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Magnetoroton in a two-dimensional Bose-Bose mixture

O. I. Utesov 1,* and S. V. Andreev 2,†

1Center for Theoretical Physics of Complex Systems, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea
2Department of Theory of Semiconductors and Dielectrics, A. F. Ioffe Physico-Technical Institute of Russian Academy of Sciences,

194021, St. Petersburg, Russia

(Received 7 April 2024; revised 25 May 2024; accepted 31 May 2024; published 18 June 2024)

We extend our theory of slow magnons in a two-component Bose-Einstein condensate to the case of two
spatial dimensions (2D). We provide a detailed discussion of polaronic corrections to the magnon branch of
the elementary excitation spectrum in weakly and strongly interacting regimes. In a dilute system, the latter
may be achieved by adjusting interspecies attraction so as to obtain a resonance in the p-wave scattering
channel. Resonantly enhanced p-wave attraction results in the self-localization of magnons and the formation of
a magnetoroton. The nature of a ground state beyond the magnetoroton instability remains to be explored. We
suggest a dilute p-wave crystal of alternating polarization as a possible candidate. In contrast to 3D, the required
strength of the attractive potential in the s-wave channel here corresponds to tight binding, and we suggest a
potential realization of our model with excitons in 2D semiconductors.
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I. INTRODUCTION

Quantum degenerate mixtures of bosons have been in-
tensively investigated in a broad context spanning superfluid
He4 [1–5], nuclear matter [6] and neutron stars [7–9], ultra-
cold atomic gases [10–12], and excitons in semiconductors
[13,14]. The recent theoretical progress includes a deeper
understanding of the superfluid entrainment effect [15] and its
connection to the polaron problem [16,17], phase separation
[18–20], elementary excitations [16,17,21], and beyond-
mean-field effects [16,20,22–26]. A mixture of bosons with
long-range dipolar forces has been recognized as a promising
platform for supersolidity [14,27], which spurred an extension
of the effective interaction concept along the lines of the
Beliaev theory [16,28,29].

There has been a particular interest in polarization waves
(“magnons”) produced by oscillations of relative densities of
the components. At zero temperature, small-amplitude exci-
tations of that kind provide an indicator of miscibility of a
Bose-Einstein condensate (BEC) [3,4]. On the verge of the
phase separation transition, the magnon sound velocity van-
ishes and the energy spectrum takes a massive form [see, e.g.,
Eq. (1)], reflecting the analogy of an SU(2) symmetric system
to a ferromagnet [30]. In addition to fundamental interest,
soft magnons have a practical promise for exciton-mediated
superconductivity [31].

The simplest model displaying magnon excitations is a
binary mixture of bosons (hereafter labeled by “↑” and “↓”)
having equal masses m↑ = m↓ ≡ m, equal densities n↑ =
n↓ ≡ n, and elastic two-body interactions, which conserve
the occupations of each component. The interactions are as-
sumed to produce repulsion in the s-wave channels. In a
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three-dimensional space (3D), analysis of such a model us-
ing the Beliaev approach [28,29] has revealed a previously
unknown forward-scattering correction to the magnon disper-
sion [16],

h̄ω(p) = h̄2 p2

2m
+ 2n

[
g

(
p
2
,

p
2

)
− g(0, 0)

]
, (1)

where the energy-dependent effective interaction potential
g(k, k) is defined by the forward (zero-angle) scattering
amplitude as g(k, k) = −(4π h̄2/m)Re[ f (k, k)]. The massive
form of Eq. (1) corresponds to the particular case of identical
interactions. The necessity to retain only the real part of the
amplitude will be shown in Sec. II of the present paper.

The forward-scattering amplitude is known to govern re-
fraction of matter waves [32,33]. A plane wave ∼eikr−iωt

propagating through a homogeneous medium of fixed scatter-
ers distributed at the density 2n undergoes a shift of its kinetic
energy h̄2k2/2m = h̄2k̄2/2m + (4π h̄2n/m) f (k̄, k̄) [32]. Here
k̄ is the momentum in vacuum, its absolute value being fixed
by the total (constant) energy h̄ω through the dispersion rela-
tion k̄ = √

2mω/h̄. By writing k = n(ω)k̄, one may see that
the quantity n(ω) ≡

√
1 + (2π h̄n/mω) f (k̄, k̄) plays the role

of a refraction index. The imaginary part of n(ω) defines
attenuation of the particle beam, in agreement with the optical
theorem [32]. The in-medium dispersion becomes h̄ω(k) =
h̄2k2/[2mn2(ω)]. By counting the energy from the mean-field
potential 2ng(0, 0), replacing the incident particle mass m and
momentum k by the reduced mass m/2 and the momentum
p/2 relative to the condensate, respectively, and suppressing
the attenuation, one gets Eq. (1).

Alternatively, one may regard the forward-scattering term
in Eq. (1) as a correction to the quasiparticle mass [16,17].
This viewpoint has been corroborated by the diagrammatic
theory [16] revealing renormalization of the magnon mass due
to the Andreev-Bashkin entrainment effect [2,15] and estab-
lishing a connection to the physics of a Bose polaron [34].
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The polaronic interpretation further suggests an effect beyond
the optical analogy: self-localization of magnons [17]. This
corresponds to the strong-coupling regime in an analogous
impurity problem, where the particle sticks to the medium
rather than drags a virtual cloud. A challenging question is
how to achieve the strong coupling in a weakly interacting
gas n| f 3(0, 0)| � 1, so that the quantum depletion of BEC
remains small.

To this end, one may notice [17] that for distinct bosons,
the forward-scattering amplitude f (k, k) may include odd
partial waves, of which the leading contribution at low en-
ergies would be due to p-waves. More generally, if one moves
away from the phase separation point into the miscibility re-
gion g↑↓(0, p) < g↑↑(0, p) by allowing a difference between
intra- and interspecies interactions, g↑↑(p, q) = g↓↓(p, q)
and g↑↓(p, q), respectively, the magnon spectrum takes the
form [17]

h̄ω(p) =
√√√√ h̄2 p2

2m∗

[
h̄2 p2

2m∗
+ 2n[g↑↑(0, p) − g↑↓(0, p)]

]
, (2)

where the renormalized mass m∗ is defined through the
identity

h̄2 p2

2m∗
≡ h̄2 p2

2m
+ 2n

[
g−

↑↓

(
p
2
,

p
2

)
+ g+

↑↑

(
p
2
,

p
2

)
− g↑↑(0, 0)

]

+ n[δg↑↓(0, p) − δg↑↑(0, p)] (3)

with

g±
σσ ′ (k, k) ≡ 1

2 [gσσ ′ (k, k) ± gσσ ′ (k,−k)], (4a)

δgσσ ′ (0, k) ≡ gσσ ′ (0, k) − gσσ ′ (0, 0). (4b)

The formula (1) may be obtained from Eq. (2) in the
SU(2)-symmetric limit g↑↑(p, q) = g↓↓(p, q) = g↑↓(p, q) ≡
g(p, q). The inequality g↑↓(0, p) < g↑↑(0, p) indicates ex-
plicit breaking of the SU(2) symmetry.

