
PHYSICAL REVIEW B 109, 235141 (2024)

Symmetries and wave functions of photons confined in three-dimensional
photonic band gap superlattices
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We perform a computational study of confined photonic states that appear in a three-dimensional (3D)
superlattice of coupled cavities, resulting from a superstructure of intentional defects. The states are isolated from
the vacuum by a 3D photonic band gap, using a diamondlike inverse woodpile crystal structure, and they exhibit
“Cartesian” hopping of photons in high-symmetry directions. We investigate the confinement dimensionality to
verify which states are fully 3D-confined, using a recently developed scaling theory to analyze the influence of
the structural parameters of the 3D crystal. We create confinement maps that trace the frequencies of 3D-confined
bands for select combinations of key structural parameters, namely the pore radii of the underlying regular
crystal and of the defect pores. We find that a certain minimum difference between the regular and defect pore
radii is necessary for 3D-confined bands to appear, and that an increasing difference between the defect pore
radii from the regular radii supports more 3D-confined bands. In our analysis, we find that their symmetries and
spatial distributions are more varied than electronic orbitals known from solid-state physics. We surmise that this
difference occurs since the confined photonic orbitals derive from global Bloch states governed by the underlying
superlattice structure, whereas single-atom orbitals are localized. Based on this realization, we suggest that the
extent symmetries of “photonic orbitals” could possibly translate to novel macroscopic behaviors of “photonic
solid-state matter,” never before seen in the standard electronic solid-state systems. We also discover pairs of
degenerate 3D-confined bands with p-like orbital shapes and mirror symmetries matching the symmetry of the
superlattice. Finally, we investigate the enhancement of the local density of optical states for cavity quantum
electrodynamics applications. We find that donorlike superlattices, i.e., where the defect pores are smaller than
the regular pores, provide greater enhancement in the air region than acceptorlike structures with larger defect
pores, and thus offer better prospects for doping with quantum dots and ultimately for 3D networks of single
photons steered across strongly coupled cavities.
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I. INTRODUCTION

The confinement of light is a prominent goal of nanopho-
tonics that is traditionally achieved via a single resonator
that stores photons for a given time duration before they
leak away to the surrounding vacuum [1–3]. All over the
world, a large variety of resonator structures has been real-
ized including micropillars [4,5], microdisks [6,7], rings [8,9],
plasmonic resonators [10,11], and defects in one-dimensional
[12–14] and two-dimensional photonic crystals [15–17] as
well as three-dimensional (3D) photonic band gap crys-
tals [18–24]. Light confinement in a single cavity has been
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practically utilized in applications ranging from sensing
[25,26] and enhancing absorption [27], to slowing down or
trapping of photons [28,29], and to enhancing spontaneous
emission [4,30] and other cavity quantum electrodynamic
(cQED) phenomena [5,6,31–34].

Novel physical opportunities arise when multiple coupled
cavities are embedded in 3D photonic band gap crystals, as
these crystals are capable of confining light in all three dimen-
sions simultaneously [35–37]. In a perfect photonic crystal
structure, thanks to multiple wave interference [38], the pe-
riodic translational symmetry gives rise to a 3D photonic
band gap [39–42], that is, a range of frequencies for which
light is forbidden to propagate inside the crystal irrespective
of its wave vector and polarization. The introduction of in-
tentional defects on a lattice superperiodic over the crystal
lattice disrupts the local symmetry of the crystal, resulting
in the appearance of a variety of localized states inside the
band gap [35,36]. Some of these states give rise to so-called
Cartesian light [35], whereby photons confined in one cavity
in all three directions simultaneously hop to a nearby cavity,
as described by the well-known tight-binding approximation
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FIG. 1. 3D superlattice of defect pores embedded as photonic
dopants in a 3D inverse woodpile photonic band gap crystal. For
certain defect states, confined photons hop between neighboring
cavities in Cartesian directions, known as Cartesian light.

[43]; see Fig. 1. As a result, defect bands arise, analogous
to coupled atomic orbitals that may hybridize in an atomic
superlattice to become semiconductor defect bands that are
notably pursued for photovoltaics [44]. 3D-confined states
in superlattice structures have also great potential for cavity
QED and Anderson localization of light.

A large bandwidth of the photonic band gap is a crucial
factor to effectively shield the 3D superlattice states from the
surrounding vacuum states [45], and to make the photonic
cavity superlattice robust with respect to unavoidable fabrica-
tion disorder [46]. Exceptionally wide band gaps are known
to occur in crystals with diamondlike symmetry [47]. An
example of these are the so-called inverse-woodpile photonic
crystals, consisting of two arrays of nanopores [48]. These
structures have been realized using various nanofabrication
techniques and high-index backbones [49]. In the Complex
Photonic Systems (COPS) chair at the University of Twente,
we have developed CMOS-compatible nanofabrication meth-
ods to fabricate such crystals by etching deep pores into
silicon [50–54]. The cavity in these crystals is realized by
altering the radius of two proximate orthogonal defect pores,
thereby creating an excess of one type of material in their
proximal region [23].

