Tc,d Td,eTe, f Tf ,c up to sign follows because the
product (ηcηd )(ηdηe)(ηeη f )(η f ηc) is equal +1.

Since the Tc,d mutually commute, we may work in a simul-
taneous eigenbasis of these operators. Regard these operators
as defining some “type-1 gauge field,” as the desired type-1
gauge flux is computed from their products. Then the mod
2 linking number of type-1 flux with type-2 flux is equal to
the mod 2 number of the type-1 gauge field with the type-2
gauge flux. Precisely, the linking number is equal, mod 2, to
the number of type-2 1-cells which have gauge flux −1 and
which intersect a type-1 2-cells which has gauge field −1.

Then −1 to the linking number is equal to a product of local
gates, one local gate for each 2-cell in the type-1 lattice. These
gates are diagonal in an eigenbasis of the Tc,d and the type-2
gauge flux operators. Each gate gives a −1 phase if the gauge
field on that cell equals −1 and if the gauge flux on the cell in
the type-2 lattice intersecting it also equals −1; otherwise, the
gate gives a +1 phase.

We can write this in a more symmetric form if we also
introduce Majorana operators on the 3-cells of the type-2
lattice. Then, let the “type-1 gauge field” T (1)

c,d be the operators

Tc,d above and let the “type-2 gauge field” T (2)
c,d be analogous

operators for the type-2 lattice. Then, since the gauge flux for
the type-2 lattice can be written as a product of operators T (2)

c,d ,
the circuit assumes a more symmetric form: It is a product
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over all pairs (c(1), d (1) ) and (c(2), d (2) ), where c(1), d (1) are in
the type-1 lattice and c(2), d (2), such that the boundary of the
face (c(1), d (1) ) intersects the face (c(2), d (2) ), of a “controlled-
Z” gate. This controlled-Z gate is diagonal in the eigenbasis
of the gauge fields and gives a −1 phase if both gauge fields
equal −1 and otherwise gives a +1 phase. Note that while
our definition is superficially not symmetric in the lattices
1,2, as we considered the intersection of the boundary of a
type-1 face with a type-2 face, this is actually equivalent to
considering the intersection of the boundary of a type-2 face
with a type-1 face, so it is a completely symmetric definition.

2. Trivial circuit?

Next we ask Is this circuit a trivial circuit? There are
several possible definitions of a trivial circuit, and of a trivial
symmetry, and we now discuss these.

Let us say a QCA or circuit is a symmetry if it gives a (pos-
sibly projective) representation of some symmetry group,6

i.e., if there is some mapping from group elements g to unitary
circuits U (g) or QCA α(g) giving a group homomorphism up
to phase. In this case, the QCA squares to the identity and the
symmetry is Z2.

The definition of a trivial circuit that we use in this subsec-
tion is that it can be conjugated by some unitary circuit so that
the result can be decomposed as a product of unitary gates,
which have disjoint support, and the definition of a trivial
symmetry that we use is that there is some single unitary
circuit (independent of the group element g) so that each U (g)
can be conjugated by that unitary circuit so that the result
can be decomposed as a product of local unitary gates, each
of which gives a (possibly projective) representation of that
symmetry and which have disjoint support, i.e., each gate may
act on more than one site, but the support of the gates must
be disjoint from each other so that this can be expressed as a
quantum circuit with depth 1.

We will show that our circuit is not a trivial circuit under
this definition. More strongly, we will show that the image
of our circuit under an arbitrary QCA cannot be a product
of local unitary gates with disjoint support. Interestingly, if
one regards this circuit as the boundary symmetry action of
some SPT with a Z2 symmetry, and applies the classification
method in Ref. [19], then no obstruction is detected.

Note that a possible weaker definition of a trivial circuit
is that it can be conjugated by some unitary circuit so that
the result can be decomposed as a a product of local unitary
gates which commute with each other. A weaker definition of
a trivial symmetry is that there is some single unitary circuit
(independent of the element g of the symmetry group) so that
each U (g) can be conjugated by some unitary circuit so that
the result can be decomposed as a product of local unitary
gates which commute with each other and such that each
gives a (possibly projective) representation of that symmetry.
Under the weaker definition, our circuit is a trivial symmetry;

6In the case of a QCA, there is no meaning to whether the repre-
sentation is projective, as multiplying a state by a phase corresponds
to the identity QCA.

indeed it already has that decomposition without needing to
conjugate by anything.

