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Quantum kinetic equation and thermal conductivity tensor for bosons
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We systematically derive the quantum kinetic equation in full phase space for any quadratic Hamiltonian
of bosonic fields, including in the absence of translational invariance. This enables the treatment of boundaries,
inhomogeneous systems, and states with nontrivial textures, such as skyrmions in the context of magnetic bosons.
We relate the evolution of the distribution of bosons in phase space to single-electron, band-diagonal physical
quantities such as Berry curvature and energy magnetization by providing a procedure to “diagonalize” the
Hamiltonian in phase space, using the formalism of the Moyal product. We obtain exact equations, which can
be expanded order by order, for example, in the “smallness” of the spatial gradients, providing a “semiclassical”
approximation. In turn, at first order, we recover the usual full Boltzmann equation and give a self-contained and
exact derivation of the intrinsic thermal Hall effect of bosons. The formulation clarifies the contribution from
“energy magnetization” in a natural manner, and does not require the inclusion of Luttinger’s pseudogravitational
field to obtain thermal transport quantities.
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I. INTRODUCTION

It is now widely recognized that the dynamics of elec-
trons in energy bands is fundamentally affected by topological
and geometric aspects of the Bloch eigenstates. This is de-
scribed semiclassically by Berry phases and curvatures, which
enter the equations of motion for a wave packet [1]. The
same ideas apply to any smooth collection of nondegenerate
single-particle states indexed by continuous parameters, and
in particular to bosonic elementary excitations like phonons
or magnons [2,3]. These concepts are particularly powerful in
describing out of, but near, equilibrium phenomena such as
charge and energy transport: incorporating the semiclassical
topological dynamics into a Boltzmann description provides
the most compact and intuitive understanding of the anoma-
lous Hall effect, as well as many other transport properties
[4–9]. Being semiclassical, i.e., allowing simultaneous con-
sideration of position and momentum, such a method also
makes it possible to treat inhomogeneous systems, including
boundaries, textures, etc., in a compact and natural manner.
It sometimes offers advantages even for calculation of bulk
transport properties like thermal conductivity because it al-
lows to transparently isolate spurious contributions due to
bound “magnetization” currents, which have in the past ob-
scured correct results [10].

The semiclassical approach is known to reproduce the ex-
act result for the intrinsic anomalous Hall effect [6], as is
often the case for transport coefficients. This is because the
semiclassical approximation is controlled by the smallness
of spatial and temporal gradients, of the Hamiltonian and of
the distribution function, which are indeed small in a per-
turbative response to uniform DC fields. Theoretically, the

smallness of gradients is required both to justify the semi-
classical equations of motion, which describe the motion of
one particle in phase space, the Boltzmann equation itself,
which describes the evolution of the distribution of particles,
and which is an approximation to the fully quantum evolu-
tion of the density matrix. The derivation of the Boltzmann
equation semiclassically from the full quantum kinetic equa-
tion (QKE) is an old problem studied extensively prior to the
widespread incorporation of Berry phase effects into band dy-
namics [11–13]. Despite the common practice of combining
these two semiclassical approximations, they are almost al-
ways treated independently, with attention focusing primarily
on the single-particle equations of motion and the Boltzmann
equation adopted without justification.

A unified derivation for the electronic case was provided by
Wickles and Belzig [14,15]. They showed that the equation of
motion for the “one-particle density matrix” of a multiband
electron system can be systematically reduced to the Boltz-
mann one, with the renormalized single-particle equations of
motion emerging in the same treatment via a single semi-
classical expansion. Here we extend this treatment to bosons,
which, contrary to electrons, do not have a conserved number
or charge, but only energy. The difference of statistics, but
more importantly the latter lack of conserved charge, leads
to some significant differences from the Wickles and Belzig
treatment. Nevertheless, we obtain a full derivation of the
leading semiclassical kinetic equation and associated observ-
able quantities such as energy and current densities, and the
formulation allows a clear route to extend to higher orders in
the semiclassical expansion.

The derivation we present assumes noninteracting bosons,
and hence neglects any scattering (but this can of course be
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FIG. 1. Local momentum-integrated energy currents J (1)
Xy

(x) ≡∫
p J

(1)
Xy

[first term in Eq. (18), blue] and J (2)
Xy

(x) ≡ ∫
p J

(2)
Xy

[mag-
netization current, second term in Eq. (18), red] in arbitrary units
for a system of chiral phonons described by the Lagrangian (67),
calculated for g(x) = exp{− 1

4 �[|x| − L/2](|x| − L/2)3/ξ 3} (yellow,
mimicking the existence of a boundary) in the presence of a constant
temperature gradient δT/L, i.e., for a temperature profile T (x) =
T0 + (x/L)δT , using the numerical values given in Table I. The insets
emphasize the fact that

∫
dx J (2)

Xy
(x) = 0 while

∫
dx J (1)

Xy
(x) �= 0 (a

priori).

added). Aside from the neglect of interactions, the derived
quantum kinetic equation is asymptotically exact in the limit
in which the parameters of the theory are slowly varying in
space. In particular, we obtain exactly the thermal conduc-
tivity tensor, which describes the heat current induced by a
small temperature gradient. Our approach therefore provides
a self-contained and exact derivation of the intrinsic thermal
Hall effect of noninteracting bosons such as phonons and
magnons, and in the last section we show that the quantum
kinetic equation (QKE) indeed is in agreement with Kubo
formula calculations [2,3]. The advantage is that the QKE cal-
culation is considerably more intuitive, and naturally avoids
subtleties associated with magnetization currents [16–18],
which plagued early Kubo calculations [10], as mentioned
above. For concreteness we further compute and plot (see
Fig. 1) the local (i.e., position-resolved) energy currents for
a system of chiral phonons (excitations of linear elasticity
theory with a phonon Hall viscosity term) in a finite geometry
in the presence of a temperature gradient.

II. OVERVIEW

The principal result of this paper, the derivation of the
semiclassical QKE and that of observables, is somewhat
technical and subtle. Hence, we provide in this section an

TABLE I. Values used for the parameters defined in Eqs. (67)
and (69) and in the caption of Fig. 1.

T0 δT ρ c1 c2 c3 c4 c5 η1 η2 ξ L

1.0 0.8 1.0 1.5 1.2 0.8 0.4 0.0 −0.25 −0.15 1.0 10

overview of the derivation, highlighting the key steps, leaving
full details to Sec. III.

A. Basic formulation

Our starting point is a general free-boson system described
by 2N free Hermitian fields �a(r), r ∈ Rd , where d is the
dimension of our system, a = 1, . . . , 2N . For free fields the
commutator

[�a(r1),�b(r2)] ≡ h̄ Γ̂ab(r1, r2) (1)

is a c-number 2N × 2N matrix. For example, in the con-
text of three-dimensional elasticity, �1,2,3 might be the
displacement fields ux,y,z, and �4,5,6 represent the conjugate
momenta �x,y,z. Since the commutator is antisymmetric and
the fields are Hermitian, we have Γ̂ab(r1, r2) = −Γ̂ba(r2, r1)
and Γ̂ba(r2, r1) = (Γ̂ab(r1, r2))∗.

We take an arbitrary quadratic Hamiltonian

H = 1

2

∫
r1,r2

∑
a,b

Ĥab(r1, r2)�a(r1)�b(r2), (2)

where Ĥ(r1, r2) is a c-number 2N × 2N matrix. The Hermitic-
ity of H requires Ĥ(r2, r1) = (Ĥ(r1, r2))∗, and to remove any
redundancy we impose Ĥab(r1, r2) = Ĥba(r2, r1). Both Ĥ and
Γ̂, regarded as matrices in the index (a, b) × coordinate space
(r1, r2), are Hermitian matrices.

Apart from Hermiticity and the symmetry and antisymme-
try of Ĥ and Γ̂, respectively, we need only assume that Ĥ has a
spectrum which is bounded below, so that the system is stable.

The expectation value of any quadratic observable can be
obtained as a linear combination of the expectation values

F̂ab(r1, r2) ≡ 1
2 〈{�a(r1),�b(r2)}〉. (3)

Here the expectation value is the expectation value with re-
spect to an initial many-body density matrix ρ0, 〈A(t )〉 =
Tr[A(t )ρ0], with A(t ) an operator in the Heisenberg picture.
The corresponding c-number matrix F̂, which captures any
two-point expectation value of any two observables, is some-
times called “density matrix,” and is symmetric and Hermitian
in the index × coordinate space.

B. Transition to phase space

From Eqs. (1) and (2) the unitary time evolution of any
operator is determined. To frame this in phase space, we
introduce the Wigner transform

f (X, p) = [ f̂ ]W (X, p) ≡
∫

x
e−i px

h̄ f̂
(

X + x

2
, X − x

2

)
, (4)

where p, X, x ∈ Rd [we can identify X = 1
2 (r1 + r2) and x =

r1 − r2] and h̄ is Planck’s constant divided by 2π . We de-
note

∫
x = ∫

dd x for spatial integrals, and later we will use∫
p = ∫

dd p/(2π h̄)d for momentum integrals (then
∫

x,p is di-
mensionless). We will denote Wigner transformed matrices by
removing the hats, e.g., [F̂]W = F. These objects, F, H, Γ, etc.,
are functions on phase space (X, p), and are all Hermitian as
matrices at fixed X, p. Note that we will use the convention
that p denotes momentum while k denotes wave number, i.e.,
p = h̄k. This is useful when we keep track of factors of h̄ and
to obtain the classical limit.

235137-2



QUANTUM KINETIC EQUATION AND THERMAL … PHYSICAL REVIEW B 109, 235137 (2024)

In terms of Wigner transformed objects, one can then de-
rive the equation of motion. Namely, the equation of motion
for the density matrix in phase space is

∂t F(X, p) = − i

h̄
(K � F − F � K†), (5)

where

K(X, p) = h̄ Γ � H (6)

is sometimes called the “dynamical matrix.” Note that K is not
Hermitian.