Inverse woodpile photonic crystals with and with-
out defects have been investigated both theoretically
[23,27,35,46,55,56] and experimentally [37,49,57–60]. To
properly interpret the experimental data and provide guidance
for fabrication, it is crucial to understand the dependence of
the physical and optical properties of the crystal on its struc-
tural parameters, notably on the regular and defect nanopore
dimensions. In recent work [36,61], we have developed an
accurate methodology to analyze defects in (photonic) su-
perlattices based on finite-size scaling and enhanced by
unsupervised machine learning. Therefore, in this paper we
apply the methods from Refs. [36,61] to perform a thorough

FIG. 2. (a) Structure of the perfect inverse woodpile photonic
crystal. We employ a tetragonal unit cell with lattice constants b and
a, and the pore radius R. A 2 × 2 × 2 supercell is depicted. (b) De-
sign of a cavity. The radius of two proximal defect pores (shown in
green) is altered, resulting in a region with excess silicon or air, which
behaves as a cavity that confines photons (orange glow). (c) y-z
cross-section of the defect from the computational model for regular
pore radius R = 0.24a and defect pore radius R′ = 0.5R. Note that
the x-y cross-section is identical due to the crystal symmetry. (d) x-z
cross-section for the same pore radii as in (c).

computational characterization of light confined in 3D pho-
tonic band gap superlattices with respect to both pore sizes.
We create so-called confinement maps by keeping one of
the radii constant while varying the other one and mapping
the frequencies of confined photon bands. We analyze the
symmetry of selected bands and investigate the enhancement
of the local density of states (LDOS) [2,62] that is crucial for
future applications in cQED [33] and quantum information
processing (QIP) [63].

II. METHODOLOGY

We study 3D cavity superlattices embedded in 3D inverse
woodpile photonic band gap crystals. The inverse wood-
pile crystal structure consists of two perpendicular arrays of
nanopores with radius R in a high-refractive-index medium
such as silicon [48], as illustrated in Fig. 2(a). In our com-
putations, we use the relative permittivity ε = 12.1 to model
silicon in the relevant near and short-wavelength infrared
(NIR, SWIR) spectral range that includes the well-known
telecom bands [46,55,56].

The plane normal to each pore array corresponds to the
(110) crystal face of a conventional diamond structure. We
employ a tetragonal unit cell with lattice parameters b (in
the x- and z-directions) and a (in the y-direction). We set
a/b = √

2 to ensure a cubic crystal structure. Varying the ratio
R/a results in tuning of both the center frequency and the
bandwidth of the band gap, as shown in Fig. 3. It has been
found that the widest band gap is obtained for the ideal radius
R/a = 0.245 [46,55]. Throughout this paper, we express all
frequencies as a reduced frequency ω̃ = ωa/(2πν), with ν the
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FIG. 3. Band gap frequencies as a function of pore radius R in an
inverse woodpile photonic crystal with ε = 12.1 typical for a silicon
backbone. The 3D photonic band gap exists for pore radii 0.15 �
R/a � 0.29, with the maximum width at R/a = 0.245.

speed of light in vacuum, to apply our results to any spectral
range, e.g., from microwaves via optics to x-rays.

We introduce a single cavity in an inverse woodpile pho-
tonic crystal by altering the radius R′ �= R of two proximate
perpendicular defect pores [23], as shown in Fig. 2(b) and in
the cross-sections in Figs. 2(c) and 2(d).1 We introduce mul-
tiple cavities by introducing defect pores at every third pore
of the underlying inverse woodpile structure, giving rise to a
defect superlattice of linear size N = 3 that is commensurate
with the underlying crystal. The introduction of the defect
superlattice causes some of the bands to move into the band
gap of the perfect crystal. The states of these defect bands
are then confined in various dimensions, depending on the
structure of the defect. We denote the number of dimensions
in which a band of states is confined as the confinement
dimensionality c. For more discussion on defect superlattices
and wave confinement dimensionalities, see Ref. [36].

In this paper, we aim to find point-confined (c = 3) bands
and investigate their dependence on the structural parameters
of the inverse woodpile photonic crystal. To this end, we
employ the scaling analysis of Ref. [36], supplemented by
the MBC clustering algorithm presented in Ref. [61]. Specifi-
cally, we utilize the scaling to identify the set of confinement
dimensionalities c present in the structure, which is then sup-
plemented as an input to the MBC clustering algorithm. Note
that for small supercells, the scaling analysis tends to identify
several bands as plane-confined (c = 1), which is unphysical
since our superlattice does not contain plane defects. We thus
automatically exclude the c = 1 confinement dimensionality
from the input into the MBC algorithm. We note that, even
though the power of this analysis method exceeds any other
known method of confinement classification, it is known to be

1Note that permittivity maps ε(r) reveal also values between those
of air and silicon [εair � ε(r) � εSi] in our binary air-Si structure due
to an inherent smoothening in the employed MPB numerical method
that serves to enhance its accuracy; see Ref. [64] for details.

FIG. 4. Band structure of an inverse woodpile cavity superlattice
with regular pore radius R = 0.24a and defect pore radius R′ = 0.5R.
Bands that are identified to be confined in c = 3 dimensions are
colored, with red designating individual bands and blue indicating
pairs of degenerate bands. Note that the degeneracies can be properly
identified only after the qualitative discussion in Sec. IV. The colored
bands are also labeled by their band number Nb. The inset shows the
tetragonal Brillouin zone with labeled high-symmetry points.

not fully accurate for small supercells [36], so a few out of
many bands may end up being misidentified, as will also be
discussed later on.

