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Negative charge-transfer energy in SrFeO3 revisited with hard x-ray photoemission spectroscopy
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We report hard x-ray photoelectron spectroscopy on SrFeO3 which is one of the classical conducting
transition-metal oxides with a noncollinear magnetic structure. The obtained spectra show a detailed charge-
transfer (CT) satellite structure, the Fe 2p3/2 main peak exhibits multiplet splitting, and the deterioration signs
present in previous reports are absent here, allowing for a better determination of its intrinsic electronic structure.
The results are well described by a FeO6 cluster model with a charge-transfer energy of about −1.0 eV,
confirming the values obtained in the previous works. The negative CT energy indicates that the electronic
configuration of the tetravalent Fe is d5L rather than d4 where L represents an O 2p hole. The small spectral
weight observed at the Fermi level indicates the correlated metallic state with localized Fe 3d electrons and
mobile O 2p holes which are governed by a large d-d Coulomb interaction and negative CT energy.
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I. INTRODUCTION

In high valence transition-metal oxides, oxygen-to-metal
charge-transfer (CT) energy frequently becomes negative and
the ground state electronic configuration is dominated by
dn+1L (L: oxygen 2p hole) rather than dn [1–3]. Since the
CT gap is expected to collapse with a negative CT value,
such transition-metal oxides tend to be metallic. However, the
strong hybridization between the O 2p and transition-metal
d orbitals can open an energy gap at the Fermi level in spe-
cific lattice geometries [4,5] or under lattice distortions due
to charge/orbital ordering [6–8]. In addition, the oxygen 2p
holes play important roles in LixMO2 (M = Mn, Co, and Ni)
cathodes of Li-ion batteries [9–11].

Among high valence transition-metal oxides, perovskite-
type Fe4+ oxides (with a crystal structure as illustrated in
Fig. 1(a)) exhibit rich physical properties including the he-
lical magnetic structure of SrFeO3 [12–14] and Fe3+/Fe5+

charge disproportionation in CaFeO3 [15,16]. SrFeO3 is a
good conductor. A high density of states of Fe 3d at the
Fermi level is predicted by density functional theory (DFT)
calculations with a local density approximation (LDA) [17].
On the other hand, soft x-ray photoemission studies revealed a
small spectral weight at the Fermi level [2,18] which is partly
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consistent with LDA+U calculations [19]. The cluster-model
analysis of the Fe 2p core-level spectra shows negative CT
energy [2] which makes the ground state dominated by d5L
[Fig. 1(b)]. The small spectral weight at the Fermi level orig-
inates from the large on-site Coulomb interaction U between
Fe 3d electrons. The helical magnetic structure is theoretically
explained in a d-p lattice model with negative CT energy [20].
The single-crystal growth of SrFeO3 [21] provided a new plat-
form to study the transport properties of SrFeO3, SrFeO3−δ ,
and SrFe1−xCoxO3 under a magnetic field [22–26]. Bilayer
Sr3Fe2O7 exhibits an interesting interplay between the helical
magnetism and the charge disproportionation Fe3+/Fe5+ [27].
Since the CT energy is negative in the Fe4+ oxides, the valence
change from Fe4+ to Fe3+/Fe5+ corresponds to d5L + d5L →
d5L2 + d5 rather than d4 + d4 → d3 + d5 [5]. Very recently,
the electronic properties of SrFeO3 with negative CT energy
have gained renewed interest due to the emergence of topolog-
ical spin textures [28]. In addition, the spatial distributions of
the Fe 3d electrons have been mapped by the core differential
Fourier synthesis of high-resolution x-ray diffraction data,
confirming the d5L electronic configuration [29].

In this context, it is highly important to study the precise
electronic structure of single-crystalline SrFeO3 by means
of bulk-sensitive hard x-ray spectroscopy. The target of this
paper is twofold. In correlated electron systems, pictures es-
tablished by more surface-sensitive soft x-ray photoemission
spectroscopy have been challenged by bulk-sensitive hard x-
ray photoemission spectroscopy (HAXPES) [31–35]. In the
particular case of SrFeO3, spectral features thought to be from
the surface or grain boundary contributions were reported in a
previous study by Bocquet et al. [2], which still remains as one
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FIG. 1. (a) Crystal structure of SrFeO3 illustrated by VESTA [30].
The green (red) spheres represent the Sr (O) ions and the brown octa-
hedra correspond to the FeO6 octahedra. (b) Electronic configuration
for the d5L state of Fe4+.