The off-shell corrections (4b) vanish at low momenta,
provided the bare microscopic interactions are short-ranged.
Likewise, the product n[g+

↑↑(k, k) − g↑↑(0, 0)] may be omit-
ted in the weakly interacting limit n f 3(0, 0) � 1. One may
then see that the prerogative is left entirely to the anti-
symmetrized potential g−

↑↓(k, k) governed by the p-wave
scattering. This is in stark contrast to the phonon part of
the spectrum, where the interspecies interaction enters in the
symmetrized form g+

↑↓(k, k), and therefore only even partial
wave channels are relevant [17].

On the basis of Eq. (3), we have shown [17] that an in-
creasingly strong enhancement of the magnon mass m∗ may
be achieved on the attractive side of a p-wave resonance, at
the same time retaining a low level of quantum fluctuations
due to phonons. Moreover, since the bare magnons with ener-
gies E closer to the resonance stick stronger to the medium,
self-localization may be achieved at finite momentum p 
= 0.
The corresponding dip in the magnon dispersion has been
dubbed magnetoroton and has been tentatively associated with
an unconventional phase separation transition [17], which re-
mains to be explored. Quite distinctly from the conventional
softening of the magnon mode on the verge of miscibility,

self-localization occurs upon increasing the particle density
n while keeping the ratio g↑↓(0, 0)/g↑↑(0, 0) < 1 fixed.

However, experimental implementation of these ideas in
3D has been hindered by difficult access to a p-wave res-
onance. A centrifugal p-wave resonance naturally emerges
from an s-wave bound state when the energy of the latter
is pushed toward the scattering threshold. In 3D the corre-
sponding binding energy corresponds to the limit of weak
binding [17], which is rather exotic. In principle, a p-wave
resonance exists as the Feshbach resonance in mixtures of
ultracold atomic gases, such as 85Rb − 87Rb mixtures [18,35].
Unfortunately, the three-body loss of atoms near the resonance
has been detrimental [36].

In this regard, the reduction of spatial dimensionality has
been considered a promising route for the realization of p-
wave attraction. Indeed, as we argue in this paper, a centrifugal
p-wave resonance in 2D would originate from a tightly bound
s-wave state. Such states exist for excitons in 2D semicon-
ductors, and we discuss a possible route in this direction.
Importantly, both the reduced spatial dimensionality and the
large binding energy slow down the relaxation of a mix-
ture to the s-wave molecular condensate. In atomic settings,
one may take advantage of the residual zero-point motion in
the transverse direction to increase the ratio of equilibration
to three-body recombination rates [36]. In addition to these
specific advantages, the 2D geometry is generically more con-
venient for the eventual search for a new ground state (both in
theory and experiment).

Technically, an extension of the formal result (2) to 2D is
far from trivial. Preliminary considerations [16] suggest that
the concept of effective interaction does not apply literally in
this case. Enhanced quantum fluctuations and, concomitantly,
stronger superfluid drag look promising, but they do not im-
ply self-localization, which would require the contribution of
forward scattering. In fact, 2D quantum kinematics is quite
distinct from 3D in that cold particles tend to avoid each
other at short distances [32]. Hence, the possible existence of
magnetorotons in 2D remains to be proven at the conceptual
level. Furthermore, in contrast to 3D, short-range forces are no
longer ubiquitous in 2D, where interacting BECs have been
realized primarily with dipolar excitons in semiconductor lay-
ers [37]. Long-range dipolar repulsion is known to induce
a sizable momentum dependence of the off-shell scattering
amplitude [14,38–41], so that corrections of the type (4b)
may come into play. These open questions have provided the
main motivation for an extension of the magnetoroton theory
presented in this paper.

Our main result is that close to the p-wave resonance,
Eq. (2) remains valid, whereas the expression for the effec-
tive mass (3) reduces to Eq. (19) governed entirely by the
short-range part of the p-wave scattering amplitude. The long-
range parts cancel identically and do not contribute to the
mass renormalization. The above qualitative description of the
magnetoroton in 3D pertains also to the 2D space. Crucially,
only the real part of the scattering amplitude contributes to the
effective potential in Eq. (19): the condensate stabilizes the
magnetoroton. Furthermore, we find that the magnetoroton is
the only possible form of the magnon self-localization in a
2D gas, i.e., the scenario with m∗ → ∞ at p → 0 is absent
here.
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To reach these conclusions, we start with a general analysis
of the polaronic corrections to the magnon dispersion based
on the diagrammatic approach of Ref. [16] and quantum scat-
tering theory. This analysis is presented in Sec. II. In Sec. III
we discuss the experimental implementation of the magne-
toroton with dipolar bosons in bilayers. We predict a p-wave
scattering resonance in the limit where the interlayer potential
supports a tightly bound s-wave state. At low temperatures,
relaxation into an s-wave molecular condensate is inhibited
by several factors, including the long-range dipolar repulsion.
This warrants the existence of a mixture as a metastable state
on the attractive side of the p-wave resonance and consecutive
dynamical instability upon softening the magnetoroton. The
nature of a new phase-separated ground state remains to be ex-
plored. We tentatively suggest dipolar excitons in atomically
thin semiconductors for an immediate experimental test of our
findings.

II. GENERAL CONSIDERATION

In the frame of the Beliaev approach, the elementary
excitation spectrum of a Bose-Einstein condensate is ob-
tained from the poles of the one-particle Green’s function
[28,29,42,43]. For a two-component condensate, the spec-
trum h̄ω(p) has two branches that correspond to the in-phase
and out-of-phase oscillations of the components—the phonon
and magnon elementary excitations, respectively [16]. Each
branch is formally expressed in terms of the (bare) single-
particle kinetic energy, the chemical potential μ, and the
self-energies �σσ ′

11 (±p) and �σσ ′
20 (p), with p ≡ (ω, p) being

the 4-momentum, which itself includes the excitation energy

h̄ω(p) (see Appendix A and Ref. [16] for details). Here, we
focus exclusively on the magnon branch [see Eq. (A8) with the
sign choice “−”], and we assume that the translational motion
and scattering of particles is reduced to two dimensions, i.e.,
p = (px, py).