Note also that our definition of a trivial circuit is slightly
weaker than an alternative definition where one requires that
the unitary gates each act on a single site.

We give a simpler result first: We show that the conjugation
cannot be done in a translationally invariant manner on a
3-torus with some finite unit cell (i.e., the translation sym-
metry group may be larger than translation by a single lattice
site). Indeed, suppose some such conjugation could be done.
Consider the normalized trace of the circuit, defined to be the
trace of the given unitary divided by the trace of the iden-
tity. Then, if it could be conjugated to a product of unitaries
with disjoint support, then the normalized trace would be the
product of traces of these unitaries and so would have an
exactly exponential dependence on volume if the linear size is
a multiple of the unit cell for translation symmetry. However,
we show next that the normalized trace equals 2b1−b0 times an
exponential function of volume, where b1 = 3 and b0 = 1 are
Betti numbers of the 3-torus. This gives a contradiction.

We compute the normalized trace by first averaging the
sign of the unitary over type-1 gauge field for fixed type-2
gauge field and then averaging over type-1 gauge field. If the
type-2 gauge flux is nonzero anywhere, then the average over
type-1 flux vanishes, while if the type-2 gauge flux is zero
everywhere, then the sign of the unitary is +1 independent of
the type-1 gauge flux. So, the normalized trace is the proba-
bility that the type-2 gauge flux vanishes everywhere. This is
equal to the number of type-2 gauge field configurations with
no gauge flux, divided by the total number of type-2 gauge
field configurations. The number of gauge field configurations
with no gauge flux is equal to the number of homology classes
(which equals 2b1 ) times the number of inequivalent gauge
transformations (which equals 2nV −b0 ). So, indeed, the nor-
malized trace is 2b1−b0 times an exponential function.

This argument, that there is no translation-invariant trivi-
alization, does not use the presence of fermions in any way.
It would work if we had, for example, qubits on each link
of the type-1 and type-2 lattice, with the value of the qubit
giving the gauge field, and compute the linking number of the
corresponding gauge flux.

Also note that a similar argument works if we consider a
circuit in one dimension given by a product of controlled-Z
gates on all nearest-neighbor pairs, either on a ring or on an
interval. Then, averaging over qubits on the even sublattice
for fixed Z configuration on the odd sublattice, the average
vanishes unless all odd sublattice qubits are in the same Z
state, and there are two such configurations.

Now we show that the it cannot be done in a translationally
noninvariant manner. We show this just in the case of the
one-dimensional circuit of the above paragraph; the three-
dimensional circuit can be handled with essentially the same
argument after dimensionally reducing to one dimension by
ignoring two of the directions.

Consider the system on a ring. Let U be the circuit which
is the product of controlled-Z gates on nearest neighbors. Let
V be the hypothetical circuit such that VUV † a product of
unitaries with disjoint support (the argument where we map
by a QCA is similar; indeed, in one-dimension every QCA is
a circuit composed with a shift so showing it in the case of a
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circuit suffices). Divide the ring into four disjoint intervals,
called A, B,C, D in order around the ring, with A and D
neighbors and with the size of each interval long compared
to the range of V and to the range of the gates in VUV †.

Consider TrB,D(U ), where Tr...(·) denotes a partial trace
over some region. This partial trace does not factorize into
a product of operators supported on A and C. To see this, note
that if we trace over qubits on the even sublattice in B, D, then
this requires qubits in the odd sublattce to agree in the Z basis,
and after tracing over qubits in the odd sublattice in B, D it
forces a qubit near the boundary A, B to agree in the Z basis
with a qubit near the boundary B,C.

Now we show that if such a V exists, then the partial trace
TrB,D(U ) would factorize, giving a contradiction. Of course,
the partial trace TrB,D(VUV †) does factorize by assumption
that VUV † is a product of unitaries with disjoint support, but
this is not what we want to show. To show what we want, it
is useful to define the notion of a trace over an algebra rather
than a site: Given any simple algebra F , which is a subalgebra
of the algebra of all operators on this system, the trace of an
operator O over that subalgebra can be defined by giving the
full Hilbert space a tensor product structure H1 ⊗ H2 such
that F is the algebra of operators on H1, and then tracing
over H1.