Here the � represents the “star” or “Moyal” product, de-
fined as, for any two matrix functions O1,2,

O�
1O2 ≡ O1 exp

(
i
h̄

2
εαβ �∂α�∂β

)
O2, (7)

where repeated indices are summed, α, β = 1, . . . , 2d , ∂α ≡
∂qα

, where qμ = Xμ and qd+μ = pμ for μ = 1, . . . , d , and
where we have defined εαβ to be such that

εXμ pν
= −εpμXν

= δμν, (8)

with μ = 1, . . . , d . Note that h̄ = h̄ but we are formally dis-
tinguishing the two here to treat h̄ as an expansion parameter
when it stems from an expansion of Eq. (7) [15]. Notably,
when o1,2 are scalar functions,

lim
h̄→0

1

ih̄
[o1

�, o2] = {o1, o2}p.b. (9)

with the star (Moyal) bracket defined as [A �, B] ≡ A � B −
B � A, and {·, ·}p.b. the Poisson bracket, which illustrates the
role of the h̄ expansion as a semiclassical expansion. We pro-
vide more details in Appendix A. See also Refs. [13,15,19].

C. Semiclassical solution

A proper semiclassical limit is obtained by first formally
diagonalizing the dynamical matrix and distribution function,
i.e., reducing them to scalars within each band, and then per-
forming a small h̄ expansion, which expands the star products
(7). Diagonalization is accomplished via a similarity trans-
formation S such that S−1 � K � S = Kd is a diagonal matrix
of mode frequencies. Similarly, F = S � Fd � S†, with Fd a
diagonal distribution function and the inverse S−1 is defined
with respect to the star product (S−1 � S = S � S−1 = 1, see
Sec. III B for details). Note that Fd is real by definition, and
we show later that Kd is also real.

There is some phase ambiguity in the diagonalization,
which can be regarded as a gauge freedom since the di-
agonalization exists at every point in phase space. Physical
quantities must be gauge invariant. We find that the diagonal
gauge-invariant quantities Od take the form

Od (q) ≡ Od [q], (10)

with Od = Kd , Fd , and

qα = qα + h̄εαβAβ + O(h̄2), (11)

where Aα is a Berry gauge field:

Aα = Im (Λα )(d),

Λα = S−1 � ∂αS. (12)

Here (d) denotes the diagonal part and Im the imaginary part.
Note that A is diagonal so these equations, e.g., Eq. (10), are
unambiguous: see Eq. (45) for an explicit expression for a
diagonal matrix function of a diagonal matrix.

Applying this prescription we obtain the gauge-invariant
kinetic equation to first order in h̄,

∂t Fd + υ ∂t qα ∂αFd = 0 + O(υ h̄2), (13)

where we work in the collisionless limit of free particles
without short-distance scatterers although scattering effects
could be straightforwardly included on the right-hand side of
Eq. (13) in the form of a “collision integral” Icoll [20,21].
Here υ = h̄/h̄ is a symbolic parameter that counts the order
of the semiclassical expansion, shorn of any dimension: taken
literally, υ = 1 since h̄ = h̄. The total number of powers of
h̄ and υ in an expression gives the semiclassical order of the
corresponding term in the kinetic equation, and is equal to the
number of spatial gradients.

In Eq. (13) we have defined the object

∂t qα ≡ εαβ (∂βKd + h̄εγσ Ωβγ ∂σ Kd ) + O(h̄2). (14)

Mathematically ∂t qα is just a function of phase space given
by the right-hand side of Eq. (14), i.e., there is no need to
solve a dynamical equation for qα (t ) to solve the Boltzmann
equation. However, we can identify physically Eq. (14) as the
single-particle equation of motion in phase space of a particle
with phase-space coordinates q. We also introduced

Ωαβ = ∂αAβ − ∂βAα (15)

which is the Berry curvature in phase space. Note that this
quantity is band diagonal by definition and the relation Ωαβ =
Im[Λβ

�, Λα](d) also holds. This result, which is derived system-
atically using only the assumptions in Sec. II A, reproduces
the expected form from the heuristic wave-packet theory [1].

By reexpressing physical quantities in the gauge-invariant
diagonal variables, we analogously obtain explicitly gauge-
invariant expressions for them. The simplest is the energy
density in phase space,

H(q) = 1
2 Tr[ JFd ] + O(h̄2), (16)

where

J = 1 + h̄ �Xμ pμ
+ O(h̄2) (17)

is a Jacobian in phase space (see Appendix D). It has the
physical implication of inducing on the density of states a
dependence on Berry curvature [22].

Similarly, we obtain the current density in phase space

Jα (q) = υ

2
Tr[ J ∂t qα Fd + h̄εαβεγλ∂γ (MβλFd )] + O(υ h̄2).

(18)
One should keep in mind that α here is a general phase-space
index, so that this is more general than the usual current
density. Specifically, JXμ

(X, p) is the contribution of states
at momentum p to the energy current density at position X ,
while Jpμ

(X, p) gives the analogous contribution to the “force
density.”

In Eq. (18), we introduced

Mαβ = 1
2 Im{Λβ, [Λα, Kd ]}(d), (19)
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which has the interpretation of an energy
magnetization [17,23].

D. Practical remarks

Note that in Eq. (18) we have separated out two contribu-
tions to the current density, in which the second is manifestly
a total derivative (phase-space curl). The curl term gives zero
when integrated over phase space, and most importantly gives
zero net (momentum integrated) flux through a surface in
real space for which the magnetization Mβλ vanishes on the
boundary (i.e., a surface which cuts the entire sample volume)
(see also Appendix E). Thus, the energy magnetization does
not contribute to the total “transport current,” and for transport
purposes only the first term (containing ∂t qα) needs be consid-
ered. This distinguishes the kinetic equation approach from
previous calculations based on the Kubo formalism, where
independently evaluating the correct energy magnetization is
required to obtain the proper transport current by subtraction.

To use the above results in a specific problem, one needs to
specify the diagonalized band energy Kd and the connection
Λα . These are obtained by solving the diagonalization problem
perturbatively in h̄. For the energy, there is a simple general
result to first order,

Kd (q) = Kd [q]

= K0,d − h̄
εαβ

2
Mαβ + h̄ Re

[(
S−1

0 K1S0
)(d)] + O(h̄2),

(20)

where K0,d is a diagonal matrix containing the conventional
eigenvalues of the matrix K0 = h̄ΓH, and the connection Λα

may be approximated at the same accuracy by the connection
obtained from the eigenvalue problem at zeroth order, i.e.,
Λα ≈ S−1

0 ∂αS0, with S−1
0 K0S0 = K0,d . The final term in the

square brackets in Eq. (20) is a correction arising from the
semiclassical expansion of K itself, with K = K0 + h̄K1 +
O(h̄2) and K1 = ih̄ εαβ

2 ∂αΓ∂βH (see Appendix B 2). We will
show that the spectrum of K is symmetric with positive and
negative energy eigenstates related by complex conjugation
and momentum reversal (see Appendix B 3).

It can be useful both for intuition and as a check to con-
sider the dimensions of the various objects encountered in
this treatment. This is somewhat problem dependent, owing to
different possible choices of the fundamental �a fields, which
might be position and momentum densities for phonons, or
transverse magnetization densities in a ferromagnet, for ex-
ample. Thus, different components might even have different
dimensions. However, by appropriate rescaling, it is generally
possible to bring them to a form in which all �a fields have
dimension of the square root of density [�a] = L−d/2. Then
one obtains

[Xμ] = L, [kμ] = 1/L, [pμ] = Et/L, [J] = 1,

[H] = [K] = [Kd ] = [Fd ] = E ,

[JX ] = EL/t, [Jp] = E2/L,

[Λα] = [Aα] = 1/[α],

[Ωαβ] = 1/([α][β]), [Mαβ] = E/([α][β]),

[H][F] = E , [H][Γ] = 1/t, [S]2 = 1/E , (21)

where E , L, and t stand for energy, length, and time, respec-
tively. Note that in Eq. (21), all quantities from J onward are
defined in phase space. This brings a factor of Ld to many
quantities owing to the Wigner transform, which contains a
spatial integral, for example, [Ĥ] = E/Ld is an energy density
while [H] = E is an energy (if [�a] = L−d/2). Note that all the
quantities in Eq. (21) are of order O(h̄0). This is irrespective of
our choice of definitions for pμ and K, for example, which we
chose to be momentum pμ = h̄kμ = O(h̄0) and energy K =
h̄ Γ � H = O(h̄0) as opposed to wave vector and frequency,
respectively.

III. DETAILED DERIVATION

Here we provide the derivation of the results derived in
Sec. II.

A. Dynamics and continuity equation

Together, Eqs. (1) and (2) determine the dynamics of the
fields according to the Heisenberg equation of motion,

∂t�a = − i

h̄
[�a, H] = − i

h̄
(K̂ ⊗ �)a, (22)

where convolution ⊗ is defined as

(Ô1 ⊗ Ô2)ab(r1, r2) ≡
∫

r

∑
c

Ô1,ac(r1, r)Ô2,cb(r, r2), (23)

and the dynamical matrix is

K̂ ≡ h̄ Γ̂ ⊗ Ĥ. (24)

In turn, this implies that

∂t F̂ = − i

h̄
(K̂ ⊗ F̂ − F̂ ⊗ K̂†), (25)

where (K̂†)ab(r1, r2) ≡ (K̂ba(r2, r1))∗. In the same notation the
total energy is

H ≡ 〈H〉 = 1

2

∫
r

Tr[(Ĥ ⊗ F̂)(r, r)], (26)

where Tr is the usual matrix trace, i.e., Tr[Ô] = ∑
a Ôaa.