The basic element of perturbative expansion of the self-
energies is the four-leg vertex �σσ ′σσ ′ (p1, p2; p3, p4), which
represents an infinite series of the ladder diagrams for the
bare two-body interaction potentials Vσσ ′ (r). The vertex may
be related to the two-body scattering matrix Tσσ ′ (k′, k, z)
by setting z = � − P2/4m + 2μ + i0, with (�, P) ≡ P =
p1 + p2 = p3 + p4 being the total energy and momentum of
the colliding particles, and k = (k1 − k2)/2 and k′ = (k3 −
k4)/2 being the corresponding relative momenta. The Bethe-
Salpeter equation for the vertex translates into the following
integral equation for the scattering matrix:

Tσσ ′ (k′, k; z) = 1

(2π )2
Vσσ ′ (k′ − k)

+ 1

(2π )2

∫
Vσσ ′ (k′ − k′′)

z − Ek′′
Tσσ ′ (k′′, k; z)dk′′,

(5)

where Ek = h̄2k2/m, and the Fourier transform of the bare
interaction potentials is defined as

Vσσ ′ (q) =
∫

e−iqxVσσ ′ (x)dx. (6)

The T -matrix is related to the off-shell scattering amplitude

fσσ ′ (k′, k) ≡ −(2π )2 m

2h̄2 Tσσ ′ (k′, k; Ek + i0) (7)

by

Tσσ ′ (k′, k; z) = − 1

(2π )2

2h̄2

m

[
f ∗
σσ ′ (k, k′) − 1

(2π )2

2h̄2

m

∫
fσσ ′ (k′, q) f ∗

σσ ′ (k, q)

(
1

Eq − Ek′ + i0
+ 1

z − Eq

)
dq

]
. (8)

To the first order in the dimensionless parameters

ησσ ′ ≡ m

h̄2 (2π )2Tσσ ′ (0, 0; 2μ + i0) � 1, (9)

the self-energies and the chemical potential may be expressed
as

�σσ ′
11 (±p) = (2π )2n

[
Tσσ ′ (∓p/2,±p/2; z±)

+ δσσ ′
∑
σ ′′

Tσσ ′′ (±p/2,±p/2; z±)

]
,

�σσ ′
20 (p) = (2π )2nTσσ ′ (0, p; 2μ + i0), (10)

with

z± = ±h̄ω − h̄2 p2

4m
+ 2μ + i0 (11)

and

μ = (2π )2n[T↑↑(0, 0; 2μ + i0) + T↑↓(0, 0; 2μ + i0)], (12)

respectively. By using the well-known solution of a 2D scat-
tering problem in the s-wave channel

f0,σσ ′ (k) = π

ln(kaσσ ′ ) − iπ/2
(13)

and the relation (8), the transcendental equation for the chem-
ical potential may also be recast as

μ = − h̄2n

m

[
2π

ln(pca↑↑)
+ 2π

ln(pca↑↓)

]
, (14)

where we have defined pc ≡ √
2mμ/h̄. The requirement

ησσ ′ � 1 is then identical to either pcaσσ ′ � 1 or pcaσσ ′ � 1.
Here, the 2D scattering length aσσ ′ would be on the order of
the microscopic range Rσσ ′ of the bare potential Vσσ ′ (r) in the
case in which the latter possesses a hard core at r � Rσσ ′ . In
the opposite limit of a soft-core potential m|Vσσ ′ (q)|/h̄2 � 1,
one would have instead aσσ ′ ∼ Rσσ ′ exp[−4π h̄2/mVσσ ′ (0)],
which yields the Born approximation for the scattering ampli-
tude. Interestingly, in that latter limit, the diluteness criterion

βσσ ′ ≡
√

nR2
σσ ′ � 1 may be relaxed to a certain extent so
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that the theory would be applicable also at moderate densities
βσσ ′ � 1 [43].

Hereafter, we shall be concerned with the repulsive
Bose-Bose mixtures, where pcaσσ ′ � 1. The miscibility con-
dition T↑↓(0, 0; 2μ + i0) < T↑↑(0, 0; 2μ + i0) may be recast
as a↑↓ < a↑↑. At a↑↓ > a↑↑, phase separation of the system
and formation of immiscible domains would occur.

As we have outlined above, the elementary excitation
spectrum requires calculation of the momentum-dependent
self-energies (10). There may be two qualitatively distinct
contributions to these relations. The first one comes from
the energetic arguments of the T -matrices given by Eq. (11).
This contribution may be analyzed by setting h̄ω ≈ h̄cm p (or
h̄ω ≈ h̄2 p2/2m on the verge of miscibility a↑↓ = a↑↑) and
expanding the T -matrices in powers of p/pc by using Eq. (5).
The first-order correction goes as the polaronic renormaliza-
tion of the magnon mass m (or, equivalently, the spin-wave

velocity cm) and may be identified to the superfluid drag ρ↑↓
due to the Andreev-Bashkin entrainment effect [16,44]. This
contribution scales as the quantum depletion of the condensate
ρ↑↓ ∼ n′ = n − n0 ∼ nησσ ′ and may be safely neglected in
our consideration.1

The second contribution comes from the explicit mo-
mentum dependence of the T -matrices. For the long-range
potentials, this includes the so-called anomalous scattering
[32]. The anomalous momentum-dependent correction to the
off-shell scattering amplitude (7) may be worked out in the
Born approximation and includes all partial waves. The spec-
trum then takes the form of Eq. (2), where

gσσ ′ (p, q) ≡ (2π )2Tσσ ′ (p, q, 2μ + i0) (15)

are the properly defined effective potentials. Remarkably,
Eq. (2) may be obtained by applying the Bogoliubov trans-
formation to the second-quantized Hamiltonian

Ĥ∗ =
∑
p,σ

h̄2 p2

2m
â†

σ,pâσ,p + 1

2S

∑
k,p,q,σ,σ ′

â†
σ,k+pâ†

σ ′,k−pgσσ ′ (p, q)âσ,k+qâσ ′,k−q, (16)

where S is the quantization area, and the operators âσ,p obey
the standard Bose commutation relations. The transcendental
Eq. (12) for the chemical potential may be obtained in the
zeroth order of the perturbative expansion of Ĥ∗ upon replace-
ment of âσ,0’s by the c-numbers

√
N .