Now consider some subintervals B′ ⊂ B and D′ ⊂ D such
that B′ is large compared to the size of the disjoint gates in
VUV † and such that the distance from B′ to the boundary
of B is large compared to the range of V and similarly for
D′, D. Let A′,C′ be intervals such that A ⊂ A′ and C ⊂ C′
with A′, B′,C′, D′ giving some disjoint decomposition of the
ring. We have that TrB′,D′ (VUV †) factorizes into a product of
operators on A′,C′. Now, the trace over B′ is the same as the
trace over the algebra of operators on B′, which we call B′. By
assumption on the range of V , the algebra V †B′V is a simple
subalgebra of the algebra B of operators on B. Further, since V
is local, the commutant of V †B′V in B decomposes as a tensor
product of two simple subalgebras, one supported near the

boundary between A and B and the other supported near the
boundary between B and C. Call these subalgebras BL and BR,
where the subscripts are for left and right. So B factorizes as a
product of BL and V †B′V and BR. So the trace of U over B is
equal to the trace of U over V †B′V and BL and BR. Similarly,
the trace of U over D is equal to the trace of U over V †D′V
and DL and DR, where we define DL and DR analogously to
BL and BR. We may take the partial traces in any order, and
we choose to trace over V †B′V and V †D′V first. However,
by the assumption that VUV † is a product of disjointly sup-
ported gates, the partial trace of U over V †B′V and V †D′V
factorizes into a product of two operators, one supported on
the algebra generated by A and BL and by DR, and one
supported on the algebra generated by C and BR and by DL.
Then, tracing over BL, BR, DL, and DR, it follows that the
partial trace of U over B and D factorizes, giving the desired
contradiction.

APPENDIX B: DETAILS OF THE CONSTRUCTION
OF THE CHERN INSULATOR PUMP, AND COMPUTATION

OF ITS WINDING NUMBER

1. Single Chern insulator

We first discuss a single Chern insulator in a two-
dimensional two-band model with only the flavor index α. We
let �k2d = (kx, ky) be the 2d reciprocal wave vector and

HC.I. = cX (�k2d)X fl + cY (�k2d)Y fl + cZ (�k2d)Zfl

be a Hamiltonian for a Chern insulator with Chern num-
ber ±1. That is, the coefficients cX (�k2d), cY (�k2d), cZ (�k2d) are
chosen such that (cX )2 + (cY )2 + (cZ )2 = 1 and the function
�k2d → (cX , cY , cZ ), viewed as a map from T 2 to S2, has
winding number 1. We will find it convenient to work with
a specific form of this map, which we construct as follows.
Take k1 < k2 � 1. Let θ (�k2d) interpolate smoothly between 0
for |�k2d| > k2 and π for |�k2d| � k1, and define

(cX , cY , cZ ) =

⎧⎪⎨
⎪⎩

(0, 0,−1) for |�k2d| < k1

(0, 0, 1) for |�k2d| > k2{ kx

|�k2d| sin[θ (�k2d)], ky

|�k2d| sin[θ (�k2d)], cos[θ (�k2d)]
}

for k1 � |�k2d| � k2

.

Now let φ(�k2d) = tan−1(ky/kx ), and, for |�k2d| > k1, define the
operator

V+(�k2d) = exp[iφ(�k2d)Zfl/2] exp[iθ (�k2d)Y fl/2].

Note that the states V+(�k2d)|α = 0, 1〉 are eigenstates of
HC.I.(�k2d):

HC.I.(�k2d)V+(�k2d)|α〉 = (−1)αV+(�k2d)|α〉. (B1)

Similarly, for |�k2d| > k1, we define the operator

V−(�k2d) = exp[−iφ(�k2d)Zfl/2] exp[iθ (�k2d)Y fl/2],

which has the same property for the Hamiltonian
cX (�k2d)X fl − cY (�k2d)Y fl + cZ (�k2d)Zfl, which has Chern
number −1.