Now we pass to the Wigner transform, and use the fact that
the Wigner transform of a convolution is the star (or Moyal)
product of the Wigner transforms, i.e., [ f̂1 ⊗ f̂2]W (X, p) =
f1(X, p) � f2(X, p) (see Appendix A). This leads directly to
Eqs. (5) and (6). In this way, the total energy can also be
written as

〈H〉 ≡ H = 1

2

∫
X,p

Tr[H � F], (27)

where Tr[O] = ∑
a Oaa for any matrix O is the regular matrix

trace.
Conservation of energy is ensured by Heisenberg evolu-

tion, Eq. (22), which is unitary, and when the Hamiltonian is
local, this gives rise to a continuity equation. To obtain it we
first define from Eq. (27) a phase-space energy density

H(X, p) = 1
4 Tr(H � F + F � H) ≡ 1

4 Tr{H �, F}. (28)
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Here we symmetrized by hand the argument of the trace, so
that the energy density is real H = H∗ (note that the choice of
local energy density is not unique [24,25]).

Taking the time derivative of the energy density, we find

∂tH = 1

2h̄
ImTr([K �, F � H]). (29)

Very generally, the phase-space integral of the trace of a
Moyal bracket vanishes (see Appendix A). Hence, the right-
hand side of Eq. (29) can be written as a phase-space
divergence, i.e., there exists J (X, p) such that, in the colli-
sionless limit,

∂tH + ∂αJα = 0. (30)

Up to this point, all the above formulas are exact.
Expanding the “center” of the Moyal bracket (i.e., “�,”) in h̄

in Eq. (29), we find

Jα (X, p) = υ

2
εαβRe Tr[∂βK(F � H)] + O(υ h̄2), (31)

where Re is the real part. We note that the local phase-space
current density J depends on the precise choice of local
energy density and enjoys an additional freedom in the form
of an additive phase-space curl Jα → Jα + ∂βMαβ for any
differentiable phase-space function Mαβ odd under α ↔ β,
provided that the curl is gauge invariant.

To summarize, the energy density is defined by Eq. (28),
and the current density by Eq. (31). Now by expressing these
quantities in the diagonal band basis, we will eventually arrive
at Eqs. (16) and (18).

B. Diagonalization

The effects of curvature and geometry arise from the
projection into the manifold of a band [26]. Formally, the
projection is carried out in the phase-space representation by
diagonalizing the dynamical matrix using a similarity trans-
formation S, introduced in Sec. II C:

S−1 � K � S = Kd , (32)

where Kd is a diagonal matrix (whose entries are real, as
shown in Appendix B 1).

Because K is not Hermitian, S cannot be chosen star uni-
tary, but instead can be chosen to satisfy (see Appendix B 1)

S† � H � S = 1, (33)

where 1 is the identity matrix. Equation (33) is the analog of
the star-unitarity condition for a nonunitary matrix. Note that
we define the inverse here in the sense of the star product, i.e.,
S−1 � S = S � S−1 = 1, as mentioned in Sec. II C.

Equations (32) and (33) are somewhat formal, due to the
nontrivial nature of the star product, but can be solved order
by order in h̄, starting from a zeroth-order solution which
is a standard matrix diagonalization problem, and which is
guaranteed to exist by the properties of K.

The similarity transformation S is therefore determined
(up to a gauge freedom we will return to below) by K, and
once it is found, we can, as mentioned in Sec. II C, define the
transformed density matrix Fd as well via

F = S � Fd � S†. (34)

Note that because S is not unitary but instead satisfies
Eq. (33), Fd differs dimensionally from F by a factor of
energy. In this “diagonal frame,” and in the collisionless limit,
one has

∂t Fd + i

h̄
[Kd

�, Fd ] = 0. (35)

This equation, which is exact, allows a diagonal and time-
independent solution for Fd . This is the standard form of the
distribution function at and near equilibrium in the following
sense. There is nothing prohibiting off-diagonal terms in Fd ,
but such solutions necessarily oscillate on the scale of the
differences between elements in Kd/h̄, i.e., the mode fre-
quencies. This means that slowly time-varying solutions are
predominantly diagonal. Moreover, when weak scattering is
included, such that the associated relaxation time τ is longer
than these oscillation periods, the effects of such oscillations
largely average out. In any case, in the present formulation
without scattering, there is no mixing of the diagonal and
off-diagonal parts of Fd , so we can focus on the former
consistently.

C. Gauge transformations

1. General

As mentioned above, Eqs. (32) and (33) leave some free-
dom in the choice of S. In particular, if S satisfies these
equations in the sense that it produces a diagonal Kd , then
so too does

S′ = S � Θ (36)

produce a diagonal K′
d , where Θ is a diagonal (star-) unitary

matrix

Θ† � Θ = Θ � Θ† = 1. (37)

Note that the diagonalized matrix K′
d is not generally equal

to Kd . Rather, if we view the change from S to S′ as a
transformation

S → S′ = S � Θ, (38)

then

Kd → K′
d = Θ† � Kd � Θ, (39)

which is manifestly also diagonal and Hermitian. The same
transformation law holds for the density matrix

Fd → Θ† � Fd � Θ. (40)

Physical quantities defined in terms of H, Γ, F must, by con-
struction, be invariant under these gauge transformations.

We will now show, perturbatively in h̄, that such gauge
transformations can be interpreted as coordinate changes in
phase space.

2. First order in h̄

We can express explicitly

Θ = diag (eiθ1 , . . . , eiθ2N ), (41)

where the condition of unitarity (37) perturbatively reduces to

Im θa = O(h̄2). (42)
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Hence, to O(h̄), we can use Eq. (41) with real-valued θa(q) =
θa(X, p), which in general are arbitary functions on phase
space.

Using the explicit form of Θ in Eq. (41), Eqs. (39) and (40)
reduce to

Od (q) → O′
d (q) = Od (q) − h̄εαβ∂βθ∂αOd (q) + O(h̄2)

= Od [q′] + O(h̄2), (43)

for Od = Kd , Fd , where θ = diag (θ1, . . . , θ2N ), and

q′
α = qα − h̄εαβ∂βθ. (44)

In Eqs. (43) and (44), we have noticed that the change of Od

at order h̄ under a gauge transformation is proportional to a
derivative of Od , and hence can be absorbed into an equivalent
shift of its argument.

Note that q′
α in Eq. (44) contains θ which is a diagonal

matrix, i.e., a band-dependent quantity, and so Eq. (43) defines
a matrix function of a matrix. This is not ambiguous because
both the matrix and the matrix argument are diagonal, and so
can simply be evaluated for each band. More explicitly, the
diagonal matrix function O of a diagonal matrix argument C
is defined as

O[C] ≡ diag({Oaa(Caa)}a). (45)

D. Gauge connection and gauge-invariant quantities

From Eq. (43) it is evident that Od = Fd , Kd are not
gauge invariant. This ultimately reflects the presence of Berry
phases. In particular, we see that the effect of a gauge trans-
formation is to shift the “canonical” variable qα within the
argument of Od by a quantity proportional to ∂βθ . This mo-
tivates a procedure to restore gauge invariance by modifying
the argument of Od to compensate for this shift.

This compensation is obtained from the Berry gauge field
introduced in Eq. (12). Under the gauge transformation (38),
to zeroth order

Aα → Aα + ∂αθ + O(h̄). (46)

We will see that Aα as well as Λα emerge naturally in cal-
culations of physical quantities. Comparing Eqs. (46) and
(44) shows how to compensate the transformation of Od by
changing its argument.

By combining Eqs. (10), (11) and (43), (46), we can see
that Od (q) is gauge invariant to first order,

O′
d (q) = Od (q) + O(h̄2). (47)

It is expected that physical quantities can be expressed as
manifestly gauge-invariant expressions when written in terms
of such functions, i.e., Kd , Fd .

E. Gauge-invariant kinetic equation

To derive the gauge-invariant band-diagonal kinetic equa-
tion, we semiclassically expand the Moyal bracket in Eq. (35):

∂t Fd = υεαβ∂αKd∂βFd + O(υ h̄2). (48)

Next we take the time derivative of Eq. (10) with Od = Fd ,
which gives

∂t Fd (q) = ∂t Fd [q] (49)

because Aβ is time independent by assumption since we did
not include any time dependence in H. Hence, from Eq. (48)

∂t Fd (q) = υεαβ∂αKd (q)∂βFd (q)|q→q + O(υ h̄2). (50)

Now we need to convert the functions on the right-hand
side above to underlined quantities. To do so, we take the
phase-space derivative of Eq. (10):

∂αOd (q) = ∂αOd [q] + h̄εγλ∂γ Od ∂αAλ + O(h̄2)

⇒ ∂αOd [q] = ∂αOd (q) − h̄εγλ∂γ Od ∂αAλ + O(h̄2). (51)

Using Eq. (51) for both Kd and Fd in the right-hand side of
Eq. (50), we arrange terms to obtain

∂t Fd = υ[εαβ∂αKd∂βFd − h̄εαβεγλ∂γ Kd∂βFd∂αAλ

− h̄εαβεγλ∂αKd∂γ Fd∂βAλ + O(h̄2)]. (52)

Now relabeling dummy indices in the last term above accord-
ing to α → γ , β → λ, γ → β, λ → α, one obtains Eq. (13)
with ∂t qα as in Eq. (14).

F. Gauge-invariant energy and current density

Now we proceed to derive diagonal and gauge-invariant
expressions for the energy density (28) and energy current
density (31).