Let us single out the anomalous contributions to the rele-
vant potentials:

g±
σσ ′

(
p
2
,

p
2

)
≡ g(±)

σσ ′

(
p

2
,

p

2

)
± 1

2
g∗

σσ ′ (p), (17a)

gσσ ′ (0, p) ≡ gσσ ′ (0, p) + g∗
σσ ′ (p). (17b)

Here, the normal symmetrized (antisymmetrized) contribu-
tions g(±)

σσ ′ (
p
2 ,

p
2 ) correspond to the even (odd) partial series in

the multipolar expansion of the on-shell scattering amplitude

fσσ ′ (k′, k) =
+∞∑

M=−∞
fM,σσ ′ (k)eiMϕ, (18)

with ϕ being the angle between k′ and k. The M = 0 term
in Eq. (18) is just the s-wave scattering amplitude given by
Eq. (13). The anomalous contributions g∗

σσ ′ (p) can be seen
to cancel exactly in Eq. (3). On the other hand, g∗

σσ ′ (p)’s
may survive in the effective mean-field potential produced by
the condensate in Eq. (2). As such, these contributions may
give rise to the so-called roton immiscibility [45]—a phase
separation at finite momentum driven by minimization of the
interaction energy. This phenomenon has been extensively
addressed elsewhere (see Ref. [17] and references therein) and
will be intentionally eliminated from our present considera-
tion by assuming g∗

↑↑(p) = g∗
↑↓(p).

1It would, on the other hand, be important for quantum-mechanical
stabilization of a collapsing Bose-Bose mixture with interspecies
attraction [23].

Furthermore, at low p the leading s-wave contributions to
the ordinary parts g(+)

↑↑ ( p
2 ,

p
2 ), g↑↑(0, p), and g↑↓(0, p) cancel

identically with g↑↑(0, 0) and g↑↓(0, 0), respectively. This is
consistent with the absence of a gap for a Goldstone mode.
One obtains

h̄2 p2

2m∗
= h̄2 p2

2m
+ 2ng(−)

↑↓

(
p

2
,

p

2

)
, (19)

where g(−)
↑↓ ( p

2 ,
p
2 ) is governed entirely by the p-wave scattering

amplitude

f1,↑↓(k) = π

−Ek−ν

βEk
+ ln(kR↑↓) − iπ/2

(20)

through the relations (15) and (8). Here, as we have already
defined above, Ek ≡ h̄2k2/m. At k → 0 one may introduce
the p-wave scattering area s ≡ −βπ h̄2/(mν) and get m∗ =
m/(1 − 2n|s|). As the density n approaches the critical value

n(1)
c = (2|s|)−1,

the effective mass m∗ diverges.
By analogy with the 3D case considered in our previ-

ous work [17], one would expect that the divergency of m∗
becomes compatible with the diluteness criterion when one
approaches a p-wave scattering resonance from below. The
parameter 0 < ν � h̄2/mR2

↑↓, in this case, would play the role
of “detuning,” and β would characterize the width of the reso-
nance. Thus, for a rectangular potential well of depth U↑↓ and
radius R↑↓, one would have β = 1/ ln (2e1/2−γ ), with γ be-
ing the Euler-Mascheroni constant, and ν = β(U (c)

↑↓ − U↑↓)/2

with U (c)
↑↓ ≈ 5.76h̄2/mR2

↑↓ being the threshold depth at which
a p-wave resonance emerges (see Appendix B).

At this point, it is instructive to return to our argument on
the refractive origin of the polaronic effect (Sec. I). In a hy-
pothetical medium of rigid scatterers, the large imaginary part
of the scattering amplitude near a resonance would inevitably
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produce strong attenuation of the matter wave, just like diver-
gency of the conventional refractive index signals absorption
of light. Crucially, the attenuation does not occur for magnons.
A formal proof of this statement may be obtained from Eq. (8).
In the relevant limit (9) the only significant contribution to
the imaginary part of the integral term is due to the un-
bound denominator (Eq − Ek′ + i0)−1. By virtue of the optical
theorem [32]

Im[ fσσ ′ (±k, k)]

= 1

4π

∫
dq fσσ ′ (k, q) f ∗

σσ ′ (±k, q)δ(q2 − k2), (21)

this contribution cancels identically with the imaginary part of
fσσ ′ (±k, k). One gets

g(−)
↑↓

(
p

2
,

p

2

)
= −2h̄2

m
Re

[
f1,↑↓

(
p

2

)]
. (22)

Qualitatively, attenuation of a matter wave near a scatter-
ing resonance would mean capture by the scatterers. For
magnons, this would correspond to conversion into p-wave
molecules, and in a condensate the latter may occur only as a
phase transition.

This way, the condensate stabilizes the magnons and
endows them with the possibility to explore the whole
resonant pole structure of Eq. (20). The most dramatic
modification of the dispersion law takes place at small
detuning ν. The magnons with their energies being close
to the resonance exhibit stronger renormalization of their
mass so that the spectrum (2) develops a minimum at finite
momentum: magnetoroton. At the critical density

n(2)
c ≈ − mν

β h̄2 ln(2mR2
↑↓ν/β h̄2)

(23)

the minimum touches zero and the mixture becomes
dynamically unstable. One may see that, in contrast to
3D [17], here one has n(2)

c � n(1)
c due to the large logarithm

in the denominator. Hence, self-localization of magnons in
a dilute 2D gas may occur only via the magnetoroton. The
characteristic momentum of the instability (the magnetoroton
position) may be estimated as

pr ≈
√

− 2mν

β h̄2 ln(2mR2
↑↓ν/β h̄2)

, (24)

and one may readily verify that pr ∼
√

n(2)
c � R−1

↑↓ . The
ensuing tendency of the system to separate into alternating
immiscible domains would compete with the pairing and may
preclude formation of the p-wave spinor molecular superfluid,
which is known to be a stable ground state of the system at
ν < 0 [46]. An intriguing outcome of the two competing
mechanisms will be explored in our future work.