2. Nucleating and annihilating pairs of Chern insulators

We now construct the operator U nucl(�k) which nucleates pairs of Chern number ±1 insulators on layers (2n, 2n + 1) [i.e.,
(l = 0, l = 1)]. We define

U nucl(�k) =
{

V+(�k2d)(1 + Z lay)/2 + V−(�k2d)(1 − Z lay)/2 for |�k2d| � k1{|�k2d|/k1 exp[iφ(�k2d)Z layZfl] + i
√

1 − |�k2d|2/k2
1 X lay

}
iY fl for |�k2d| < k1

. (B2)
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Note that for |�k2d| = k1 we have θ (�k2d) = π , so U nucl(�k) reduces to exp[iφ(�k2d)Z layZfl/2]iY fl on this circle. This means that
the map defined above is continuous. It is not smooth, but can presumably be deformed into a smooth map. We claim that the
operator U nucl(�k) satisfies U nucl†HpairU nucl = Zfl, i.e., it nucleates a pair of Chern number ±1 Chern insulators. For |�k2d| > k1

this follows from Eqs. (B1) (and the corresponding equation for V−) and (B2). For |�k2d| < k1 we have both HC.I. = −Zfl and
Hpair = −Zfl, and again using Eq. (B2) we see Zfl = U nucl(�k)†HpairU nucl(�k).

We now annihilate complementary pairs of Chern insulators. The operator U annih(�k) which does this can be constructed as the
conjugation by a translation by 1 in the z direction of an operator that performs the annihilation on the same pairs of layers as
the nucleation. Viewed in terms of the doubled unit cell, this translation by 1 is accomplished by swapping the layer index and
then translating one of the layers by 2 (i.e., by a single doubled unit cell); this operator is X lay exp[ikz(1 − Z lay)/2]. On the other
hand, the operator that performs the annihilation is just X layU nucl(�k)−1X lay. We thus have

U annih(�k) = {X lay exp[ikz(1 − Z lay)/2]}−1[X layU nucl(�k)−1X lay]{X lay exp[ikz(1 − Z lay)/2]}
= exp[−ikz(1 − Z lay)/2]U nucl(�k)−1 exp[ikz(1 − Z lay)/2].

Therefore

U (�k) = U annih(�k)U nucl(�k) = exp[−ikz(1 − Z lay)/2]U nucl(�k)−1 exp[ikz(1 − Z lay)/2]U nucl(�k)

= exp(ikzZ
lay/2)U nucl(�k)−1 exp(−ikzZ

lay/2)U nucl(�k).

The operator U (�k) can again be continuously connected to U nucl(�k) by the same argument as before and so is a finite-time
evolution of a quasilocal Hamiltonian. Although it preserves the ground state of Htriv, it is not the identity operator. We now
analyze its structure.

First, note that since for |�k2d| � k1 U nucl(�k) is block diagonal in layer space, i.e., it commutes with Z lay, so that U (�k) = 1 for
|�k2d| � k1. For |�k2d| < k1 we have, for r ≡ |�k2d|/k1:

U (�k) = exp(ikzZ
lay/2)Y fl[r exp(iφZ layZfl/2) + i

√
1 − r2 X lay]−1 exp(−ikzZ

lay/2)[r exp(iφZ layZfl/2) + i
√

1 − r2 X lay]Y fl

= exp(ikzZ
lay/2)Y fl[r exp(−iφZ layZfl/2) − i

√
1 − r2 X lay] exp(−ikzZ

lay/2)[r exp(iφZ layZfl/2) + i
√

1 − r2 X lay]Y fl

= exp(ikzZ
lay/2)[r exp(iφZ layZfl/2) − i

√
1 − r2 X lay] exp(−ikzZ

lay/2)[r exp(−iφZ layZfl/2) + i
√

1 − r2 X lay]

= [r exp(iφZ layZfl/2) − i
√

1 − r2 (cos kzX
lay + sin kzY

lay)][r exp(−iφZ layZfl/2) + i
√

1 − r2 X lay].

Since this operator commutes with Zfl, we can focus on one of the Zfl eigenvalues, say, Zfl = 1. Then

U (�k) = [r exp(iφZ lay/2) − i
√

1 − r2 (cos kzX
lay + sin kzY

lay)][r exp(−iφZ lay/2) + i
√

1 − r2 X lay]

= [r2 + (cos kz )(1 − r2)] · 1 + aX X lay + aY Y lay + aZZ lay,

where aX , aY , aZ are coefficients whose precise form will not be necessary. From the above expression, we see that U (�k) = −1 if
and only if r = 0, i.e., �k2d = 0 and kz = π . That is, U (�k) = −1 only for �k = (0, 0, π ). Hence the map from T 3 to SU (2) defined
by U (�k) for Zfl = 1 has winding number, or degree, 1. Similarly, the map from T 3 to SU (2) defined by U (�k) for Zfl = −1 has
winding number −1.