1. Energy density

Let us begin with the energy density. Using properties
of the trace and others recapped in Appendix A, we write
Eq. (28) as

H = 1
2 Re Tr (F � H)

= 1
2 Re Tr (S � Fd � S−1), (53)

using Eqs. (32))–(34).
To simplify this, we use the identity, valid for any

operator O,

Tr (S � O � S−1) = Tr O + ih̄εαβ∂βTr (ΛαO) + O(h̄2), (54)

which is derived straightforwardly by the expansion of the star
product. Taking O = Fd and applying this to Eq. (53), we then
obtain

H = 1

2
(TrFd − h̄εαβ∂βTr[AαFd ]) + O(h̄2)

= 1

2
Tr

[(
1 + h̄

2
εγλΩγ λ

)
(Fd + h̄εαβAβ∂αFd )

]
+ O(h̄2),

(55)

where we defined (the band-diagonal quantity) Ωαβ in
Eq. (15). This expression is diagonalized and gauge invariant
but the latter gauge invariance is not explicit. To make it so,
we use the definition in Eq. (10) and Taylor expand in h̄ at
fixed qα . This gives

Od (q) = Od (q) + h̄εαβAβ∂αOd (q) + O(h̄2). (56)

Applying Eq. (56) with Od = Fd immediately gives Eqs. (16)
and (17) in Sec. II. The fact that J, defined in Eq. (17),
identifies with the Jacobian of the q �→ q transformation is
shown in Appendix D.
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2. Energy current

Now we turn to the energy current, written in Eq. (31). It
contains two factors inside the trace, ∂βK, and F � H, which
we want to write in diagonal form. To express the former, we
note the useful identity

∂α (S � O � S−1) = S � (∂αO + [Λα
�, O]) � S−1. (57)

Applying Eq. (57) with O = Kd = S−1 � K � S gives

∂αK = S � Qα � S−1, (58)

where we defined for convenience

Qα ≡ ∂αKd + [S−1 � ∂αS �, Kd ]. (59)

The second multiplicative factor in the trace in Eq. (31) is,
using Eqs. (33) and (34),

F � H = S � Fd � S−1. (60)

Using Eqs. (58) and (60), one can convert Eq. (31) to diagonal
form using manipulations similar to those for the energy den-
sity, though with more involved algebra. The details are left to
Appendix C. One obtains in this way

Jα = J (1)
α + J (2)

α , (61)

in which each term is separately gauge invariant:

J (1)
α = υ

2
εαβTr

[(
1 + h̄

2
εγλΩγ λ

)
× (∂β (Kd + h̄ερσ Aσ ∂ρKd ) + h̄ερσ Ωβρ∂σ Kd )

× (Fd + h̄εξηAη∂ξFd )

]
+ O(υ h̄2), (62a)

J (2)
α = υ h̄

2
εαβεγλ∂γ Tr[MβλFd ] + O(υ h̄2), (62b)

where Mαβ was defined in Eq. (19). Now we can again use
Eq. (56) to identify gauge-invariant functions Kd and Fd , and
we directly thereby obtain Eq. (18) in Sec. II.

Let us discuss the physical meaning and relevance of J (2)
α .

This term satisfies the continuity equation by definition, as it
is a phase-space “curl.” Such terms appear to be ambiguous
from the introduction of the heat current, which occurred in
passing from Eq. (29) to (31). That ambiguity arises because
the quantity which enters the continuity equation is only the
divergence of the phase-space current, so that a shift Jα →
Jα + ∂βMαβ with antisymmetric M leaves the continuity
equation unchanged.

The above derivation certainly provides an unambiguous
result for J (2)

α given the definition in Eq. (31). However,
we would like to ask whether the result in Eq. (62b) can
be considered to resolve the intrinsic ambiguity of defining
the magnetization current. To define the latter unambigu-
ously, clearly some other conditions than the continuity
equation must be imposed. Related conditions are discussed
for the energy magnetization itself in Ref. [23]. For the en-
ergy magnetization current, we are not sure of the full set of
conditions that should be imposed, but we do note that the
above definition satisfies many reasonable ones:

(1) The quantity Mαβ itself is a gauge-invariant band-
diagonal quantity which can be identified as an energy
magnetization. Then, J (2)

α is naturally the gauge-invariant

divergenceless current which can be built from it, and it indeed
directly appears when extracting the divergence from the time
derivative of the local energy density ∂tH.

(2) The magnetization contribution J (2)
α vanishes in equi-

librium when the system is locally uniform. We may define
equilibrium to be such that the energy density Fd depends
only on the band energy Kd , i.e., Fd (q) = f [Kd (q)], then
∂γ Fd = ∂γ Kd f ′[Kd (q)]. Then J (2)

α vanishes if ∂X Kd = 0 and
∂X S = 0. It does not, however, a priori vanish otherwise, even
in equilibrium. A local nonvanishing current in equilibrium is
in fact how the magnetization current has been defined in the
literature [17].

(3) One might expect that, in equilibrium, even the local
thermal current JXμ

= ∫
p(J (1)

Xμ
+ J (2)

Xμ
), vanishes at zero tem-

perature. This would seem natural since the entropy vanishes
at zero temperature. We are able to show that this is the case in
the special but important case of a (X, p)-separable problem
such as we describe below and in Appendix F.

(4) As noted in Refs. [2,23], the momentum integral defin-
ing JXμ

is rid of a UV divergence when evaluated in a
continuum theory, in the (X, p)-separable case. This is not the
case for the integrands J (1)

Xμ
and J (2)

Xμ
considered separately.

Thus, Eq. (62b) is “physical” in the sense that it provides a
compensating term to an otherwise unphysical divergence in
Eq. (62a).

These properties, satisfied by J (2)
α , are necessary (though a

priori not sufficient) conditions for defining the magnetization
current: they partially, if not fully in some cases, lift the
ambiguity.

IV. APPLICATION: THERMAL HALL CURRENT
IN A FINITE SYSTEM OF CHIRAL BOSONS

We now show how our QKE formalism can be applied
to any general system with a boundary but homogeneous
away from the boundary, and further specialize to a system
inhomogeneous linear elasticity theory with a phonon Hall
viscosity term.

A. Uniform finite system with a boundary: Formal result
for thermal conductivity

One natural application of our formalism is to a finite
system, in which the presence of a boundary is included
via variations of the Hamiltonian in space. Specifically, we
assume that the (2D) system is constrained within the interval
Ix = {x ∈ D[− L

2 ,+ L
2 ]}, and we consider a Hamiltonian of the

form H(X, p) = g(X )Hh(p), with g a c-number function equal
to 1 in the Ix interval and decaying over distances O(L0)
to 0 outside, mimicking the presence or absence of physical
degrees of freedom in these regions. This is just a specific
instance of the more general problem of a (X, p)-separable
theory, which we consider in detail in Appendix F.

There, we show that solving the separable problem
amounts to solving the homogeneous one [i.e., g(X ) = 1 ev-
erywhere], which we label with h superscripts:

(Sh)−1KhSh = Kh
d , (63a)

(Sh)†HhSh = 1, (63b)
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where the � product was replaced by the standard matrix prod-
uct in this X -independent problem, and Kh = h̄ ΓhHh. This is
now a standard linear algebra problem, yielding in particular
the homogeneous energies Kh

d and Berry curvatures Ωh
py px

.
We assume translational invariance along y and consider a

temperature gradient ∂xT along the x direction. The (“trans-
port”) thermal conductivity relates the latter to the net energy
flux flowing in response, via Fourier’s law Jtot = −κtr · ∇T ,
which is obtained by integrating the energy current along the
x direction and taking the thermodynamic limit:

κ tr
xy = 1

∂xT
lim

L→∞
1

L

∫ +∞

−∞
dx

∫
p
JXy (X, p). (64)

Note that we denote here (Xx, Xy) ≡ (x, y), and we dropped
the O(h̄2) correction since κ tr

xy is by definition a linear response
quantity. The explicit form of both currents from the decom-
position Eq. (61) is derived in Appendix F 3.

Because J (2)
Xy

is a total real-space derivative, it does not
contribute to the transport current. Similarly, the zeroth-order
term g∂py K

h
d in J (1)

Xy
drops out as it is a total momentum-space

derivative. The only contribution which does not vanish after
performing the momentum integral is

J (eff)
Xy

≡ −υ h̄

2
ψxTr

[
Ωh

py px
gKh

d f
(
gKh

d , T
)] + O(υ h̄2), (65)

where ψx ≡ ∂xg/g and f (ε, T ) = ε[nB(ε, T ) + 1
2 ], with

nB(ε, T ) = 1/(eε/(kBT ) − 1) the Bose function (kB is Boltz-
mann’s constant), is the equilibrium energy distribution
evaluated at ε of a system of bosons at temperature T .
Further decomposing explicitly Tr = Tr+ + Tr− where Tr+
(respectively Tr−) sums over positive (respectively negative)
energy bands (see Appendix B 3), and the fact that Ωh

py px
, Kh

d
are odd upon spectrum reflection while f is even [note that
f (−ε, T ) = f (ε, T ) and see Appendix B 3] allows one to
replace Tr �→ 2 Tr+ in Eq. (65).

Importantly, the gradient of temperature is not introduced
“artificially” in the form of a gravitational field like in Lut-
tinger’s trick [27] (in particular it is unrelated to ψx), but
simply arises from the fact that the function f depends im-
plicitly on x since the Bose function must be computed at the
local equilibrium temperature T (x) [17].

Equations (64) and (65) are our solution to the prob-
lem, which is readily amenable to numerical evaluation. It is
also possible to reconcile it with existing literature with just
one extra step. Performing the spatial integration with a few
simple tricks to turn it into an integral over energies ε (cf.
Appendix G), we arrive at the result

κ tr
xy = −υ h̄

T
Tr+

∫
p
Ωh

px py

∫
dε �

(
ε − Kh

d

)
ε2∂εnB(ε, T ),

(66)

where � is the step function and T the mean temperature
within Ix. This formula (66) agrees with prior results [2,3]
which were obtained using the Kubo formalism.

B. Local energy current in a chiral phonon system

We now consider a concrete example. The model is that of
elasticity with a time-reversal-breaking term, described by the

(Euclidian) Lagrangian

Lph = ρ

2
(∂τ u)2 + 1

2
ci jμν∂μui∂νu j + iηi jμν∂τ ui∂2

μνu j, (67)

where u = (ui )i is the displacement field (i = x, y, z), ρ is
the mass density, ci jμν is the bulk modulus ( j, μ, ν = x, y, z),
and ηi jμν is the lattice (or phonon) Hall viscosity. To remove
ambiguity we take ci jνμ = ci jμν = c jiμν and ηi jνμ = ηi jμν =
−η jiμν .

The Hall viscosity term breaks time-reversal symmetry
explicitly, and accounts for the chiral nature of bosonic ex-
citations in the system (chiral phonons). The physical origin
of this term has been discussed elsewhere in various contexts
such as quantum Hall systems [28], magnetic insulators [29],
ionic crystals [30], etc. Here we simply use Eq. (67) as our
starting point, as an effective theory for chiral phonons.