of the main works of reference for such systems after more
than 30 years since its publication. Thus, there is indeed a need
for a bulk-sensitive HAXPES experiment on single-crystalline
samples to verify the intrinsic character of the conclusions
drawn in the past. The main purpose of this paper is thus
to revisit the oxygen hole picture of SrFeO3 by means of a
state-of-the-art HAXPES measurement. The secondary pur-
pose is to provide information of the bulk electronic structure
of SrFeO3 which is currently attracting great interest as an en-
vironmentally friendly energy material [36–38]. The present
paper reports HAXPES results on high-quality single crystals
of SrFeO3. Detailed line shapes of the Fe 2p main peaks and
CT satellites are successfully obtained and allow a precise
cluster model analysis confirming the negative CT energy.
The spectral weight at the Fermi level is clearly observed,
suggesting that the O 2p states are strongly hybridized with
Fe 3d near the Fermi level probably preventing the charge
disproportionation.

II. METHODS

Single crystals of SrFeO3 were grown as reported in the
literature [21,29]. HAXPES measurements were performed at
the Max-Planck-NSRRC HAXPES endstation with a MB Sci-
entific A-1 HE analyzer, Taiwan undulator beamline BL12XU
of SPring-8 [39,40]. The photon energy was set to 6.5 keV and
the total energy resolution was about 300 meV. The binding
energy of the HAXPES spectra was calibrated using the Fermi
edge of Au. The x-ray incidence angle was about 15◦, and the
photoelectron detection angle was 90◦. The radius of the beam
spot was about 50 µm. The first SrFeO3 sample was clamped
on an aluminum sample holder. A second SrFeO3 sample was
glued to an aluminum sample holder using a commercial Ag
epoxy, and was heated at about 100 ◦C for about 10 min
in the air for curing the epoxy. Both samples were coated
with a thick layer of carbon paint and were cleaved with a
knife cleaver under an ultrahigh vacuum of 10−9 mbar at
room temperature in order to expose a fresh surface for the
measurement and to ensure that no signal would come from
the uncleaved regions of the sample. The measurements were
performed at 80 K to prevent the degradation of the sample
during its exposure to the x rays.

To compute the total and partial (i.e., orbitally re-
solved) single-particle density of states (DOS, PDOS), we
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FIG. 2. (a) O 1s, (b) Sr 3p, and (c) Fe 2p core-level spectra of
SrFeO3 from the HAXPES experiments on the clamped (black) and
glued (red) samples, together with the spectra from Bonquet et al. [2].
(d) Closeup of the Fe 2p3/2 peak.

performed non-spin-polarized (scalar relativistic) DFT calcu-
lations within the LDA using the full-potential local-orbital
(FPLO) code [41]. For the Brillouin zone (BZ) integration we
used the tetrahedron method with a 12 × 12 × 12 k mesh. For
the DFT+U calculations, the values U = 2, 4, and 6 eV and
J = 1.0 eV were used. Full multiplet configuration interaction
calculations on the FeO6 cluster model have been performed
using the XTLS 9.25 code [42,43]. The initial (final) states are
given by linear combinations of d4, d5L, and d6L2 (cd4, cd5L,
and d6L2) configurations in which L represents a hole in the
O 2p orbitals (and c represents a core hole) [44].

III. CORE LEVELS

Figure 2(a) displays the core-level spectra of O 1s. We
observe that the clamped sample displays a sharp and intense
main peak, followed by a weak feature on the higher binding
energy side at around 532 eV, likely originating from the
carbon paint, slightly visible also in Fig. 2(b) next to the Sr
3p. The glued sample, however, displays a broader, highly
asymmetric main peak with a large tail, similar to the soft
XPS spectra on polycrystalline samples reported in Bocquet
et al. [2] or from ex situ measurements on thin films [45]. This
indicates that the oxygen ions in the glued sample are not all in
a single, equivalent chemical environment, suggesting already
the possibility of some form of degradation or oxygen loss as
we will discuss later.
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Figure 2(b) displays the Sr 3p spectra. The clamped sample
displays a sharper and more symmetric peak line shape, while
in the glued sample, the peak is broader and more asymmetric,
indicating the presence of a different Sr component as well.
This is also similar with the observation in the Sr 3d core-level
spectra in Bocquet et al., where an additional Sr component is
required to explain the experimental spectra.

As shown in Fig. 2(c), the Fe 2p spectrum of the clamped
sample exhibits richer and more detailed spectral features than
the glued one or in the previous works in the literature [2,45].
The main line of Fe 2p3/2 [Fig. 2(d)] exhibits a double-peak
structure which is not observed either in the previous work or
in the glued sample. Here, we note in particular that in the
clamped and glued samples the main peaks show otherwise
a matching width, indicating that the disappearance of the
lower-energy peak is not due to a simple spectral broadening.
Furthermore, a more detailed and clear charge-transfer satel-
lite structure is observed. We can then make use of the more
detailed spectral features from the spectrum of the clamped
sample and analyze them with a FeO6 configuration interac-
tion full multiplet cluster model as described below.