Our confinement analysis requires knowledge of the
energy-density distribution W (r) in the superlattice. We have
calculated the energy densities as functions of the crystal pore
radius R/a and the defect pore radius R′/R using the plane-
wave expansion method implemented in the MPB code [64].
We normalize the density for each band so that

∫
VS

W dV = 1.
The band structures have been computed using the MPB code
as well. For applications in spontaneous emission control, we
also investigate the maximum energy density of each band,
defining � := maxVS W (r). A high � then corresponds to a
high concentration of energy in the cavity and thus to an
enhanced LDOS. To obtain the isosurface plots, we employ
MATLAB’s isosurface function to calculate the isosurface cor-
responding to one-third of the maximum of the energy density
W (r) = �/3 as a representative gauge.

III. PHOTONIC STATES BEYOND ATOMIC
ORBITAL ANALOGIES

Here, we investigate the spatial energy-density profiles of
several salient bands of confined states in the superlattice with
dimensions R = 0.24a and R′ = 0.5R. As we will see, the
main results are readily generalized to photonic superlattices
in general. Some useful properties, such as band degeneracies,
are best observed from the photonic band structure. Figure 4
shows the band structure of an inverse woodpile crystal with
pore dimensions R = 0.24a, R′ = 0.5R. The lower edge of the
bulk 3D photonic band gap occurs at reduced frequency ω̃ =
0.49 [35], and states below this frequency are Bloch modes
that freely propagate through the whole crystal volume in
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any possible direction. Inside the band gap, multiple confined
defect bands occur. We label the bands by their band number
Nb that is assigned in increasing frequency order. The bands
that are identified to have c = 3 confinement are colored in
red and blue to be easily recognizable. As an exemplary
Cartesian band, we analyze the energy-density distribution of
band Nb = 111 that was previously investigated in detail in
Refs. [23,27,35] (where it was labeled as an m = 3 superlat-
tice band). Reference [27] concluded, also on the basis of the
data of Ref. [23], that the wave functions of this band have a
quadrupolar symmetry, analogous to a 3d electronic orbital.2

Below, we discuss that drawing such an analogy between
photonic and atomic orbitals is misleading and that the inverse
woodpile photonic structure in fact presents a new challenge
in symmetry description.

Figure 5(a) shows a 3D view of the energy-density distri-
bution W (r) of the Nb = 111 band whose states are confined
within the cavity created by the crossing defect pores. One
can immediately see that the symmetries are strongly in-
fluenced by the defect-pore symmetry shown in Fig. 2(b).
There is a high-energy-density volume centered around x/b =
1.5, y/a = 1.15, z/b = 1.5. The volume is divided by the
y/a ≈ 1.15 plane into two half-spaces, where it contains a
dent in each of these half-spaces. For y/a < 1.15, the dent is
along the x-direction and is surrounded in the same half-space
by two smaller regions at both z/b < 1.5 and z/b > 1.5. For
y/a > 1.15, the second dent in the central volume spreads
in the z-direction and is surrounded by two smaller regions
at both x/b < 1.5 and x/b > 1.5. The energy-density profile
exhibits mirror symmetries along the z/b ≈ 1.5 and x/b ≈ 1.5
planes, but not along any plane of constant y/a, similar to the
structure of the parent superlattice.

From the view in Fig. 5(a), it is clear that the energy density
does not have the quadrupolar symmetry as in a 3d electronic
orbital, since it lacks the 90◦ rotational symmetry charac-
teristic for such a 3d electronic orbital [43]. Moreover, we
argue that the actual symmetry of the photonic states differs
remarkably from that of an atomic 3d orbital. Therefore, we
show in Fig. 5(b) the 2D view of the energy density for the
same Nb = 111 band from the y-z plane. From this view, it is
apparent that the confined states exhibit a combined mirror-
rotation symmetry, namely mirror symmetry with respect to
the plane y/a ≈ 1.15 combined with a 90◦ rotation about
the (x/b, z/b) ≈ (1.5, 1.5) axis. We attribute this result to the
fact that the confined photonic orbitals derive from extended
Bloch states that are governed by the underlying superlattice
structure, whereas electronic orbitals in atomic superlattices
derive from localized atomic orbitals.

This discovery brings us to an extremely interesting fun-
damental question: Instead of striving for strict analogies in
symmetries between electronic and photonic orbitals, pho-
tonic structures could be utilized to create photonic “orbitals”
with a much greater variety of geometries and symmetries
than are feasible in spherical atoms [65] and controllable in
more complicated electronic systems. Since there is a great

2Note that lowercase “3d” refers to the electronic orbital and should
not be confused with capitalized “3D,” which stands for “three-
dimensional.”

FIG. 5. 3D isosurface of the energy density [at W (r) = �/3] for
confined band Nb = 111 in an inverse woodpile cavity superlattice
with regular pore radius R = 0.24a and defect pore radius R′ = 0.5R.
The energy profile exhibits specific symmetries inherited from the
parent defect superlattice. Besides the mirror symmetries along the
z/b ≈ 1.5 and x/b ≈ 1.5 planes, it is also symmetric with respect
to mirroring according to the y/a ≈ 1.15 plane combined with 90◦

rotation about the (x/b, z/b) ≈ (1.5, 1.5) axis. (a) Birds-eye view;
(b) view from the y-z plane.

diversity of photonic crystals of various structures and a
plethora of options to introduce defects of different kinds in
them (see, e.g., Refs. [41,47]), it is highly plausible that the
set of symmetries achievable by “photonic orbitals” could be
much more numerous and varied than the ones occurring in
electronic orbitals. Since it is well known from atomic solid-
state physics that the symmetries of atomic orbitals are closely
tied to the appearance of the band structure and even to the
macroscopic behavior of materials, such as their placement in
the Periodic Table [43], it is exciting to investigate to what
extent the symmetries in “photonic orbitals” translate to the
macroscopic behavior of “photonic solid-state matter” and
how their great variety can be utilized.