According to the definition in the main text, we have

U annih(�k) = {X lay exp[ikz(1 − Z lay)/2]}−1[X layU nucl(�k)−1X lay]{X lay exp[ikz(1 − Z lay)/2]}
= exp[−ikz(1 − Z lay)/2]U nucl(�k)−1 exp[ikz(1 − Z lay)/2].

Thus

U (�k) = U annih(�k)U nucl(�k) = exp[−ikz(1 − Z lay)/2]U nucl(�k)−1 exp[ikz(1 − Z lay)/2]U nucl(�k)

= exp(ikzZ
lay/2)U nucl(�k)−1 exp(−ikzZ

lay/2)U nucl(�k).

The operator U (�k) can again be continuously connected to U nucl(�k) by the same argument as before, so is a finite-time evolution
of a quasilocal Hamiltonian. Although it preserves the ground state of Htriv, it is not the identity operator. We will presently
analyze its structure.
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First, note that since for |�k2d| � k1 U nucl(�k) is block diagonal in layer space, i.e., it commutes with Z lay, so that U (�k) = 1 for
|�k2d| � k1. For |�k2d| < k1 we have, for r ≡ |�k2d|/k1:

U (�k) = exp(ikzZ
lay/2)Y fl[r exp(iφZ layZfl/2) + i

√
1 − r2 X lay]−1 exp(−ikzZ

lay/2)[r exp(iφZ layZfl/2) + i
√

1 − r2 X lay]Y fl

= exp(ikzZ
lay/2)Y fl[r exp(−iφZ layZfl/2) − i

√
1 − r2 X lay] exp(−ikzZ

lay/2)[r exp(iφZ layZfl/2) + i
√

1 − r2 X lay]Y fl

= exp(ikzZ
lay/2)[r exp(iφZ layZfl/2) − i

√
1 − r2 X lay] exp(−ikzZ

lay/2)[r exp(−iφZ layZfl/2) + i
√

1 − r2 X lay]

= [r exp(iφZ layZfl/2) − i
√

1 − r2 (cos kzX
lay + sin kzY

lay)][r exp(−iφZ layZfl/2) + i
√

1 − r2 X lay].

Since this operator commutes with Zfl, we can focus on one of the Zfl eigenvalues, say, Zfl = 1. Then

U (�k) = [r exp(iφZ lay/2) − i
√

1 − r2 (cos kzX
lay + sin kzY

lay)][r exp(−iφZ lay/2) + i
√

1 − r2 X lay]

= [r2 + (cos kz )(1 − r2)] · 1 + aX X lay + aY Y lay + aZZ lay,

where aX , aY , aZ are coefficients whose precise form will not be necessary. From the above expression, we see that U (�k) = −1 if
and only if r = 0, i.e., �k2d = 0 and kz = π . That is, U (�k) = −1 only for �k = (0, 0, π ). Hence the map from T 3 to SU (2) defined
by U (�k) for Zfl = 1 has winding number, or degree, 1. Similarly, the map from T 3 to SU (2) defined by U (�k) for Zfl = −1 has
winding number −1.

APPENDIX C: PUMPING A p + ip STATE GIVES A CCZ
GATE: EXPLICIT FREE FERMION COMPUTATION

1. Boundary conditions

Let us see how to implement a change in boundary condi-
tions (from periodic to antiperiodic) in a simple toy example
of a one-dimensional tight binding model on a ring, with L
sites and one orbital per site. We set the lattice constant to 1
for simplicity. Let us work with the time-ordered exponential
of the integral of a local time-dependent quasi-Hamiltonian K .
K is some bilinear in the creation and annihilation operators
a1, . . . , aL and a†

1, . . . , a†
L. When boundary conditions are pe-

riodic, this means that there is an extra −1 in front of the term
that tunnels fermion parity between sites L and 1; in particular,
K is not translation invariant. However, we can work with the
modes

ãk =
∑

eik ja j

with k = π
L + 2πm

L , m = 0, . . . , L − 1. Then by inverting this
and plugging into K we see that K can be written as:

K =
∑

k= π
L + 2πm

L

Ckã†
kak +

∑
k= π

L + 2πm
L

Dkãkã−k + H.c.

where Ck and Dk are some constants. In other words, the effect
of the −1 in the periodic boundary conditions is to shift the
allowed quantized values of the reciprocal lattice wave vector
by π

L . For antiperiodic boundary conditions, on the other hand,
we get the same expression except the sum is over k = 2πm

L ,
m = 0, . . . , L − 1.