The full inhomogeneous problem, where all parameters
ρ, ci jμν, ηi jμν are arbitrary functions of position, can be recast
into the form of Eqs. (1) and (2) and can be solved explicitly
following the procedure of Secs. II and III. We leave the
details of calculations and explicit expressions to Appendix H.

Here in the main text, we restrict ourselves to the spatial
dependence described in the previous subsection. The details
are left to Appendix F, but it suffices to then study the ho-
mogeneous problem, with position-independent parameters
and matrices Hh, Γh [� = (u,�/ρ), with �i the canonically
conjugate momentum to ui, see Eq. (H2)] which in the case of
the Lagrangian (67) take the simple forms

Γh = i

h̄ρ

[
0 1

−1 − 2ημν

h̄2ρ
pμ pν

]
, Hh =

[
1
h̄2 cμν pμ pν 0

0 ρ

]
,

(68)

where (cμν )i j ≡ ci jμν , (ημν )i j ≡ ηi jμν , and so each block in
Eq. (68) is a 3 × 3 matrix, and Kh = h̄ ΓhHh. For concreteness,
we choose the following expressions for the Hall viscosity and
bulk modulus:

ηi jμν = εi jzδμν (η1δνz + η2δνz ),

ci jμν = c1δi jδμν + δiμδ jν (c2δizδ jz + c3δizδ jz )

+ δμν (c4δνzδizδ jz + c5δνzδizδ jz ), (69)

where εi jl is the three-dimensional (3D) Levi-Civita tensor,
δab ≡ 1 − δab, and η1, η2, ca, a = 1..5, are real parameters.
This makes Lph the most general possible Lagrangian pre-
serving O(2) symmetry around the ẑ axis, except that, for
simplicity, we do not include terms which couple the uz to
the (ux, uy) components, even if they preserve O(2) symmetry.
This allows us to reduce the problem to be effectively a 4 × 4
problem in matrix space.

We leave details of the solution of the diagonalization
problem to the Appendix F, and show in Fig. 1 the position-
resolved momentum-integrated energy currents for a given
profile of g and the parameter values provided in Table I.

As is evident in Fig. 1, the current J (2)
Xy

(x) is not zero in
the bulk (the exaggerated temperature gradient we used is
made to render this visible), but its integral over a slice of
material vanishes exactly since it is a magnetization current.
Meanwhile, the current J (1)

Xy
(x) is exactly zero in the bulk, but
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the counterpropagating edge densities yield a finite integral,
i.e., a nonzero Hall conductivity.

V. CONCLUSION

In this paper, we presented a systematic derivation of the
quantum kinetic equation in the full phase space for any
quadratic Hamiltonian of bosonic fields. Translation invari-
ance is not assumed, and boundaries may be included. The
treatment provides a derivation of how the quasiclassical dis-
tribution function descends from the full quantum density
matrix, and how the evolution of these quantities is related to
single-particle characteristics such as the spectrum, Berry cur-
vature, and energy magnetization. To obtain these results, we
follow the exact statistical formulation of quantum dynamics
using the Moyal product in phase space, and thereby obtain
exact equations that can be expanded systematically order by
order in a semiclassical parameter such as the smallness of
spatial gradients.

From this procedure, in the leading approximation we
recover the full Boltzmann equation and provide a self-
contained and exact derivation of the intrinsic thermal Hall
effect of bosons. Moreover, the procedure allows a spatially
resolved examination of the associated thermal currents, treat-
ing boundaries and the spatial profile they generate. For the
intrinsic thermal Hall effect, this method clarifies the separa-
tion of transport and “magnetization” currents transparently,
and without the need to introduce any artificial gravitational
field which is required in a Kubo formulation following
Luttinger [27].

Aside from pedagogical value, we believe this formal-
ism will be useful in simplifying and clarifying future
calculations. It allows a direct application to intrinsically in-
homogeneous systems such as skyrmionic textures in chiral
magnets, which will be addressed in a forthcoming publica-
tion. It also offers a natural extension to higher orders in the
semiclassical expansion, in which deviations from Boltzmann
transport become evident. This is important, for example, in
nonlinear transport effects (i.e., beyond linear order in applied
electric fields and thermal gradients) since such effects are
indeed higher order in gradients. Existing theory of such ef-
fects reveals a role for geometric properties of bands such as
Berry curvature and quantum metric, but because it is based
on Boltzmann transport which is only formally exact up to
first order in phase-space gradients, the theory is incomplete
and should be revisited.

A natural important future direction is the inclusion of scat-
tering and interactions into the present formalism. Scattering
can be straightforwardly added in an ad hoc manner, through
a collision integral, such as that provided in Refs. [20,21].
It would also be interesting to derive it rigorously from the
Keldysh formalism, which is a natural extension with some
precedents [11,31–33]. Another relevant extension is to time-
dependent Hamiltonians, such as would occur in a sliding
texture like a driven spin density wave or skyrmion lattice,
which leads to Berry phase effects in space-time. Moreover,
the same methods can be applied to fermions, as in Ref. [15]
for normal electrons, and extended to Bogoliubov–de Gennes
quasiparticles for the superconducting case. This potentially

provides a new way to address phenomena in topological
superconductors.
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APPENDIX A: PROPERTIES OF THE MOYAL PRODUCT

The Moyal, or star, product is widely used in the phase-
space formulation of quantum mechanics, and is particularly
convenient for semiclassical analysis. It is defined in the main
text [Eq. (7)] and can be applied to functions, or, componen-
twise, to tensor multiplication. We review some key useful
properties of the Moyal product here.

Even for scalar functions, it is noncommutative, reflecting
the noncommutativity of operators in quantum mechanics. It
is, however, associative,

O1 � O2 � O3 = (O1 � O2) � O3 = O1 � (O2 � O3). (A1)

Under Hermitian conjugation, we have

(O1 � O2)† = O†
2 � O†

1, (A2)

where the Hermitian conjugate † is defined in the usual matrix
sense, and the phase-space argument is unchanged.

The star product is not cyclic in the trace, but the combina-
tion of the trace and phase space (q ∈ R2d ) integral is cyclic
if Tr[O1 � O2] is integrable:∫

q
Tr[O1 � O2] =

∫
q

Tr[O2 � O1]. (A3)

This implies that the phase-space integral of a Moyal bracket
vanishes ∫

q
Tr[O1

�, O2] = 0. (A4)

If the functions O1,2 are differentiable, the chain rule applies,
i.e., for α = 1, . . . , 2d ,

∂qα
(O1 � O2) = ∂qα

O1 � O2 + O1 � ∂qα
O2. (A5)

A matrix function O is star invertible if there exists O−1 such
that

O � O−1 = O−1 � O = 1. (A6)

Note that, as for ordinary matrix multiplication, the left and
right star inverses are identical. This follows from viewing the
convolution as a matrix product in the combinated coordinate-
index space, and then using the fact that the Wigner transform
of a convolution is the star product of Wigner transforms.

If O1 and O2 are star invertible,

(O1 � O2)−1 = O−1
2 � O−1

1 . (A7)
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Up to first order in h̄, we have

O1 � O2 = O1O2 + ih̄
εαβ

2
∂αO1∂βO2 + O(h̄2). (A8)

The zeroth-order term is just standard matrix multiplication
while the first-order one is related to the Poisson bracket when
O1,2 are scalar functions: εαβ∂αO1∂βO2 = ∂Xμ

O1∂pμ
O2 −

∂pμ
O1∂Xμ

O2 ≡ {O1, O2}p.b.. Equation (A8) can be rewritten,
up to first order,

O1O2 = O1 � O2 − i
h̄

2
εαβ∂αO1∂βO2 + O(h̄2). (A9)

From the above, we can find the ordinary product of a matrix
with its star inverse

O−1O = 1 − i
h̄

2
εαβ∂αO−1∂βO + O(h̄2), (A10)

which notably is not the identity.

APPENDIX B: DIAGONALIZATION OF K

1. Formal relation to a Hermitian problem

Here we show that the star diagonalization of K is related
to a Hermitian star-eigenvalue problem, provided the original
physical problem is well defined. In particular, this requires
that H is positive definite. The latter implies that there exists a
positive-definite matrix H1/2 such that

H1/2 � H1/2 = H. (B1)

We define the matrix K̆:

K̆ ≡ h̄ H1/2 � Γ � H1/2 = K̆†. (B2)

Since K̆ is Hermitian, one can find a star-unitary matrix U, i.e.,

U† � U = U � U† = 1, (B3)

which star diagonalizes K̆ according to

U† � K̆ � U = K̆d , (B4)

where K̆d is a diagonal matrix with real entries (the “star
eigenvalues”).

Plugging in Eq. (B2) into (B4), we obtain

K̆d = h̄ U† � H1/2 � Γ � H1/2 � U

= h̄ (U† � H1/2) � Γ � H � (H−1/2 � U). (B5)

Using K = h̄ Γ � H we see that this has the form of Eq. (32) if
we identify

K̆d = Kd , (B6)

which, in particular, means that Kd is real, and

S = H−1/2 � U, S−1 = U† � H1/2, (B7)

up to a gauge choice, as discussed in the main text.
From Eq. (B7) we can immediately show Eq. (33) by

direct calculation. Equations (33) and (B7) can be considered
a choice of normalization of S. Independent of that normal-
ization, we note the identity

K† = H � K � H−1. (B8)

2. Diagonalization to O(h̄)

Now we show how to convert the formidable star-
diagonalization problem defined by Eqs. (32) and (33) into
conventional linear algebra in the semiclassical expansion. We
aim here to obtain Kd and S up to first order in h̄ (and S up to
gauge freedom, of course).