IV. SYMMETRY AND DEGENERACY

Figure 6 shows the x-z view of the energy-density distri-
bution W (r) of all nondegenerate c = 3 (3D) confined bands
Nb = 111–115 and 118 from the band structure in Fig. 4. All
bands shown appear to have unrelated spatial energy-density
distributions, which agrees with the fact that these bands are
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FIG. 6. The x-z plane view of the energy-density isosurface [at
W (r) = �/3] of nondegenerate 3D-confined bands in an inverse
woodpile cavity superlattice with regular pore radius R = 0.24a and
defect pore radius R′ = 0.5R. While this view may convey the sug-
gestion of a 90◦ rotational symmetry in these distributions, this is not
the case, as may be verified by comparing to Fig. 5 for the Nb = 111
band.

nondegenerate. Even though they appear to have 90◦ rota-
tional symmetries, this is an optical illusion created by the
in-plane view of the distributions, as is readily seen by com-
paring the appearance of the band Nb = 111 in Fig. 6 with the
bird’s-eye view of the same band in Fig. 5(a). It is important to
emphasize that these distributions exhibit mirror symmetries
with respect to the x/b = 1.5 and z/b = 1.5 planes, which
both pass through the axes of each defect pore. We also note
that the confined Nb = 118 band appears to be degenerate with
the Nb = 119 band, which is not identified to be confined. This
quasi-paradox is likely due to the decreased accuracy of the
employed scaling method for small supercells, as previously
described in detail by us in Refs. [36,61].

Figure 7 shows the energy-density distribution W (r) for
two pairs of degenerate bands Nb = 109, 110 and 116, 117.
These bands are related to each other by the mirror
symmetries along the planes x/b ≈ 1.5 and z/b ≈ 1.5. In

FIG. 7. The x-z plane view of the energy-density isosurface [at
W (r) = �/3] of the degenerate pairs of 3D-confined bands in an
inverse woodpile cavity superlattice with regular pore radius R =
0.24a and defect pore radius R′ = 0.5R. The dashed lines indicate
the planes of the mirror symmetry between these pairs of bands, and
the red circles for the bands Nb = 116, 117 indicate where the mirror
symmetries are easily spotted.

solid-state physics, atomic orbitals are categorized as different
spherical multipoles [43]. This is possible due to the spherical
symmetry of the atomic geometry, with each multipole ex-
hibiting a lower symmetry than spherical symmetry. One thus
obtains three mutually orthogonal dipoles, each exhibiting
a 180◦ rotational symmetry along every plane. Whereas the
inverse woodpile structure obviously does not possess spher-
ical symmetry, it possesses lower symmetry, namely only
the x-z plane is rotationally symmetric with respect to 180◦.
This symmetry thus only allows for two mutually orthogo-
nal dipoles, which are both symmetric with respect to 180◦
rotation in the x-z plane. Indeed, this symmetry is exhibited
by the band pairs Nb = 109, 110 and 116, 117. We therefore
interpret these two pairs of degenerate bands to be generalized
dipoles for the case of the inverse woodpile structural sym-
metry. Moreover, within the limited set of the energy-density
profiles that we have visually investigated, it seems that if
the energy-density profile of a band is not symmetric with
respect to both the mirror planes x/b = 1.5 and z/b = 1.5,
the band turns out to be degenerate with another band that
complements these mirror symmetries. This symmetry rela-
tion could therefore be used to spot or confirm the presence
of degenerate bands in the inverse woodpile photonic band
structure and likely be generalized to other situations and 3D
structures.

We note that it may in practice be difficult to determine
band degeneracies from the band structure only, due to, e.g.,
numerical noise. As an example, the bands Nb = 114 and
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FIG. 8. The x-z plane view of the energy-density isosurface [at
W (r) = �/3] of the Cartesian Nb = 111 band in an inverse woodpile
cavity superlattice with varying regular pore radius R and constant
defect pore radius R′ = 0.5R.

115 exhibit a certain overlap in the band structures in Fig. 4,
similar to the degenerate bands Nb = 116 and 117. Only when
inspecting the field profiles of these bands, as in Fig. 6, does
it become clear that the bands are independent of each other.
Therefore, only after a detailed examination of both the band
structure and the mode profiles can one conclusively identify
whether bands are truly degenerate, and color them in the
band structures as in Fig. 4. Figure 8 shows the evolution of
the Nb = 111 band in structures with increasing pore radii R,
while maintaining the ratio R′/R. The energy-density maxi-
mum of the band changes with increasing R, which makes it
difficult to plot the same isosurface every time. Nevertheless,
the mode seems to maintain a similar symmetric profile shape
with strongly varying pore radius. This visualization confirms
the results from Fig. 15 below, i.e., that for the radii R = 0.15a
and 0.27a this band is not 3D-confined, since in both cases
the profile extends throughout the whole supercell, at least in
the x-z plane. It is remarkable that even for R = 0.27a, the
shape of the central volume still resembles the confined profile
seen for smaller radii. Overall, Fig. 8 offers the interesting

observation that, for a given band, its energy-density profile is
robust to strongly varying structural parameters of the under-
lying inverse woodpile structure.