To close this section, let us discuss the stability of a mixture
with respect to possible relaxation into an s-wave molecular
superfluid. Two general remarks are in order here. First, the
s-wave bound state underlying a centrifugal p-wave scattering
resonance in 2D is deep. This is in stark contrast to the 3D
setting, where the p-wave resonance emerged from a weakly
bound s-wave state [17]. This seems to be a general trend
(see Appendix B), also recovered within a realistic model

FIG. 1. As a particular platform where the magnetoroton can be
observed experimentally, we propose a double-layer structure with
interlayer spacing l . Each exciton layer consists of an electron and a
hole layer spatially separated by the distance d .

considered in Sec. III. Second, in 2D both the elastic σe and
inelastic σr scattering cross-sections scale generically as k−1.
One may then expect that inclusion of long-range repulsive
forces would suppress the ratio σr/σe at low energies.

III. PHYSICAL IMPLEMENTATION

A. The model

Remarkably, in contrast to the 3D case addressed in
our previous study [17], in 2D a p-wave scattering res-
onance builds upon a tightly bound s-wave state (see
Appendix B), which considerably enlarges the choice of po-
tential experimental implementations. Here, we show that the
magnetoroton may be observed in a system of dipolar bosons
residing in a pair of spatially separated layers, as schemat-
ically illustrated in Fig. 1. The labels “↑” and “↓” may be
conveniently ascribed to the top and bottom layers, respec-
tively. The corresponding interaction potentials read

V↑↑(r) = V↓↓(r) = h̄2r∗
mr3

, (25a)

V↑↓(r) = h̄2

m

r∗(r2 − 2l2)

(r2 + l2)5/2
, (25b)

where r∗ ≡ me2d2/κ h̄2 is the dipolar length and l is the dis-
tance between the layers. The absence of tunneling between
the layers ensures statistical distinguishability of thus defined
components of a mixture.

The 2D dipolar bosons may be realized with semiconduc-
tor excitons formed of spatially separated electrons and holes.
Hence, each boson layer σ = {↑,↓} defined above would
correspond to an electron-hole bilayer. Such heterostructures
have already been implemented on the basis of epitaxial quan-
tum wells (QWs), and interlayer dipolar attraction has been
experimentally demonstrated [47,48]. As we shall deduce be-
low, the magnetoroton formation would require the ratio

g ≡ r∗
l

= d

ae
× d

l
∼ 10, (26)

which, by virtue of the constraint d � l , may only be achieved
at d � ae. Here ae = h̄2κ/mee2 is the electron Bohr radius,
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FIG. 2. Two-body scattering potentials in various channels in
units of h̄2/ml2 for g = 9.1 (p-wave resonance regime). Orbital
momentum contribution l2/r2 is taken into account for the effective
p-wave potential V↑↓, p. The dashed gray line shows the energy of a
tightly bound s-wave state in the interlayer channel with the energy
≈ −4h̄2/ml2.

with κ being the dielectric constant of the surrounding
material. On the one hand, the condition d � ae excludes
binding of excitons within each layer due to the electron-hole
exchange [41], thus ensuring implementation of the purely
repulsive potential (25a). On the other hand, the electrons
and holes should not be too far apart in order to avoid
dissociation of excitons. In view of that latter constraint,
we believe that a more suitable setting would be a van der
Waals heterostructure consisting of atomically thin layers of
transition metal dichalcogenides (TMDs), say, MoS2. The
stability of dipolar excitons in TMDs has been addressed in
Ref. [49]. At d/l � 1, one would need d/ae ∼ 10, which
corresponds to the Mott dissociation densities nMa2

e ∼ 10−4.
Note that recombination of the electrons and holes in
the nearby layers separated by the distance l − d may be
suppressed by application of a transverse electric field.

The ultracold limit for this model is achieved at
kr∗ � 1. The anomalous scattering corrections g∗

σσ ′ (k) =
−2π h̄2/mkr∗ [38,39] are identical for all channels and do not
contribute to the magnon dispersion (see Sec. II). The dipolar
length r∗ sets the scattering lengths in the intralayer channels:
a↑↑ = a↓↓ ∼ r∗. The interlayer channel contains at least one
bound state for all g [50]. At g � 1 this would be a (single)
weakly bound state so that one would have a↑↓ � r∗ and
the mixture would be far from the conventional immiscibility
boundary defined by a↑↓ = a↑↑ = a↓↓ (Sec. II). On a short
timescale defined by the emission of the lattice phonons, an s-
wave superfluid of interlayer excitonic molecules would form
(see Refs. [14,41,51,52] for studies of the s-wave pairing of
dipolar bosons). In the opposite limit g � 1, pertinent to our
case, one would have a↑↓ ∼ r∗, and the conventional misci-
bility criterion a↑↓ < a↑↑ should be verified by an explicit
calculation. The interlayer potential in this case may support
several bound states, with at least one being tightly bound
[39]. That latter limit is of interest to our study (see Fig. 2).

B. Results and discussion

To study scattering in realistic potentials given by
Eqs. (25a) and (25b), we perform numerical simulations

FIG. 3. Position of the p-wave resonance pr [maximum of
f1,↑↓(k)] as a function of the parameter g obtained numerically (dots)

and its best fit with the law pr = l−1
√

const(g(c) − g)/ ln (g(c) − g)
(line).

of the 2D Schrödinger equation for the radial part of the
wave function of the relative particle motion ψ

(+)
M,k (r) (M = 0

corresponds to s-waves, M = 1 to p-waves). After some trans-
formations, the radial Schrödinger equation may be recast in
the form

1

ρ
∂ρ (ρ∂ρψ

(+)
M,k ) −

[
M2

ρ2
− (kl )2

]
ψ

(+)
M,k − ml2V (ρ)

h̄2 ψ
(+)
M,k = 0.