In our three-dimensional model of interest, the same shift
in the allowed values of �k occurs. In particular, it is only when
all three boundary conditions are antiperiodic that we have
values of �k for which �k = −�k modulo the Brilliouin zone, i.e.,
ones which are reflection symmetric. We will see that only
these points contribute to the desired sign.

2. General observation about free fermion unitary circuits

Consider a general free fermion unitary evolution V (τ ) =
T exp[i

∫ τ

0 K (τ ′)dτ ′], where K (τ ′) is quadratic in the creation
and annihilation operators on N sites. It will now be useful
to work with the Majorana representation of the operator al-
gebra, where we trade the creation and annihilation operators
for 2N Majorana modes γ1, . . . , γ2N , defined by:

γ2 j = a j + a†
j

γ2 j+1 = i(a j − a†
j ).

We will fix the overall additive constant in K by demanding
that K = i

4

∑
i, j Ai jγiγ j , where Ai j is antisymmetric and i and

j run from 1 to 2N . Let V (τ ) = T exp(i
∫ τ

0 K (τ ′)dτ ′). The
V (τ ) defines a path from 1 to V in the space of free fermion
unitaries of determinant 1 in the many-body Fock space.

The group of all free fermion unitaries of determinant
1 on N fermions is generated by all operators of the form
exp( 1

4

∑
i, j Ai jγiγ j ), where Ai j is antisymmetric and i and j

run from 1 to 2N . This group is isomorphic to Spin(2N ), the
double cover of SO(2N ), whereas its action by conjugation
on the operator algebra is SO(2N ). The nontrivial element
of Spin(2N ) which maps to the identity in SO(2N ) acts by
−1 in the Fock space. Now consider the subgroup SU (N ) ⊂
SO(2N ) of those group elements that rotate the N annihilation
operators into each other, and let |ψ〉 be the all empty state.
The lift of this SU (N ) into Spin(2N ) consists of two discon-
nected components. The component that contains the identity
has the property that all operators X in it satisfy X |ψ〉 = |ψ〉,
whereas all X in the other component satisfy X |ψ〉 = −|ψ〉.

Now suppose that the image of V ∈ Spin(2N ) in SO(2N )
sits inside this SU (N ). Then there are two possibilities: ei-
ther V |ψ〉 = |ψ〉 or V |ψ〉 = −|ψ〉. How do we tell which is
true? To answer this, consider the image of the path V (τ )
in SO(2N ), concatenated with some arbitrary path that con-
nects V (1) to 1 within SU (N ) ⊂ SO(2N ). This is a loop in
SO(2N ) that starts and ends at the identity, and since SU (N )
is simply connected, the element of π1[SO(2N )] that it defines
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is independent of the choice of second path [the one within
SU (N )]. Then, since Spin(2N ) is the double cover of SO(2N ),
we will have V |ψ〉 = −|ψ〉 if and only if this loop defines the
nontrivial element of π1[SO(2N )].

3. Action on Fock space for U with winding number 1

Now let us consider our three-dimensional system with
two flavor bands ν, and a free fermion unitary U with non-
trivial winding number ν3(U ) = 1. Because the result of our
computation will be quantized to ±1, we will obtain the
same answer for any U with ν3(U ) = 1, since they are all
homotopic. Rather than working with the U we constructed
in the main text, we will for convenience take the following
specific form of U : U�k = exp[iπ f (|�k|)�k · �σ ]. Here f (0) = 1
and f (k) = 0 for k > k0, where k0 is small compared to the
inverse lattice spacing. Also, �σ is the vector of Pauli matrices
in flavor space. Hence U is nontrivial only in a small neighbor-
hood of 0 around the Brillouin Zone (in particular, this is the
only reflection symmetric point where U �= 1). This choice
of U clearly has a winding number of 1, as the preimage
of −1 ∈ SU (2) is just �k = 0. Note also that U−�k = U †

�k . As
explained above, we first write U as a unitary free fermion
evolution U (τ ), 0 � τ � 1, with pairing, where U (0) = 1
and U (1) = U . Since U preserves the all empty state, we
can ask if its eigenvalue is +1 or −1 under this unitary free
fermion evolution. As discussed above, this will be a product
of contributions over all pairs (�k,−�k), times the product of
contributions over the reflection-symmetric �k. As explained
above, each such contribution reduces to determining an ele-
ment of a fundamental group defined by the path U (τ ).