V. ENHANCED LOCAL DENSITY OF STATES
AND CAVITY QED

It is well known that in thermodynamic equilibrium, the
time-averaged energy density Wω of the electromagnetic field
at frequency ω corresponds to the product of the average en-
ergy per mode w(ω, T ) and the local density of states (LDOS)
N (r, ω):

Wω(r, ω) = w(ω, T )N (r, ω), (1)

where T is the temperature; see, e.g., Ref. [2]. Expression
(1) indicates that by manipulating the energy density W , we
control the LDOS, which is a crucial control mechanism in
cQED [2]. A large LDOS is favorable for cQED applications,
initially for enhanced spontaneous emission and eventually,
at even larger LDOS, for cQED strong coupling whereby
quantum matter states are hybridized with photonic states
[5,6,30,32,34,66,67]. By positioning quantum dots within the
pores of inverse woodpile photonic crystal superlattices [68]
and coupling them at the correct electromagnetic frequencies,
it will be feasible to observe these cQED phenomena. It
is therefore important to investigate the energy-density and
LDOS enhancements of inverse woodpile cavity superlattices
in response to their structural parameters.

As discussed below in Sec. VI in Figs. 11–15, it appears
that larger pore radii R are generally more favorable towards
confining light with large local enhancements of the optical
energy density. Out of all investigated bands, Nb = 108 in
the case of the R = 0.27a, R′ = 1.2R structure has the largest
maximum energy density equal to � = 29.6. We therefore in-
vestigate the energy profile of this acceptorlike band in greater
detail.

Figure 9(a) shows the cross-section of the permittivity of
the investigated structure in the plane y/a = 1 for reference.
Figure 9(c) then shows the energy-density distribution W of
band Nb = 108 in the same plane. To investigate the energy
density more quantitatively, we plot W along the red line at
(x/b, y/a) = (1.23, 1), resulting in the cross-section shown
in Fig. 9(e). Figure 9(e) also shows the energy density for
extended states (band Nb = 54) for reference, to establish
the vacuum energy density level by inspecting W in the air
regions, from which we derive the vacuum energy density to
be around W = 0.03. From this cross-section, it is clear that
the band Nb = 108 has large energy-density peaks, but these
are restricted to the regions of high permittivity. In the central
cavity region, the distribution of W within the large pore
varies considerably and is an order of magnitude greater at
the pore walls than at the pore center. Taking into account that
quantum dots embedded in an inverse woodpile crystal may
stick to the silicon walls, this structure could provide an LDOS
enhancement of around one order of magnitude compared to
the vacuum level. Nevertheless, overall it appears that the lack
of silicon and air regions that are too large significantly restrict
the energy density distribution in the acceptorlike structure,
thus making it a sub-par candidate for cQED applications.
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FIG. 9. Energy enhancement in two different inverse woodpile
structures. (a), (c), (e) Acceptorlike structure with regular pore
radii R = 0.27a, defect pore radii R′ = 1.2R, band number Nb =
108. (b), (d), (f) Donorlike structure with regular pore radii R =
0.26a, defect pore radii R′ = 0.5R, band number Nb = 109. (a) Per-
mittivity distribution of the acceptorlike structure in the y/a = 1
plane. (b) Permittivity distribution of the donorlike structure in the
y/a = 1.13 plane. (c) Energy density distribution of the acceptorlike
band Nb = 108 in the y/a = 1 plane. (d) Energy density distribu-
tion of the donorlike band Nb = 109 in the y/a = 1.13 plane. (e)
Cross-section of the energy density distribution for the (x/b, y/a) =
(1.23, 1) line, denoted by the red line in (c). Depicted is the
confined band Nb = 108 and a reference extended band Nb = 54.
(f) Cross-section of the energy density distribution for the
(x/b, y/a) = (1.60, 1.13) line, denoted by the red line in (d). De-
picted is the confined band Nb = 109 and for reference the extended
band Nb = 54.

To observe the influence of donorlike structures with R′ <

R on the energy density enhancement, we investigate the
band Nb = 109 in the superlattice with regular pore radius
R = 0.26a and defect pores R′ = 0.5R, which exhibits the
maximal energy density � = 25.7, which is the largest among
the donorlike structures we studied. The permittivity distri-
bution of this structure in the plane y/a = 1.13 is shown in
Fig. 9(b) and the energy density distribution of confined band
Nb = 109 in the same plane is shown in Fig. 9(d). Figure 9(f)
shows the energy density distribution along the red line in
Fig. 9(d), given by (x/b, y/a) = (1.60, 1.13). We show also
the energy density distribution for extended states (in band
Nb = 54) for reference. In this case, since the air volume is
much smaller compared to the amount of silicon around the
cavity, the energy density within the central defect pore is only
slightly less than the high-energy density in the surrounding

FIG. 10. Band structures and mode profiles pertaining to our
study of energy density and LDOS enhancement in 3D inverse wood-
pile cavity superlattices. (a) Band structure for regular pore radius
R = 0.27a and defect pore radius R′ = 1.2R with the studied band
Nb = 108 marked in red. (b) Band structure for regular pore radius
R = 0.26a and defect pore radius R′ = 0.5R with the studied band
Nb = 109 marked in red. (c) x-z plane view of the energy-density
isosurface [at W (r) = �/3] for band Nb = 108, for regular pore
radius R = 0.27a and defect pore radius R′ = 1.2R. (d) x-z plane
view of the energy-density isosurface [at W (r) = �/3] for band
Nb = 109, for regular pore radius R = 0.26a and defect pore radius
R′ = 0.6.