(27)

where ρ = r/l . Note that eigenfunctions with k2 < 0 cor-
respond to the bound states. The scattering states ψ

(+)
M,k (r)

correspond to k2 > 0. The scattering states may be used to
obtain the scattering phase shifts δM (k) [32]. We fit the wave
functions far from the scattering potential (at r � l or, equiv-
alently, ρ � 1) with their asymptotic

ψ
(+)
M,k (r) ∝

√
2

πkr
cos

[
kr − Mπ

2
− π

4
+ δM (k)

]
(28)

and we obtain the corresponding partial-wave amplitudes by
using the identity

fM (k) = 1

i
(e2iδM (k) − 1). (29)

After subtracting the anomalous scattering contributions,
we observe a behavior similar to the rectangular-well model
(Appendix B). The p-wave resonant scattering is realized at
g ∼ 10. To be more precise, g(c) ≈ 9.134 and the position of
the p-wave resonance is given by (see Fig. 3)

pr ≈ 1

l

√
−0.9

g(c) − g

ln (g(c) − g)
, (30)

as obtained by fitting the numerical results with the generic
Eq. (24). Figure 3 shows that it works quite well. Importantly,
in this regime the interlayer coupling results in a unique
tightly bound s-wave state with energy εs ≈ −4h̄2/ml2. The
radius of the s-wave molecule may be estimated as as =
h̄2/

√
mεs ≈ l/2. The corresponding s-wave scattering lengths

are a↑↑ ≈ 3.85l and a↑↓ ≈ 3.45l , and thus satisfy the conven-
tional miscibility criterion a↑↓ < a↑↑.
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For quantitative analysis of the magnon spectrum, we pro-
ceed as follows. One can see that a↑↑ ≈ a↑↓, so we can rewrite
Eq. (14) as −x2

c ln x2
c = 16πnl2 ≡ ξ , where we have defined

xc = pcl . The approximate solution reads x2
c = − ξ

ln ξ
provided

that ln ξ−1 � 1. The quantity xc gives a dimensionless mo-
mentum scale where the linear phonon dispersion law turns
into the quadratic (free-particle) dependence. For the magnon
branch, on the other hand, the corresponding scale is given by
y2

c = ξ

(ln ξ )2 , and one may see that yc � xc. Hence, taking into
account that pr is on the order of pc, one may approximate
Eq. (1) by its free-particle form h̄ω(p) ≈ h̄2 p2/2m∗, where the
effective mass is defined by Eq. (19). Since the p-wave scatter-
ing amplitude has a sharp maximum equal to 1 at p = pr , we
arrive at the following condition for the magnetoroton to touch
zero: (prl )2 = 2n(2)

c l2. This allows one to express the critical
density n(2)

c as a function of the detuning ν ∝ (g(c) − g). In
dimensionless units, one obtains

n(2)
c l2 ∼ − g(c) − g

ln (g(c) − g)
,

in agreement with the generic formula (23). This should be
compared with the characteristic density n(0)

c for the onset of
a minimum,

n(0)
c l2 ∼ g(c) − g

[ln (g(c) − g)]2 ,

and the density n(1)
c for divergency of the renormalized mass

m∗ at p → 0:

n(1)
c l2 ∼ g(c) − g. (31)

Hence, at small values of the detuning g(c) − g � 1 one
has the following hierarchy of the characteristic densities
n(0)

c � n(2)
c � n(1)

c , so that the magnetoroton precedes self-
localization at p → 0. This contrasts with 3D, where both
scenarios have been possible [17].

In Fig. 4 we show the magnetoroton formation in detail.
One can see that a minimum in the magnon branch emerges
upon increasing the density. Within the narrow window of
densities n where the magnetoroton minimum remains above
zero energy, its position pr in the momentum space remains
almost unchanged. With logarithmic accuracy, pr can be es-
timated by using Eq. (30). For the particular value g(c) − g =
0.025 considered here, Eq. (30) yields prl ≈ 0.078, in rea-
sonable agreement with prl ≈ 0.085 of Fig. 4. At the same
time, the phonon branch of the spectrum has a standard shape
that interpolates between linear (sound) and quadratic (free-
particle) dispersions. The change of regimes corresponds to
p ∼ pc, and one finds pcl ≈ 0.12 for the chosen parameters.

In Fig. 5 we sketch the phase diagram in the density-
detuning axes where we distinguish among three regimes: (i)
there is no roton minimum in the magnon spectrum (low den-
sity and or large detuning), (ii) there is the magnetoroton but
the system is stable (moderately larger densities and smaller
detunings), and (iii) magnetoroton instability, where near the
roton minimum the spectrum formally becomes negative and
the system can no longer be considered as a mixture of two
interacting gases.

Next, let us comment on the stability of the system with
respect to relaxation into an s-wave molecular superfluid due

FIG. 4. The elementary excitation spectrum of a binary mixture
of dipolar bosons in a bilayer structure shown in Fig. 1. The interlayer
distance l has been used to define the units of energy, momentum,
and density. The increasing opacity of the curves corresponds to
increasing density: the maximal opacity corresponds to nl2 = 0.001,
intermediate to nl2 = 0.0008, and minimal to nl2 = 0.0006. The
magnon and phonon branches are shown using red and blue col-
ors, respectively. The value of detuning is fixed at g(c) − g = 0.025,
which corresponds to the immediate vicinity of the interlayer p-wave
resonance. The dashed line shows the magnon spectrum away from
the p-wave resonance. Upon increasing the density n, the magnon
branch develops a minimum that eventually turns into an instability.
The phonon branch slightly increases its slope.

to the corresponding tightly bound state of the potential V↑↓(r)
(Fig. 2). In addition to the general arguments provided at the
end of Sec. II, one may also try to imagine the new collec-
tive state the system would form beyond the magnetoroton

FIG. 5. Magnetoroton immiscibility boundary for dipolar bosons
in a bilayer structure. The range of “detuning” ν ∝ g(c) − g cor-
responds to the vicinity of the p-wave scattering resonance in the
interlayer interaction of dipoles. The s-wave scattering lengths cor-
respond to weak repulsion and satisfy the conventional miscibility
criterion a↑↓ < a↑↑. Upon increasing the density n (expressed here
in units of the interlayer distance l) at fixed ν, the magnon dispersion
develops a minimum (lower boundary of the orange area) which
softens and touches zero energy (upper boundary). At that latter
point, the mixture becomes dynamically unstable. A possible can-
didate for a new ground state is a dilute p-wave crystal of alternating
“polarization” schematically illustrated in Fig. 6.
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FIG. 6. Sketch of a hypothetical new ground state due to the
magnetoroton self-localization. Panels (a) and (b) show side-view
and top-view, respectively. The dipoles in the upper (“↑”) and lower
(“↓”) layers form p-wave orbitals (blue or red, respectively) shifted
with respect to each other by the characteristic period on the order of
p−1

r , thus implementing a stationary phase-separated configuration
(a frozen “polarization” wave). One has p−1

r ∼ n−1/2 � R↑↓. By
symmetry, the only possibility for in-plane orbital motion within a
unit cell would correspond to a superposition of m = +1 and −1,
which suggests a 2D square lattice composed of px and py molecular
orbitals. Note that both the centrifugal barrier and the long-range
dipolar repulsion prevent relaxation into deep s-wave molecules
(green), where an “↑” dipole would reside on top of the “↓” dipole
in the adjacent layer within the in-plane distance on the order of
as = h̄/