Starting with the CT energy �, shown in Fig. 3(a), changes
in � result in changes mainly in the double-peak structure
of the main peak line shape. Overall, the satellite position
and shapes are not too sensitive to the differences between
a small, but positive, � (where the ground state is already
dominated by a d5L configuration) to more negative values.
However, the observation of the double-peak structure allows
a finer tuning, as larger values of � result in splittings that
are beyond that in the experimental spectra. The position of
the double-peak structure is best reproduced with a value of
around � = −1 eV. Some details, such as the asymmetries
of some features, are not captured in the cluster model, and
can be attributed to the simplified description of the ligand
states, with a bandlike description [35] or the use of dynam-
ical mean-field theory (DMFT) being necessary to reproduce
them. Next, we show in Fig. 3(b) a parameter sweep for the
Fe-O transfer integral Veg. Here, we observe that the position
of the satellite features are extremely sensitive to Veg. In our
HAXPES spectra, as discussed earlier, we can observe in more
detail the satellite structures, such as the small bump followed
by a dip in A, or the higher energy satellites B1 and B2. Those
structures, present in our simple cluster model calculations,
can be once again used to finely determine the parameter val-
ues, with a value of around Veg = −2.4 eV providing the best
match. From the optimized parameter values [43] we obtain
a ground state that has 24.5% d4, 63.2% d5L, and 12.3%
d6L2, consistent with the dominant d5L character regularly
reported in the literature [2,29,46,47], and with an average Fe
occupation of 4.88, very close albeit slightly higher than the
previously reported range of 4.64–4.8 [29,46,47].

IV. VALENCE BAND

Figure 4(a) shows the valence-band spectrum of SrFeO3.
The spectrum consists of two main broad features, the deeper
one from around 7 to 4 eV, and the other one at around 2–3 eV.
On the lower-energy side, a tail extends from around 2 eV up
to the Fermi energy. Similar to the measurements from the
literature at lower photon energies [2,45] our bulk-sensitive

20 15 10 5 0

In
te
ns
ity
(a
rb
.u
ni
ts
)

Energy (eV)

Δ (eV)
3.0

1.0

-1.0

-3.0

740 735 730 725 720 715 710 705
Binding energy (eV)

20 15 10 5 0

In
te
ns
ity
(a
rb
.u
ni
ts
)

Energy (eV)

AB1B2

VEg (eV)
-2.8

-2.4

-2.0

-1.6

-1.2

(a) Fe4+O6 cluster, Δ sweep

(b) Fe4+O6 cluster, V sweep

740 735 730 725 720 715 710 705
Binding energy (eV)

FIG. 3. Experimental Fe 2p HAXPES spectrum from the
clamped sample (black), together with spectra calculated using the
FeO6 cluster model. (a) Veg is fixed to −2.4 and the value of � is
changed. (b) � is fixed to −1.0 and the value of Veg is changed.

HAXPES finds a suppressed but nonzero spectral weight near
the Fermi energy, confirming the bulk nature of the almost-
gapped electronic structure.

In order to understand the valence-band spectrum, we have
performed a variety of calculations. First, Fig. 4(b) shows
LDA calculations, where the Fe 3d states are predicted to
be largely around the Fermi energy. Considering the pho-
toionization cross sections [48] at the 6.5 keV used in our
experiment, we see that the O 2p contributions are expected
to be fully suppressed [Fig. 4(c)], and instead, the small Sr
4p contributions form its hybridization with the O 2p and
the Fe 4s are strongly enhanced [40]. However, even after
considering the cross sections, we observe that the Fe 3d
states from the LDA calculations are clearly incompatible
with the almost zero weight around the Fermi energy. We can
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FIG. 4. (a) Valence-band HAXPES spectrum of SrFeO3.
(b) PDOS of the main relevant contributions calculated by LDA.
(c) PDOS multiplied by their respective photoionization cross sec-
tions at 6.5 keV. (d) Fe 3d PDOS calculated using LDA+U (U = 2,
4, and 6 eV). The contributions displayed with positive intensity
correspond to the majority spin and those with negative intensity
to the minority spin. (e) Cluster model calculations of the valence
band (thick solid line). In the cluster calculations, the Fermi energy
has been chosen to match the end of the tail from the first emission
feature. The dotted lines show the Fe 4s, Sr 4p, and O 2p PDOS from
LDA after the inclusion of cross sections, and the Fe 3d are scaled to
match the integrated intensity of the Fe 3d occupied PDOS after the
inclusion of cross sections to allow for a better comparison with the
LDA.