high-index silicon backbone. Overall, even at the center of
the defect pore where W shows a local minimum, the energy
density is more than two orders of magnitude greater than the
vacuum energy density that is equal to W = 0.01. Therefore,
the LDOS is two orders of magnitude enhanced compared
to the vacuum LDOS. For completeness, the band structures
containing the bands studied in this section as well as their
mode profiles are illustrated in Fig. 10. To conclude the dis-
cussion on the enhanced LDOS, we observed three competing
phenomena with regard to cQED applications: First, donorlike
cavities are preferable for cQED due to larger silicon and
smaller air regions. Second, as explained below in more detail,
larger defect pore deviations, i.e., smaller defect pore radii
R′ for donorlike structures, favor the appearance of a larger
number of strongly confined bands. Third, larger defect pore
radii R′ appear to favor more concentrated energy density.
From our investigation it therefore seems that a good balance
between these three requirements could occur around the de-
fect pore radius R′ ≈ 0.6R, slightly above half the regular pore
radius R.

VI. CONFINEMENT MAPS

A. Confinement versus defect pore radius

Figure 11 shows the confinement map of c = 3 point-
confined bands in an inverse woodpile superlattice with
regular pore radius R = 0.24a while varying the radii R′ of
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MAREK KOZOŇ et al. PHYSICAL REVIEW B 109, 235141 (2024)

FIG. 11. Confinement map of point-confined c = 3 bands in an
inverse woodpile cavity superlattice with regular pore radius R =
0.24a and varying defect pore radii R′. The perfect crystal case
occurs at R′/R = 1 as denoted by the dashed vertical line. Each point
represents the average reduced frequency of a point-confined band,
and the dashed red lines represent the edges of the band gap of a
perfect crystal. The color and shape of the symbols correspond to
their maximum energy densities �, as given in the legend.

the defect pores. We observe four salient features: First, there
is a threshold in the defect pore radius, that is, a certain
minimal deviation of the defect pore radius from the regular
one necessary for the 3D-confined bands to be present. In this
case, this threshold appears to be R′ � 0.8R or R′ � 1.2R.

Second, we observe that for R′ < R, the confined bands
descend into the band gap from its upper band edge, while for
R′ > R, the confined bands ascend from the lower band edge.
This notion agrees with the analysis of Ref. [69] and with the
semiconductor analogy, where R′ < R corresponds to donor
doping while R′ > R is analogous to acceptor doping [43]. In
the photonic case, we interpret this behavior using the energy
functional

U (Ek ) =
∫

VS
|∇k × Ek|2dV

∫
VS

ε|Ek|2dV
, (2)

where ∇k := ∇ + ik, VS denotes the superlattice volume, and
Ek is the periodic part of a specific band mode at wave-vector
k. It is known that each higher-frequency mode Ek minimizes
the functional U (Ek ) in the space orthogonal to all the lower-
frequency modes; see Ref. [41]. Decreasing the size of the
defect pores R′ < R results in additional high-index silicon
in the crystal, which allows for a proportionally larger con-
centration of the electromagnetic energy inside the high-index
material, thus lowering the minimum of the energy functional
for the given mode and ultimately pushing the bands from the
top of the band gap downwards. On the other hand, increasing
the size of the defect pores R′ > R results in more air in the
structure and thus restricts the freedom of concentrating the
energy in the high-index material for the bands below the
band gap, thereby pushing them upwards into the gap. In this
regard, it is also relevant that larger deviations of the defect
pore radius R′ from the regular pore radius R provide more
3D-confined bands.

FIG. 12. Confinement map of point-confined c = 3 bands in an
inverse woodpile superlattice with regular pore radius R = 0.27a
and varying defect pore radii R′. The unperturbed crystal occurs
at R′/R = 1 as denoted by the dashed vertical line. Each point
represents the average reduced frequency of a point-confined band
and the dashed red lines represent the edges of the band gap of an
unperturbed crystal. The color and shape of the symbols correspond
to their values of maximum energy density �, as described in the
legend.

Third, the confined bands exhibit a clear upward moving
trend with increasing R′/R, until they disappear in the top edge
of the band gap, creating groups separated by frequency gaps.
It is worth noting that even though there are more confined
bands for small defect pore sizes, only the large enough defect
radii R′ � 0.3R provide the value of � > 10, corresponding to
large energy concentration.

Fourth, these confined bands do not abruptly disappear
at the edges of the band gap, but sometimes extend slightly
beyond them; specifically, some confined bands cross the
bottom edge of the gap for R′ < R, whereas certain bands
cross the top gap edge for R′ > R. This may be understood
because the decrease of the defect pore radius increases the
total silicon volume fraction of the underlying photonic band
gap crystal, thus effectively shifting the whole band structure
slightly down for R′ < R, whereas the opposite happens for
R′ > R, where the lower silicon volume fraction shifts the
band structure slightly up.