First, let us see that for nonreflection symmetric �k, the
contribution from (�k,−�k) to the eigenvalue is always +1. This
is simply because the pairing only takes place between �k and
−�k. Thus, if we perform an antiunitary particle-hole transfor-
mation which exchanges annihilation and creation operators
at −�k (but not at �k), then we map any such evolution to a
particle-number-conserving unitary evolution; in this case it
would take place in SU (4) ⊂ SO(8). Since SU (4) is simply
connected, by the discussion above the eigenvalue is +1.

We can be a little more explicit in our discussion of nonre-
flection symmetric �k. Let us call the creation and annihilation
operators over �k c1,2, c†

1,2, and those over −�k d1,2, d†
1,2. Then

suppose we have a free fermion Hamiltonian∑
i, j

H �k
i jc

†
i c j +

∑
i, j

H−�k
i j c†

i c j +
∑
i, j

�
�k
i, jc jdi + H.c.,

where H �k and H−�k are traceless. By doing an antiu-
nitary particle-hole transformation on −�k which takes
di ↔ d†

i , this maps to a particle-conserving Hamiltonian
whose matrix representation is[

(H �k )∗ �
�k

(��k )† −H−�k

]

with the pairing term necessarily satisfying �−�k = −(��k )T .

Thus for reflection symmetric �k, i.e., those satisfying �k =
−�k, � must be proportional to σ y. Letting �τ be the Pauli

matrices on the (�k,−�k) degree of freedom, we see that the
possible free fermion Hamiltonians are then generated by
(τ z, σ yτ y, σ yτ x ) and (σ xτ z, σ y, σ zτ z ). Note that these are two
independent su(2) Lie algebras; this is isomorphic to the Lie
algebra of SO(4). This is what we expect: The allowed uni-
taries over the reflection symmetric �k must act as SO(4) on
the underlying Majoranas.

With this information in hand, let us now construct an
explicit continuous path U�k (τ ) connecting 1 to U�k , for all
�k, and continuous in τ and �k. We will do this in the dou-
bled framework, where we add particle-hole conjugates of the
bands at −�k to the bands over each �k. Thus, we will connect
the matrices

U�k =
{

exp[−iπ f (|�k|)�k · �σ ] 0
0 exp[iπ f (|�k|)�k · �σ ]

}

to the identity, continuously in �k and respecting the �k ↔ −�k
particle-hole redundancy. To do this, first consider the path in
θ , for 0 � θ � π/2:

U�k (θ ) = cos(θ )U�k + sin(θ )σ yτ y.

Then simply concatenate this with the reversal of the path

cos(θ ) · 1 + sin(θ )σ yτ y

0 � θ � π/2. Note that for |�k| > k0, these two paths are just
reverses of each other, so there they can be homotoped into
the identity path. Let us perform this homotopy, so that our
thus modified path is nontrivial only for |�k| � k0.

Now, at �k = 0, this path is something that connects
U�k=0 = −1 to 1 entirely in the SU (2) Lie group gener-
ated by (τ z, σ yτ y, σ yτ x ). Noting that the quotient of SO(4)
by the other SU (2) Lie group [the one generated by
(σ xτ z, σ y, σ zτ z )] is equal to this SU (2) divided by its center
[which the two SU (2)’s in SO(4) share in common], we see
that this gives a nontrivial loop in SO(3) = SO(4)/SU (2).
The SU (2) in the denominator of this quotient is the one that
preserves the all empty state, so considering this path in SO(4)
and then connecting back to the identity through the SU (2)
in the denominator gives a closed nontrivial loop in SO(4)
[otherwise the loop in SO(3) would have been trivial]. So by
the discussion above, we get a factor of −1 from the action
of the unitary evolution at �k = 0. This is the only nontrivial
contribution, so we see that U acts as −1 on Fock space when
all three boundary conditions are antiperiodic, as was to be
shown.

One might ask to what extent our result depends on the
particular circuit chosen to represent U . Two different such
circuits differ by a loop in the space of local free fermion
unitary evolutions, which is known to be trivial in three spatial
dimensions [9]. Now there are loops in the space of 2d and
1d free fermion unitaries, namely those found by Rudner
et al. [8], and the Thouless charge pump. These can give rise
to CZ gates along various T 2’s in the T 3, or Z gates along
various S1’s in T 3, respectively. But they cannot eliminate the
top-dimensional invariant, which is the CCZ gate.
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