To do so, we specify the expansions of K and S. The
former is unambiguously determined by expanding the Moyal
product, regarding H and Γ as h̄ independent. We have

K = h̄
(
ΓH + ih̄

εαβ

2
∂αΓ∂βH

)
+ O(h̄2), (B9)

and so

K = K0 + h̄K1 + O(h̄2), (B10)

with

K0 = h̄ ΓH,

K1 = ih̄
εαβ

2
∂αΓ∂βH. (B11)

Next, we write the expansion of S according to the conve-
nient form

S = S0(1 + h̄S̃1) + O(h̄2). (B12)

Here the first two terms in the expansion are specified by S0

and S̃1, both O(h̄0) a priori, which are to be determined by
enforcing the star-diagonalization conditions up to first order
in h̄. The H conjugate gives

S† = (1 + h̄S̃†
1)S†

0 + O(h̄2). (B13)

Inserting Eqs. (B12) and (B13) into (33), and equating terms
at zeroth and first order in h̄ gives the conditions

S†
0HS0 = 1, (B14a)

S̃†
1+S̃1 = − iεαβ

2
(∂αS†

0H∂βS0 + ∂αS†
0∂βHS0 + S†

0∂αH∂βS0).

(B14b)

We see that the Hermitian part of S̃1 is fixed by the second
condition, once the zeroth-order term is known.

To proceed, we also need S−1, which we obtain using
Eqs. (33) and (B13) and expanding consistently to O(h̄):

S−1 = S† � H

=
[

1 + h̄

(
S̃†

1 + iεαβ

2
∂αS†

0∂βHS0

)]
S−1

0 + O(h̄2)

(B15)

(take care that S−1 is the star inverse not the ordinary matrix
inverse). We also used the zeroth-order condition

S−1
0 = S†

0H, (B16)

which follows from Eq. (B14a) [here S−1
0 is the O(h̄0) term in

the expansion of S−1 as well as the inverse of S0 for the usual
matrix product]. Then one can use Eq. (B14b) to eliminate S̃†

1
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in favor of S̃1 within Eq. (B15), which yields

S−1 =
[

1 − h̄

(
S̃1 + iεαβ

2
∂αS−1

0 ∂βS0

)]
S−1

0 + O(h̄2)

=
[

1 − h̄

(
S̃1 − iεαβ

2
ΛαΛβ

)]
S−1

0 + O(h̄2). (B17)

Equation (B17) follows from the constraint on S from the
normalization condition (33), but so far we have not used the
actual diagonalization condition in Eq. (32). Using Eqs. (B12)
and (B17) in (32) and collecting terms to O(h̄) we find

Kd = K0,d + h̄

(
S−1

0 K1S0 + [K0,d , S̃1]

− i
εαβ

2
{Λα, ∂βK0,d − K0,dΛβ}

)
+ O(h̄2), (B18)

where

K0,d = S−1
0 K0S0. (B19)

The O(h̄0) conditions (B19) and (B14a), taken together, define
a standard (but non-Hermitian) eigenvalue problem, where we
demand that K0,d is diagonal. By a classical limit, i.e., a regu-
lar matrix product version, of the argument in Appendix B 1,
it is straightforward to show that a solution always exists and
that K0,d is not only diagonal but Hermitian, i.e., real diagonal.

To achieve the star diagonalization to O(h̄), we must re-
quire that the term in parentheses in Eq. (B18) be diagonal,
i.e., that

(
S−1

0 K1S0 + [K0,d , S̃1]

− i
εαβ

2
{Λα, ∂βK0,d − K0,dΛβ}

)
ab

= 0, a �= b. (B20)

This is a condition on S̃1, and while an explicit form for
the latter can be found, we will actually not need it for our
calculations, so we suffice to say that Eq. (B20) is well defined
and consistent with Eq. (B14b) and the Hermiticity of Kd .

Since Kd is diagonal and real, we can take the real part of
the diagonal projection of Eq. (B18), which gives

Kd = K0,d + h̄ Re
[(

S−1
0 K1S0

)(d)]
+ h̄εαβ

(
Aα∂βK0,d − 1

4 Im{Λβ, [Λα, K0,d ]}(d)
) + O(h̄2).

(B21)

Transforming to the gauge-invariant function Kd then im-
mediately gives Eq. (20) in the main text, noting that
Im{Λβ, [Λα, K0,d ]}(d) is antisymmetric in α ↔ β, and so
Mαβ = −Mβα .

3. Symmetry of the spectrum

From their definitions, we know that Γ(X, p) =
−Γ(X,−p)∗ and H(X, p) = H(X,−p)∗. This implies that
the dynamical matrix obeys K(X, p) = −K(X,−p)∗. The
latter induces relations among the star eigenvalues of Kd at
reversed momenta. Taking the complex conjugate of Eq. (32)
evaluated at momentum −p, and using the fact that Kd is real,
we deduce that

Kd (X,−p) = −[S−1(X,−p)]∗ � K(X, p) � [S(X,−p)]∗.
(B22)

Taking the complex conjugate of Eq. (33) at momentum −p
gives

S(X,−p)� � H(X, p) � S(X,−p)∗ = 1. (B23)

These two equations are solved by using again Eqs. (32) and
(33), by

S(X,−p) = S(X, p)∗, Kd (X,−p) = −Kd (X, p), (B24)

up to a gauge transformation, and up to permutations of the
diagonal entries of Kd . We see that the negative energies
at momentum p appear, with the opposite sign, as positive
energies at momentum −p, and vice versa. Thus, the modes
of the spectrum of K come in positive (the “physical” ones)
and negative energy pairs (εa(X, p), εā(X, p) ≡ −εa(X,−p)).
This defines the notation ā. Moreover, we can deduce that

[Ωαβ (X,−p)]āā = −[Ωαβ (X, p)]aa,

[Mαβ (X,−p)]āā = +[Mαβ (X, p)]aa. (B25)

We make use of these last two properties in Sec. IV A and
Appendix F 4.

APPENDIX C: DIAGONALIZATION OF Jα

Here we provide details of the calculations leading from Eq. (31) to Eqs. (61), (62a), and (62b) in Sec. III F 2. Beginning with
Eq. (31), we use Eqs. (58) and (60) to obtain

Jα = υ

2
εαβRe Tr[(S � Qβ � S−1)(S � Fd � S−1)] + O(υ h̄2). (C1)

We now use Eq. (A9) with O1 = S � Qβ � S−1 and O2 = S � Fd � S−1 to “restore” a star product and as a second step keep only
the zeroth-order term of the expansion of the star products in terms which are already of order h̄ (which amounts to turning the
star products into regular matrix products):

Jα = υ

2
εαβRe Tr[S � Qβ � Fd � S−1] + υ h̄

4
εαβεγλIm Tr[∂γ (SQβS−1)∂λ(SFdS−1)] + O(υ h̄2). (C2)
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Now we use Eq. (54) with O = Qβ � Fd , extract a ∂γ derivative using εγλ∂
2
γ λ = 0, expand the ∂λ derivative using the chain rule,

and use the cyclicity of the trace:

Jα = υ

2
εαβRe Tr[Qβ � Fd ] − υ

2
h̄εαβεγλ∂λIm Tr[S−1∂γ S(QβFd )]

+ υ h̄

4
εαβεγλ∂γ Im Tr[SQβS−1(∂λSFdS−1 + S∂λFdS−1 + SFd∂λS−1)] + O(υ h̄2)

= υ

2
εαβRe Tr[Qβ � Fd ] + υ h̄

4
εαβεγλ∂γ Im Tr[Qβ ({S−1∂λS, Fd} + ∂λFd )] + O(υ h̄2). (C3)

Then, plugging in the expression for Qβ in Eq. (59), we get

Jα = υ

2
εαβ (Re Tr[∂βKd � Fd ] + Re Tr[[S−1 � ∂βS �, Kd ] � Fd ])

+ υ h̄

4
εαβεγλ∂γ Im Tr[(∂βKd + [S−1∂βS, Kd ])(∂λFd + {S−1∂λS, Fd})] + O(υ h̄2). (C4)

In turn, expanding the star products yields

Jα = υ

2
εαβ (Re Tr[∂βKdFd ] + Re Tr[[S−1∂βS, Kd ]Fd ])

− υ h̄

4
εαβεγλIm Tr

[
∂2
βγ Kd∂λFd + ∂γ [S−1∂βS, Kd ]∂λFd + {∂γ (S−1∂βS), ∂λKd}Fd + [

∂γ S−1∂2
βλS, Kd

]
Fd

]
+ υ h̄

4
εαβεγλ∂γ Im Tr[(∂βKd + [S−1∂βS, Kd ])(∂λFd + {S−1∂λS, Fd})] + O(υ h̄2). (C5)

The contributions from ∂2
βγ Kd∂λFd and ∂βKd∂λFd vanish because the latter are real, and those involving commutators, except

for [S−1∂βS, Kd ]{S−1∂λS, Fd}, also vanish because the trace selects only the diagonal elements. One is then left with

Jα = υ

2
εαβRe Tr[∂βKdFd ] − υ h̄

4
εαβεγλIm Tr[{∂γ Λβ, ∂λKd}Fd ]

+ υ h̄

4
εαβεγλ∂γ Im Tr[[Λβ, Kd ]{Λλ, Fd} + ∂βKd{Λλ, Fd}] + O(υ h̄2). (C6)

Here we replaced S−1∂ρS → Λρ which is correct to this order.
In almost all terms in Eq. (C6), the imaginary diagonal part of Λρ , which is simply Aρ , is selected by the trace against other

diagonal real functions. The one term not of this form can be rewritten using the cyclicity of the trace as

Tr([Λα, Kd ]{Λβ, Fd}) = Tr({Λβ, [Λα, Kd ]}Fd ) = 2 Tr(MαβFd ), (C7)

where Mαβ defined in Eq. (19). Consequently,

Jα = υ

2
εαβ (Tr[∂βKdFd ] + h̄

2
εγλ(Tr[−{∂γ Aβ, ∂λKd}Fd + ∂γ (∂βKd{Aλ, Fd})] + 2∂γ Tr[MβλFd ])) + O(υ h̄2)

= υ

2
εαβ (Tr[∂βKdFd ] + h̄εγλ(Tr[∂γ (Aλ∂βKd − Aβ∂λKd )Fd + Aλ∂βKd∂γ Fd ] + ∂γ Tr[MβλFd ])) + O(υ h̄2). (C8)

From here, it is straightforward to separate the term containing Mβλ from the others, and with some rearrangement to first order
in h̄, obtain Eqs. (61), (62a), and (62b) in Sec. III F 2.