√
mεs.

instability.2 A tentative sketch of such a hypothetical state is
presented in Fig. 6(a) (side view) and Fig. 6(b) (top view).
It reflects two competing mechanisms: the tendency for the
components to alternate in the 2D space of the boson transla-
tional motion, and their p-wave pairing. As follows from the
above analysis (and from the general consideration of Sec. II),
both mechanisms have the same characteristic lengthscale
given by the inverse momentum of the roton p−1

r . Our sketch
thus represents a resonant p-wave crystal, with the nodes in
one layer (say, “↑”, shown in blue) occurring precisely at
the antinodes in another layer (“↓”, red). Since the node of
a p-wave orbital (blue or red, respectively) would correspond
to the spatial location of an s-wave bound state (green), one
concludes that in such a dilute crystal, the particles would stay
far apart from each other. The relaxation into tightly bound s-
wave states would be inhibited both by the centrifugal barrier
and the long-range dipolar repulsion. Hence, we expect that

2Just like the familiar roton instability in the density mode, the
magnetoroton instability is expected to fall into the category of the
so-called “weak crystallization” transitions [53].

the magnetoroton instability would manifest itself in some
metastable form, although the ground state corresponds to an
s-wave molecular superfluid3 (for instance, the entire phase
diagram shown in Fig. 5 lies in the “molecular gas” region of
the phase diagram shown in Fig. 2 of the relevant Monte Carlo
work [52]).

Throughout the present work, we have intentionally
avoided any discussion of finite-temperature effects. Even for
a uniform binary mixture, this remains an unsettled prob-
lem (see, e.g., Ref. [54] and references therein for recent
advances in the field). Here we content ourselves with the
following general remark. Consider first a stable uniform
binary mixture. It possesses two Goldstone modes (density
and spin sounds) and falls into a O(2) × O(2) universality
class. Since we are in 2D, at finite T there would be two
BKT phase transitions associated with the proliferation of
vortices. These may be either polarization or density vortices.
In our case of a balanced mixture, however, the correspond-
ing critical temperatures would be equal. One may then
use the well-known expression for the critical temperature
TBKT of a single-component superfluid [55,56] as an order-
of-magnitude estimate. In the system under consideration,
one has TBKT ∼ 10−2 K for the dimensionless exciton density
nl2 ∼ 10−3.

With regard to the emergent crystalline state, here one
would have four Goldstone modes (the two modes inher-
ited from the superfluid phase and a pair of Goldstone
modes due to the broken translational symmetries). In the
long-wavelength limit, these modes presumably do not inter-
act. Such a supersolid state would, therefore, belong to the
[O(2)]4 × Z2 universality class. The emergent diagonal order
would exhibit algebraic decay, just like the off-diagonal order
in the superfluid components. A more detailed investigation
along these speculative lines will be entertained in our future
work.

IV. CONCLUSIONS AND OUTLOOK

Our consideration shows that a 2D binary Bose-Einstein
condensate with weakly repulsive s-wave interactions and
strong intercomponent p-wave attraction may display a mag-
netoroton in the magnon branch of its elementary excitation
spectrum. The magnetoroton may be regarded as a form of
self-localization of magnons: dramatic enhancement of their
mass due to matter-wave refraction. We argue that the con-
densate suppresses damping of the magnons and stabilizes
the magnetoroton close to a p-wave scattering resonance. The
latter may be obtained from an s-wave bound state upon
reducing the strength of the intercomponent attraction. We
notice that in 2D the required depth of the intercomponent
potential well corresponds to tight binding. This enhances
the stability of the system near the p-wave resonance and
enlarges the choice of candidates for the experimental imple-
mentation of our model. As one such possibility, we propose
a semiconductor heterostructure with a pair of bosonic lay-
ers each composed of spatially separated electron and hole

3As usual for a gaseous BEC, one should rather have in mind a
kinetic equilibrium with respect to the two-body collisions.
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layers. Following our general consideration, we have found
an interspecies p-wave resonance for this particular model,
and we obtained the excitation spectrum featuring a magne-
toroton instability upon increasing the total density n. The
magnetoroton momentum pr [Eq. (24)] sets the characteristic
lengthscale for two competing mechanisms: in-plane spa-
tial segregation of the components (i.e., the formation of a
frozen “polarization” wave) and their p-wave pairing. Given
that pr ∼ √

n, we suggest that a possible outcome of such
competition may be a resonant p-wave crystal, tentatively
sketched in Figs. 6(a) and 6(b). A detailed investigation of
this intriguing hypothesis will be carried out in our future
work.
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APPENDIX A: DETAILS OF THE DIAGRAMMATIC
APPROACH

Here we briefly present the basics of the diagrammatic
approach for a Bose-Bose mixture developed in Ref. [16].
They are important for an understanding of Sec. II.

The Hamiltonian of the system in the second-quantized
form reads

Ĥ =
∑
p,σ

h̄2 p2

2mσ

â†
σ,pâσ,p + 1

2S

∑
p1,p2,q,σ,σ ′

â†
σ,p1+qâ†

σ ′,p2−q

×Vσσ ′ (q)âσ,p1 âσ ′,p2 . (A1)

Next, we assume a symmetrical case for which m↑ = m↓ =
m and V↑↑ = V↓↓. For the analytical treatment, we introduce
normal and anomalous Green’s functions

Gσσ ′ (p) = 〈aσ,pa†
σ ′,p〉ω, (A2)

Fσσ ′ (p) = 〈aσ,paσ ′,−p〉ω, (A3)

F †
σσ ′ (p) = 〈a†

σ,pa†
σ ′,−p〉ω. (A4)

Using the technique with fixed chemical potential and

Ĥ ′ = Ĥ − μN̂, (A5)

one can write the bare Green’s function in the following
form:

G(0)
σσ ′ (p) = δσσ ′

[
h̄ω − h̄2 p2

2m
+ μ + i0

]−1

. (A6)

To account for interactions, we write the following system
of Dyson’s equations:

Gσσ ′ (p) = G(0)
σσ ′ (p) +

∑
σ ′′

G0(p)�σσ ′′
11 Gσ ′′σ ′ (p)