simulate the effects of correlations by performing LDA+U ,
as shown in Fig. 4(d). We observe that even small values of
U are able to shift the Fe 3d states away from the Fermi
energy, indicating thus the importance of correlation effects

to understand the valence structure. However, as is often seen
in LDA+U calculations for systems with strong correlations,
with realistic values of the Coulomb repulsion of around
U = 6 eV, the states are pushed too deep to be compatible
with the experimental observations. The cluster calculations
of the valence band [Fig. 4(e)] performed with the parameters
obtained from the core-level study, however, provide a Fe 3d
spectrum that is more compatible with the experimental struc-
ture, by providing, together with the Sr 4p, a spectral weight
between −5 eV and the Fermi energy and the uncorrelated
Fe 4s states accounting for the remaining spectral weight at
around −6 eV. The good solution provided by the cluster
model indicates that even for the valence Fe 3d electrons,
the local environment and interactions might dominate over
longer-ranged band formations.

V. DISCUSSIONS

A comparison of the spectra observed from the glued
(i.e., lightly heat treated) and the clamped sample shows
several differences that are compatible with some form of
sample degradation, such as oxygen loss. As the heating was
performed ex situ before the in situ cleave previous to the
measurement, this indicates that the relatively short, mild
heating does not only affect near the surfaces but also the
bulk of the material. The use of epoxy glues that require
thermal treatment for curing is a very commonly used sample
preparation for a wide variety of experimental techniques, and
from our results, we find that alternative methods might be
best to study the intrinsic electronic structure or properties of
SrFeO3.

In the Fe 2p core-level spectrum of the clamped sample,
we observe a double-peak structure in the 2p3/2 main line as
well as clear satellite features. Such double-peak structures
have also been observed in octahedrally coordinated Fe2+ and
Fe3+ [49,50] and successfully explained with the multiplet
structures [51,52]. However, they often fail to materialize
in other experimental studies, resulting in displaying only a
single peak, with surface effects, oxygen deficiencies, mixing
of other Fe valencies, etc., being suggested as some of the
possible causes [49,50]. The clear observation of the double
peak is thus an indication of a pure system. This is consistent
with our results on SrFeO3, where the glued, degraded sample
does not display the splitting. Similarly, the spectra reported
in Bocquet et al.’s work [2] did not present the double-peak
structure, and did feature similar trends observed on the glued
sample compatible with some form of degradation, suggesting
that heat treatments or the less-bulk-sensitive character of the
measurements might have affected the spectra.

Nevertheless, the conclusions obtained from the cluster
model calculations using the additional details observed in
our spectra do not significantly deviate from those of the past
studies, indicating that, while there are degradation/surface
differences detectable with spectroscopy, those might either
be very minor or their effects on the Fe electronic states not
too significant.

Finally, the HAXPES valence-band spectrum confirms that
the suppression at the Fermi energy is intrinsic from the bulk.
This, once again, highlights the importance of correlation
effects, with the agreement of the cluster results indicating
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that indeed the Fe 3d states are relatively localized. Thus, it
is to be expected that the oxygen holes left by the negative CT
energy play an important role in the metallicity of the system.

VI. CONCLUSIONS

In conclusion, we have revisited the electronic structure of
SrFeO3 by means of HAXPES. The spectra on samples that
were not heated during their preparation display cleaner spec-
tra without the signatures that can be attributed to some form
of degradation. More detailed features are found, including
the multiplet splitting on the Fe 2p3/2 main peak. By using
a Fe4+O6 cluster model, we confirm a negative CT energy
of about −1.0 eV, with d5L as the dominant configuration.
The results do not significantly deviate much from past results
from samples that show signs of degradation, indicating that
those effects might be very minor or not significantly affect
the Fe electronic states. Finally, the small spectral weight
at the Fermi level observed in the valence band indicates a
correlated metallic state with the localized Fe 3d electrons
and the mobile O 2p holes which are governed by the large
d-d Coulomb interaction and the negative CT energy.
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APPENDIX

The wide scans of the two samples of SrFeO3 are displayed
in Fig. 5. The core-level peaks of O 1s, Sr 3s/3p/3d/4s/4p,
and Fe 2p/3s/3p are observed, as expected from the com-
position, with no other element impurities (other than some
carbon, as discussed in the main text) detected.
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