APPENDIX D: JACOBIAN

When expressed in gauge-invariant band-diagonal form, physical quantities like the energy and current density display explicit
dependence on the “Jacobian” factor defined in Eq. (17). Here we show that this can indeed be regarded as a Jacobian, i.e., a
determinant defining the measure for a change of variables in phase space.

Consider the change of variables in Eq. (11) from q to q, which induces the change in measure

dDq = dDq

∣∣∣∣∣detD

[(
∂qα

∂qβ

)
αβ

]∣∣∣∣∣. (D1)

Here the measure is defined in phase space, with total dimension D = 2d twice the spatial dimension, and the subscript D on the
determinant is meant to indicate that the determinant is in this space. One should avoid confusion with band space, which plays
a trivial role here because the change of variables is diagonal [since A in Eq. (11) is diagonal]. The determinant can be regarded
as a scalar for a given band, or a diagonal matrix in band space, evaluated separately for each band.
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The Jacobian of the transformation is just this determinant. Using the explicit form of Eq. (11),

J = detD

[(
∂qα

∂qβ

)
αβ

]

= detD[(δαβ + h̄εαγ ∂βAγ )αβ] + O(h̄2). (D2)

Note that we have dropped the absolute value of the determinant because the Jacobian is perturbatively close to 1 in the
semiclassical expansion and so has definite sign. We have, with TrD the trace in phase space,

J = eTrD{ln[(δαβ+h̄εαγ ∂βAγ )αβ ]} + O(h̄2)

= eTrD[(h̄εαγ ∂βAγ )αβ ] + O(h̄2)

= 1 + TrD[(h̄εαγ ∂βAγ )αβ] + O(h̄2)

= 1 + h̄εαβ∂αAβ + O(h̄2). (D3)

This is precisely the definition in Eq. (17).

APPENDIX E: EXPLICIT SEPARATION INTO POSITION AND MOMENTUM COORDINATES

In the main text, we presented the quasiparticle equations of motion and current density in compact forms combining positions
and momenta into a single phase-space coordinate. To connect to more familiar forms, we expand these explicitly here.

Writing qXμ
= Xμ and qpμ

= pμ, we obtain from Eq. (14) the two analogs of Hamilton’s equations

∂t Xμ = ∂pμ
Kd − h̄

(
Ωpμ pν

∂Xν
Kd − ΩpμXν

∂pν
Kd

) + O(h̄2), (E1a)

∂t pμ = −∂Xμ
Kd + h̄

(
ΩXμ pν

∂Xν
Kd − ΩXμXν

∂pν
Kd

) + O(h̄2). (E1b)

This defines a velocity vμ ≡ ∂t Xμ and a force fμ ≡ ∂t pμ. We can similarly inspect the real-space and momentum-space
components of Jα . Taking α = Xμ, we obtain the quantity describing the flow of energy in the Xμ direction. This is just the
momentum-resolved energy current. We have

JXμ
= υ

2
Tr

{
J ∂t Xμ Fd + h̄

[
∂Xν

(
Mpμ pν

Fd

) − ∂pν

(
MpμXν

Fd

)]} + O(υ h̄2)

= υ

2
Tr

[
J ∂t Xμ Fd + h̄εμνλ

(
∂Xν

Mλ
pp − ∂pν

Mλ
pX

)] + O(υ h̄2), (E2)

where εμνλ (note here we use superscripts and not subscripts for the indices) is the usual 3D Levi-Civita tensor, and

Mλ
pp = 1

2εμνλMpμ pν
Fd , Mλ

pX = 1
2εμνλMpμXν

Fd , (E3)

because Mαβ = −Mβα . The total energy current at position Xμ is obtained by integrating JXμ
(Xμ, pμ) over p. Then clearly the

∂pν
Mλ

pX term drops. Moreover, if one computes the flux of JXμ
through an open 2D surface at whose boundary Mλ

pp vanishes,
the ∂Xν

Mλ
pp term drops.

Taking now α = pμ describes the flow of energy in momentum space. This is something like an “energy force” density. It is

Jpμ
= υ

2
Tr

{
J ∂t pμ Fd − h̄

[
∂Xν

(
MXμ pν

Fd

) − ∂pν

(
MXμXν

Fd

)]} + O(υ h̄2)

= υ

2
Tr

[
J ∂t pμ Fd − h̄εμνλ

(
∂Xν

Mλ
X p − ∂pν

Mλ
XX

)] + O(υ h̄2), (E4)

where

Mλ
X p = 1

2εμνλMXμ pν
Fd , Mλ

XX = 1
2εμνλMXμXν

Fd . (E5)

APPENDIX F: THE CASE OF A SEPARABLE POSITION
AND MOMENTUM DEPENDENCE

Here we specialize our theory to the case where the de-
pendence on X and p of H is separable, i.e., we can write
H(X, p) = g(X )Hh(p), where g is a c-number real function,
and the superscript h stands for “homogeneous,” and we ad-
ditionally require Γ(X, p) = Γ(p) = Γh(p). In other words, all
the spatial dependence is encoded in the function g(X ).

1. Solving the inhomogeneous problem

In this section, we show how the solution to the inhomo-
geneous problem [Eqs. (32) and (33)] can be deduced from
that of the homogeneous one [Eqs. (63a) and (63b)] in the
main text.

This can be worked out perturbatively in h̄. To zeroth order,
comparing Eq. (63b) to (33) yields immediately

S0 = Sh/
√

g, (F1)
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hence

Λα = −∂αg

2g
+ (Sh)−1∂αSh + O(h̄). (F2)

Explicitly in terms of position and momentum components,
and up to corrections O(h̄), this reads as Λpμ

= Λh
pμ

so that

Apμ
= Ah

pμ
, and ΛXμ

= − 1
2ψμ and in turn AXμ

= 0. Here we
defined ψμ = ∂Xμ

g/g which is sometimes called a “gravita-
tional field” [2,3,17,27].

The decomposition (B11), K = K0 + h̄K1 + O(h̄2), be-
comes here

K0 = gKh,

K1 = h̄
i

2
∂Xμ

g∂pμ
ΓhHh. (F3)

Thus, K0,d = gKh
d . Then one just needs to plug Eqs. (F1) and

(F3) into (B21). Because S−1
0 K1S0 is purely anti-Hermitian,

its real diagonal part vanishes, so the first O(h̄) term in
Eq. (B21), Re[(S−1

0 K1S0)(d)], is zero. Besides, because of the
α ↔ β antisymmetry, for the last term it is sufficient to look
at α = Xμ, β = pμ, where clearly the commutator vanishes
because ΛXμ

is diagonal (actually ∝1), so the third O(h̄) term,
εαβIm{Λβ, [Λα, K0,d ]}(d), is zero as well. Consequently, the
only O(h̄1) contribution in Eq. (B21) comes from the second
O(h̄1) term, and

Kd = g
(
1 + h̄ψμAh

pμ

)
Kh

d + O(h̄2). (F4)

This solves the problem to order O(h̄1).

2. Distribution function

The distribution Fd close to equilibrium is a function of the
energies Kd only,

Fd = f (Kd , T )

= f
(
gKh

d , T
) + gψμAh

pμ
Kh

d f ′(gKh
d , T

) + O(h̄2), (F5)

where a function of a diagonal matrix is transparently defined
[cf. Eq. (45)]. It should be understood that f is a real function
which depends solely on local equilibrium properties, such as
the local temperature [17,23], and f ′ is the derivative of f with
respect to its first variable. Because f does not depend on the
profile of g(X ), it is the same function as in the homogeneous
case Fh

d = f (Kh
d , T ). It is then not difficult to show that

f (ε, T ) = ε
[
nB(ε, T ) + 1

2

]
, (F6)

where nB(ε, T ) = [exp(ε/kBT ) − 1]−1 is the Bose function,
T is the local temperature, and the extra ε factor comes from
the normalization of eigenvectors, Eq. (63b).

3. Energy current

We are now in a position to compute the energy current
(61). First consider Eq. (62a). Because the only nonvanishing
curvature here is Ωpμ pν

since Aμ = 0, the Jacobian factor

reduces to J = 1 + O(h̄2). We specialize to β = pμ, and only
σ = Xν in the second factor can contribute [cf. Eq. (E1a)],
yielding

∂t Xμ = ∂pμ
Kd − h̄Ωpμ pν

∂Xν
Kd + O(h̄2)

= g
(
∂pμ

Kh
d − h̄Ωh

pμ pν
ψνKh

d

) + O(h̄2), (F7)

where the O(h̄) terms generated by going from Kd to Kd

canceled against each other. Finally, plugging Eq. (F5) into
the third factor and expanding, it is straightforward to show
that the latter reduces to f (gKh

d , T ). The first contribution to
the current is thus

J (1)
Xμ

= υ

2
Tr

[
g
(
∂pμ

Kh
d − h̄Ωh

pμ pν
ψνKh

d

)
f (gKh

d , T )
] + O(υ h̄2).

(F8)

Note that the first [order O(h̄0)] contribution is a total momen-
tum derivative, therefore, it always vanishes after momentum
integration.

Now consider Eq. (62b). Because Mαβ is antisymmetric
and ΛXμ

is diagonal, the only [to O(h̄0)] nonvanishing com-
ponent of M is

Mpμ pν
= g1

2 Im
{
Λh

pν
,
[
Λh

pμ
, Kh

d

]}(d) + O(h̄), (F9)

hence the second contribution to the current

J (2)
Xμ

= υ h̄

2
∂Xν

Tr
[
Mpμ pν

Fd
] + O(υ h̄2)

= υ h̄

2
Tr

[
gMh

pμ pν

(
f
(
gKh

d , T
)
(ψν + ∂νT/T )

+ gKh
d f ′(gKh

d , T
)
(ψν − ∂νT/T )

)] + O(υ h̄2). (F10)

Equations (F8) and (F10) provide the total local, momentum-
resolved energy current.