+
∑
σ ′′

G0(p)�σσ ′′
20 F †

σ ′′σ ′ (p),

F †
σσ ′ (p) =

∑
σ ′′

G0(−p)�σσ ′′
02 (p)Gσ ′′σ ′ (p)

+
∑
σ ′′

G0(−p)�σσ ′′
11 (−p)F †

σ ′′σ ′ (p). (A7)

Here the subscript notation of the self-energy parts
�11, �20, �02 corresponds to the number of incoming and
outgoing particle lines in the relevant diagrams. After solving
the system (A7) (which is 4 × 4 and allows for analytical
treatment), we obtain an explicit form of the Green’s functions
and thus their poles indicating the spectrum of elementary
excitations, which is implicitly defined by the equation

h̄ω(p) =
([

h̄2 p2

2m
+ �↑↑

s (p) ± �↑↓
s (p) − μ

]2

− [�↑↑
20 (p) ± �

↑↓
20 (p)]2

)1/2

+ �↑↑
a (p) ± �↑↓

a (p),

(A8)

where “+” and “−” correspond to phonon and magnon
branches, respectively,

�σσ ′
s,a (p) = �σσ ′

11 (p) ± �σσ ′
11 (−p)

2
, (A9)

and μ = �
↑↑
11 (0) − �

↑↑
20 (0).

As usual, the main simplification of the result (A8) comes
from the ladder approximation for the self-energies, which
is justified in the dilute gas approximation. The effective in-
teraction vertexes and, hence, the self-energies are related to
two-body scattering matrices Tσσ ′ as shown in Sec. II. After
the dust settles, one arrives at the effective Hamiltonian (16).

APPENDIX B: RECTANGULAR WELL MODEL

To develop a feel for the behavior of the magnon spec-
trum close to a p-wave resonance, let us consider a toy
model of two-body scattering in a rectangular potential well
of depth U↑↓ and radius R↑↓. The intra-species repulsive
interactions V↑↑(r) = V↓↓(r) are modeled by the steplike po-
tentials of equal heights U↑↑ = U↓↓ ≡ U and radii R↑↑ =
R↓↓ ≡ R. The s- and p-wave scattering amplitudes take the
forms of Eqs. (13) and (20), respectively, with the following
parameters:

a↑↑ =
R↑↑ exp

(
γ − I0(R↑↑

√
mU )

R↑↑
√

mUI1(R↑↑
√

mU )

)
2

, (B1)

a↑↓ = R↑↓eγ

2
,

β = 1/ ln (2e1/2−γ ), ν = β
U (c)

↑↓ − U↑↓
2

,

U (c)
↑↓ ≈ 5.76h̄2

mR2
↑↓

. (B2)

Here we assume a nearly resonant regime for the interspecies
scattering; I0,1 are modified Bessel functions of the first kind.
The real parts of f0,↑↓(k) and f1,↑↓(k) are shown in Fig. 7.
Interestingly, at ν = 0 one gets f0,↑↓(k) ≡ f1,↑↓(k). Although
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FIG. 7. Scattering amplitudes in s- and p-channels for a 2D at-
tractive steplike potential in a nearly resonant case with the detuning
parameter ν = 0.0002/mR2

↑↓.

the exact identity is an artefact of the rectangular well model,
it reflects an important trend: in 2D a p-wave resonance builds
upon a tightly bound state in the s-wave channel. Similar be-
havior is reproduced within a more realistic model discussed
in Sec. III. This is in stark contrast to the 3D case, where only
a weakly bound s-wave state could be promoted into a p-wave
resonance by the centrifugal barrier.

As one can see in Fig. 7, the real part of f1,↑↓(k) has a sharp
maximum at k = pr with f1,↑↓(pr ) = 1, which corresponds
to strong p-wave attraction between the particles. At small ν

the corresponding momentum pr is given by Eq. (24) and the
maximum of f1,↑↓(k) gives rise to the formation of a dip in
the magnon dispersion if

h̄2(2pr )2

2m
∼ 4h̄2 f1,↑↓(pr )n

m
, (B3)

which yields Eq. (23) for an estimate of the critical density
n(2)

c .

APPENDIX C: DETAILS OF NUMERICS

For the real experimental potential shown in Fig. 2, we
solve the Schrödinger equation (27) numerically on a 1D lat-
tice with N = 10 000 or 20 000 sites using the standard finite
difference scheme. Then, using the developed intuition for the
steplike potential, we derive important results for scattering
amplitudes in s- and p-channels.

In more detail, we take a certain size L and discretize
Eq. (27) with the step �ρ = L/N . Next, ρ j = j�ρ, j =
1, . . . , N . With the use of

∂2
ρψ |ρ j → ψ j+1 − 2ψ j + ψ j−1

(�ρ)2
,

∂ρψ |ρ j → ψ j+1 − ψ j−1

�ρ
, (C1)

FIG. 8. Resonant scattering on the model potential (25b) in the
p-wave channel. (a) The wave function corresponding to kl ≈ 0.032
(10 000 blue dots, which look like a curve) and its fit with the
asymptotic form (28) for ρ � 200 (dashed orange curve). The latter
yields the phase δ ≈ 0.07. (b) The dependence of the real part of
scattering amplitude f1,↑↓ on momentum appears to be similar to the
steplike potential behavior. The parameter g = 9.12 in both panels.

we obtain a system of equations equivalent to a N × N matrix
eigenproblem. Importantly, since anomalous scattering does
not play a role in our study, we cut 1/ρ3 tails of the potential
energy at ρ = g. For “boundary conditions” we use ρ0 = ρ1

and ρN+1 = 0. Finally, the Arnoldi algorithm is employed to
find the low-energy eigenstates.

Scattering phases can be found by fitting numerically ob-
tained eigenfunctions with their known asymptotic form (28).
A particular example of the fit is shown in Fig. 8(a) for
interlayer p-wave scattering and g = 9.12. Then, we can get
the scattering amplitudes using Eq. (29). For instance, the
k-dependence of the f1,↑↓ is illustrated in Fig. 8(b) (cf. Fig. 7).
Repeating this procedure for various g parameters yields data
for the position of p-wave resonance used in Fig. 3 and for
empirical law (30).

In contrast, the s-wave scattering is weakly dependent on
the precise g value in the domain of interest (g ≈ 9). Using the
numerical procedure described above and a fit of the obtained
amplitude with Eq. (13), one can find scattering lengths a↑↑
and a↑↓.
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