We note that the specific case of R = 0.24a, R′ = 0.5R was
previously investigated by means of a naive band-structure
analysis by Refs. [23,27,35], all of which found only five
3D-confined bands. Using our novel systematic confinement
identification method from Refs. [36,61], we discover that
there are in total 10 3D-confined bands for the same physical
conditions. Figure 12 shows the confinement map of c = 3
point-confined bands in an inverse woodpile superlattice with
larger regular pore radii R = 0.27a, while varying the radius
R′ of the defect pores. The behavior of the bands is similar to
that for R = 0.24a in Fig. 11, with groups of bands moving
from the low-frequency edge of the band gap upwards and
disappearing at the upper edge as R′/R increases. There are,
however, three qualitative differences compared to the R =
0.24a case. First, in this case, c = 3 defect bands are observed
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FIG. 13. Confinement map of point-confined c = 3 bands in an
inverse woodpile superlattice with regular pore radius R = 0.18a
and varying radius R′ of the crossing defect pores. The case of
the unperturbed crystal corresponds to R′/R = 1 and is denoted by
the dashed vertical line. Each point represents the average reduced
frequency of a point-confined band and the dashed red lines represent
the edges of the band gap of an unperturbed crystal. The color and
shape of the symbols correspond to their values of maximum energy
density �, as described in the legend.

already for R′ = 1.1R, thus reducing the pore radius threshold
compared to R = 0.24a. Second, the bands with high-energy
concentration � > 10 are now sprinkled across the whole
plot, suggesting that energy concentration prefers larger pore
radii R.

Third, we see here several bands exceeding the top of
the band gap for R′ < R, which cannot be explained by the
differences in silicon volume fraction. These bands are indeed
3D-confined, as confirmed by visually inspecting their energy
density distribution, so this is not an artifact of the employed
method. This observation confirms what was already hinted at
by the results of Ref. [61], namely that the confinement does
not suddenly stop at the top edge of the band gap, for R′ < R.
At frequencies above the point-confined c = 3 bands, linearly
confined c = 2 bands appear, as seen in Ref. [61]. It follows
from this observation that the bands at the top of the band gap
lose their confinement properties only gradually, transitioning
from c = 3 through c = 2 until they become extended c = 0
bands. Such (partially) confined bands outside the band gap
may possibly correspond to symmetry-protected bound states
in the continuum; see Ref. [70]. In contrast, the lower band
gap edge appears to be a much stricter boundary, even when
the slight shift with respect to the change in the silicon
volume fraction is accounted for. This has also been observed
in experiments, where the position of this edge provided great
help when analyzing the wave confinement and connecting
the experiments with the theory [37]. Analogously, for R′ > R
the role of the band edges is exchanged and the upper band
edge acts as a hard boundary, only slightly shifted by the
change in the silicon volume fraction, while at the lower band
edge the bands seem to lose their confinement properties only
gradually.

Figure 13 shows the map of c = 3 point-confined bands in
an inverse woodpile superlattice with small regular pores of

FIG. 14. Confinement map of point-confined c = 3 bands in an
inverse woodpile superlattice with varying regular crystal pore radii
R and constant ratio R′/R = 0.5. Each data point represents the aver-
age reduced frequency of a point-confined band and the dashed red
lines represent the edges of the band gap of an unperturbed crystal.
The color and shape of the symbols correspond to their maximum
energy densities �, as given in the legend.

the radius R = 0.18a, while varying the radius R′ of the defect
pore. Once again, we observe groups of bands emerging from
the top of the band gap and descending into the gap with
decreasing pore radius. A crucial observation here is that
no 3D-confined bands have been found for the defect pore
radii R′ > 0.6R, including no confined acceptorlike bands for
R′ > R. Notably, there is also a lack of bands with � > 10,
which means that for R = 0.18a the energy concentration is
in general weaker than in the case of larger pores.

There seems to be a significant preference for both the
existence and the strength of 3D confinement in structures
with larger regular pores. This discovery is of considerable
practical importance, since in photonic crystal fabrication it is
easier to fabricate high-quality pores when they have smaller
radii [54], as larger pores increase the likelihood that the
structure collapses. (For examples of some successfully fab-
ricated and studied structures as well as a collapsed one, see
Refs. [59,71].) Our research thus offers important guidelines
for manufacturing inverse woodpile superlattices for confine-
ment experiments and applications.

B. Confinement versus regular pore radius

Figure 14 shows the map of c = 3 point-confined bands
in an inverse woodpile superlattice from an alternative point
of view, where the ratio between the defect and the regular
pore radius R′/R = 0.5 is kept constant, whereas the radius of
the crystal pores R is tuned. For viewing convenience, we also
replotted these data in Fig. 15, where we subtract the band gap
center frequency ωc at each R from the band frequencies.

First of all, it is remarkable that even though the band
gap has nonzero width, there are no 3D-confined bands for
crystal pore radii R = 0.15a and 0.16a. This is not the case at
the opposite side of the band gap, where 3D-confined bands
appear even very close to its closing at R = 0.29a. Simi-
larly to the other studied cases, we observe that high-energy
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FIG. 15. Confinement map of point-confined c = 3 bands in an
inverse woodpile superlattice with varying regular pore radius R and
constant ratio R′/R = 0.5. This plot shows the same data as Fig. 14,
but the frequency of each structure has been adjusted by subtracting
the center of the band gap for each regular pore radius R. Each point
represents the average relative frequency of a point-confined band
and the dashed red lines represent the edges of the band gap of an
unperturbed crystal. The color and shape of the symbols correspond
to their values of maximum energy density �, as described in the
legend.

densities � > 10 appear only in structures with larger pore
radii R � 0.20a. All these observations together agree with
our statement above that the strongly confined bands are more
abundant in structures with larger pores. There is also a visible
movement of the confined bands from the top of the band gap
towards its bottom, as R/a increases. These bands again form
groups, which get more separated in frequency from each
other as the band gap becomes wider.