4. Discussion

Here we restrict ourselves to the equilibrium case ∂Xν
T =

0. Then J (1)
Xμ

besides J (2)
Xμ

is also a total ∂Xν
derivative, so

that the net energy current Jtot vanishes, as it should in equi-
librium. Meanwhile, neither the local momentum-integrated
currents

J (1)
Xμ

= −υ h̄g ψν

∫
p

Tr+
[
Ωh

pμ pν
Kh

d f
(
gKh

d , T
)] + O(υ h̄2),

J (2)
Xμ

= υ h̄ ∂Xν

∫
p

Tr+
[
gMh

pμ pν
f
(
gKh

d , T
)] + O(υ h̄2) (F11)

nor their sum JXμ
(X ) ≡ J (1)

Xμ
+ J (2)

Xμ
need vanish even at equi-

librium because the energy magnetization is not zero a priori.
Note that in Eq. (F11) the trace Tr+ runs over positive en-
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ergy eigenstates only, following the argument developed in
Sec. IV A and Appendix B 3.

There is, however, a physical constraint that the energy
magnetization should obey the third law of thermodynamics,
so that JXμ

(X ) should at least vanish in the limit of zero tem-
perature. Let us show that Eqs. (F8) and (F10) indeed satisfy

this property. We will resort to the fact that f (ε, T )
T →0= 1

2ε

for any ε > 0, in other words, only the zero-point fluctua-
tions contribute to the density matrix. Taking this limit within
Eq. (F11), expanding the definition (19), using cyclicity of the
trace and eventually identifying Ωh

pμ pν
= Im[Λh

pν
, Λh

pμ
](d), it is

then straightforward to show that (in equilibrium)

J (2)
Xμ

T →0= υ h̄

2
g2ψν

∫
p

Tr+
(
Kh

dΩh
pμ pν

Kh
d

) + O(υ h̄2)

T →0= −J (1)
Xμ

+ O(υ h̄2). (F12)

This shows, to O(υ h̄1), the cancellation of local magnetization
currents in the zero-temperature limit (this is in fact already
true for the momentum-resolved current). More generally, the
above shows that the zero-point fluctuations (the “+ 1

2 ” in the
definition of f ) cancel exactly when adding J (1)

Xμ
to J (2)

Xμ
.

APPENDIX G: EXPLICIT SPATIAL INTEGRATION FOR A HOMOGENEOUS SYSTEM WITH A BOUNDARY

We now perform the
∫

dx (recall x ≡ Xx) integration in Eqs. (64) and (65). We have

κ tr
xy = − υ h̄

∂xT
Tr+

∫
p

lim
L→∞

1

L

∫
dx Ωh

py px
∂x[Kd (x)]Kd (x)

(
nB(Kd (x), T )|T (x) + 1

2

)
, (G1)

where we recall Kd (x) = g(x)Kh
d . Clearly, the integrand decays over distances O(L0) outside of Ix, therefore, one does not

change the result by multiplying the former by any cutoff function �(x) strictly equal to 1 wherever the integrand is nonzero,
and decaying slowly to zero at x → ±∞. In addition, we introduce 1 = ∫

dε δ(ε − Kd (x)) in order to perform a change of
variables from the spatial coordinate x to energy ε:
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Tr+
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1
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∫
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∫
dε �(ε − Kd (x)) ε ∂xnB(ε, T )|T (x). (G2)

In going to the second line we used the chain rule, and in going to the third line we integrated by parts: no boundary term is
generated because of the cutoff function �(x), and the extra term proportional to ∂x� vanishes like O(1/L).
We use finally that

∂xnB(ε, T )|T (x) = −[ε/T (x)]∂xT (x)∂εnB(ε, T )|T (x), (G3)

and do not include T (x) position dependence anywhere else, and assume that ∂xT (x) is uniform within Ix and zero outside, i.e.,
∂xT (x) = const �= 0 for x ∈ Ix and ∂xT (x) = 0 for x /∈ Ix. This is enough for the linear response regime up to O(1/L) corrections
thanks to the decay of g(x) over distances O(L0). Since then g(x) = 1 in the whole support of the integrand, one can replace
Kd (x) → Kd as well as 1

L

∫
Ix

dx → 1, which yields exactly Eq. (66), where we also used Ωh
px py

= −Ωh
py px

.

APPENDIX H: EXAMPLE OF INHOMOGENEOUS ELASTICITY WITH A TIME-REVERSAL-BREAKING TERM

1. General

The Lagrangian density (67) is equivalent to the Hamiltonian density

Hph(r) = 1

2ρ(r)
�i�i + ci jμν (r)

2
∂μui∂νu j, (H1)

upon introducing the conjugate lattice momentum

�i = − i

h̄

δ

δui
− Ai[u], Ai[u] ≡ ηi jμν (r)∂2

μνu j . (H2)

Thus, the viscosity term introduces an effective vector potential which couples to the lattice momentum and entails a nontrivial
[�i(r),� j (r′)] commutator. For convenience, we now define the “reduced” momentum πi(r) = �i (r)

ρ(r) . To connect with the
general formulation of the main text, we define the six-dimensional vector

�(r) = [u1(r), u2(r), u3(r), π1(r), π2(r), π3(r)]�, (H3)

and by comparing Eq. (H1) and the commutation relations of the ui(r) and π j (r′) fields to Eqs. (1), and (2) in the main text,
one can readily identify Γ and H. Performing the Wigner transform to phase-space coordinates, one then obtains the dynamical
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matrix K = h̄ Γ � H:

Γ = i

h̄ρ

[
0 1

−1 [Γ22]

]
, H =

[
[H11] 0

0 ρ

]
, K = i

[
0 1

[K21] [K22]

]
, (H4)

where each block is a 3 × 3 matrix indexed by i, j = 1 . . . 3, and
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ρ

ρ
,

[K22] = 1

2h̄ρ

[
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(
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ρ
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−
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2
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2
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∂Xμ
ρ

ρ
. (H5)

Equations (H4) and (H5) involve parameters ρ, (cμν )i j, (ημν )i j whose dependence on position X can be chosen to be any arbitrary
smooth functions of position X , so that Eqs. (H4) and (H5) are the general expression, in phase space, of inhomogeneous (linear)
elasticity with a Hall viscosity term.

2. Specific

Now we focus on the special case of the simple spatial dependence from Appendix F. For this application we need only
consider the spatially independent version of the above, Eq. (68) in the main text. We also choose the elasticity parameters to
have the specific form (69), corresponding to the Lagrangian density

Lph = ρ

2
(∂τ u)2 + 1

2
(−c1u · (∇2u) + c2(∇⊥ · u⊥)2 + c3(∂zu

z )2 + c4(∇⊥uz )2 + c5(∂zu⊥)2) + i
[
∂τ u × (

η1∇2
⊥ + η2∂

2
zz

)
u
] · ẑ,

(H6)

where ∇⊥ = (∂x, ∂y, 0) and u⊥ = (ux, uy, 0).
This problem can be solved analytically for arbitrary values of η1, η2, ca, a = 1 . . . 5. In the following, we expand the solution

in powers of the viscosity coefficients η1,2, which we assume to be small with respect to c1,2
√

ρ; this assumption is largely valid in
known relevant cases [29]. We furthermore take c5 = 0, which has little physical consequence but makes analytical expressions
considerably shorter. We also define c̃a = ca/ρ for a = 1 . . . 5 and η̃b = ηb/ρ for b = 1, 2.

We find the energy bands

Kh
d = diag(ε1,−ε1, ε2,−ε2, ε3,−ε3),

ε1 = [c̃1 p2]
1
2 , ε2 = [c̃1 p2 + c̃2 p2

⊥]
1
2 ,

ε3 = [
c̃1 p2 + c̃3 p2

z + c̃4 p2
⊥
] 1

2 , (H7)

where p2
⊥ = p2

x + p2
y, and the “normalized” eigenvectors [normalized according to Eq. (33)] �i, �

∗
i such that

Sh = [�1 | �∗
1 | �2 | �∗

2 | �3 | �∗
3 ]. (H8)

In writing the explicit expressions for the eigenvectors, we use the shorthand notations ζ (I)
p ≡ η̃1 p2

⊥ + η̃2 p2, ζ (II)
p ≡ p2

⊥(η̃1 p2
⊥ −

η̃2 p2
z ), and ζ (III)

p ≡ η̃1 p4
⊥ − 2η̃2 p4

z − η̃2 p2
z p2

⊥, so that a choice of properly normalized eigenvectors can be
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1
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p
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,−1, 0

)�
+ O(η2),
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1
2

(
i
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,
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py
− iε2
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, 1, 0
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+ O(η2), (H9)

and �3 = 1√
2ρ

(0, 0, i
ε3

, 0, 0, 1)�.
Here we provide �1 and �2 to linear order in η1,2 only. This is sufficient to compute the leading contribution to the

magnetization Mpx py and Berry curvature Ωpx py , which are odd under time reversal, and thus odd in powers of η1,2. In particular,
�3 does not depend on η1,2, therefore, the magnetization and Berry curvature are zero in the third band. In the other two bands
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we find, explicitly,

M(1)
px py

= 1

ε2
1 p2

⊥
c̃1ζ

(III)
p + O(η3),
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= 1
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We make a final remark about momentum integration. The integrand in Eqs. (F8) and (F10) does not vanish at large energies
due to the zero-point contribution to the boson density (see details in Appendix F 4 and discussion in Sec. III F 2). While this
does not have physical consequences for the total current JXy = J (1)

Xy
+ J (2)

Xy
, it makes both integrals diverge independently in a

continuum model. Thus, when evaluating momentum integrals we restore a conventional Brillouin zone BZ ≡ [−π/ξ, π/ξ ]3.
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