VII. CONCLUSIONS

In this paper, we have performed a computational study
of optical waves confined in 3D inverse woodpile photonic
band gap cavity superlattices, with respect to the main struc-
tural parameters of the superlattices, namely the regular and
the defect pore radii. We have created maps of 3D-confined
bands via various cross-sections through the parameter space
of the two pore radii, and we used these maps to analyze the
influence of the superlattice structure on the confinement. We
find that larger regular pore radii favor more confined bands,
and these bands also tend to have higher concentrated energy
densities.

Simultaneously, we have analyzed the symmetries of
salient 3D-confined bands in 3D inverse woodpile photonic
band gap cavity superlattices. We conclude that the pho-
tonic band gap cavity superlattice bands exhibit very different
symmetries compared to electronic orbitals known from solid-
state physics, which is caused by the underlying crystal
geometry and facilitated by the fact that our states here de-
rive from global Bloch states, whereas atomic orbitals are
localized. We propose that attention should be given to band
symmetries in “photonic solid-state matter” and their influ-
ence on the properties of these materials.

We have analyzed the potential of the inverse woodpile
photonic band gap cavity superlattices for cavity QED appli-
cations. To this end, a large concentration of energy density,
proportional to LDOS, must be present in the defect-pore re-
gion. We find that even though the acceptorlike structures with
defect pores larger than the regular pores may offer higher en-
ergy concentration, this energy is mostly concentrated in small
regions of silicon and decays rapidly in air. On the other hand,
the investigated donorlike structure, despite exhibiting less
concentrated energy density, provides overall higher values
of energy density within the cavity due to larger silicon and
smaller air volumes inside. Therefore, donorlike structures
seem to be more favorable for spontaneous emission control.

In future, more data should be gathered and analyzed to
obtain an even deeper understanding of the confinement be-
havior of inverse woodpile superlattices. Analyzing electric
field components instead of only the energy density will pro-
vide further insight into the mode topology of each band,
especially regarding even/odd symmetries. Moreover, a future
study should be extended to encompass not only 3D-confined
bands but also 2D-confined ones, which have been previously
shown to exist in these structures as well. Finally, this type of
investigation should be extended to other classes of photonic
superlattices that are being pursued in other labs worldwide.
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[61] M. Kozoň, R. Schrijver, M. Schlottbom, J. J. W. Van Der Vegt,
and W. L. Vos, Opt. Express 31, 31177 (2023).

235141-11

https://doi.org/10.1103/PhysRevLett.95.067401
https://doi.org/10.1364/OL.43.002917
https://doi.org/10.1038/nature01371
https://doi.org/10.1126/science.aaz3071
https://doi.org/10.1103/PhysRevLett.96.097401
https://doi.org/10.1038/nature17974
https://doi.org/10.1063/1.3176442
https://doi.org/10.1063/1.3107263
https://doi.org/10.1364/OE.18.008781
https://doi.org/10.1038/nature02063
https://doi.org/10.1038/nmat1320
https://doi.org/10.7567/1882-0786/ab5978
https://doi.org/10.1103/PhysRevLett.67.3380
https://doi.org/10.1103/PhysRevB.51.13961
https://doi.org/10.1103/PhysRevB.66.165211
https://doi.org/10.1126/science.1097968
https://doi.org/10.1038/nphoton.2010.286
https://doi.org/10.1103/PhysRevB.90.115140
https://doi.org/10.1364/JOSAB.32.000639
https://doi.org/10.1364/OL.27.000512
https://doi.org/10.1364/OE.423475
https://doi.org/10.1103/PhysRevB.99.075112
https://doi.org/10.1038/nphoton.2008.146
https://doi.org/10.1038/35036532
https://doi.org/10.1063/5.0051675
https://doi.org/10.1038/nature03119
https://doi.org/10.1103/RevModPhys.87.347
https://doi.org/10.1126/science.aau4691
https://doi.org/10.1103/PhysRevB.99.115308
https://doi.org/10.1103/PhysRevLett.129.176401
https://arxiv.org/abs/2303.16018
https://doi.org/10.1103/PhysRevB.62.9872
https://doi.org/10.1103/PhysRevLett.58.2059
https://doi.org/10.1103/PhysRevLett.58.2486
https://doi.org/10.1002/adfm.200901838
https://doi.org/10.1103/PhysRevLett.78.5014
https://doi.org/10.1063/1.3103777
https://doi.org/10.1038/nmat1201
https://doi.org/10.1016/0038-1098(94)90202-X
https://doi.org/10.1063/1.1842855
https://doi.org/10.1088/0957-4484/19/14/145304
https://doi.org/10.1116/1.3662000
https://doi.org/10.1002/adfm.201101101
https://doi.org/10.1088/0957-4484/26/50/505302
https://doi.org/10.1088/1361-6528/acc034
https://doi.org/10.1063/1.1593796
https://doi.org/10.1103/PhysRevB.95.155141
https://doi.org/10.1103/PhysRevLett.107.193903
https://doi.org/10.1103/PhysRevB.83.205313
https://doi.org/10.1364/OE.28.002683
https://doi.org/10.1103/PhysRevLett.126.177402
https://doi.org/10.1364/OE.492014
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