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Photodriven Mott insulating heterostructures: A steady-state study of impact ionization processes
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We investigate the photocurrent and spectral features in a simplified model of a Mott photovoltaic system
consisting of a multilayered insulating heterostructure. The central correlated region is coupled to two metallic
leads kept at different chemical potentials. A periodic drive applied to the correlated region produces excited
doublons and holons across the Mott gap, which are then separated by a potential gradient, which mimics the
polarization-induced electric field present in oxide heterostructures. The nonequilibrium Floquet steady-state
is addressed by means of dynamical mean-field theory and its Floquet extension, while the so-called auxiliary
master equation approach is employed as impurity solver. We find that impact ionization, identified by a kink
in the photocurrent as function of the driving frequency, becomes significant and is generally favored by weak,
narrowband hybridizations to the leads beyond a certain strength of the driving field. On the other hand, in the
case of a direct coupling to metallic leads with a flat band, we observe a drastic reduction of impact ionization
and of the photocurrent itself.
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I. INTRODUCTION

The current climate crisis calls for innovation in new sus-
tainable energy production, such as the field of photovoltaic
cells. While conventional semiconductors and organic solar
cells are currently employed in most applications, correlated
Mott insulators have been proposed as interesting alternatives.
In particular, it has been suggested that the Mott gap might be
used to convert electromagnetic radiation into electric energy
[1–5] with an efficiency beyond the Shockley-Queisser limit
[6], due to so-called impact ionization (II) [1,4] processes.
Beyond theoretical conjectures, II, and more generally mul-
tiple exciton generation (MEG) processes, have been detected
via photocurrent spectroscopy and pump-probe experiments
in VO2 [7,8] and in quantum dots [9–11].

In particular, oxide heterostructures based on
LaVO3/SrTiO3 have been identified as possible candidates
[12] for Mott photovoltaics, even though some issues, such
as the low mobility of the carriers [5,13], may prevent the
use of such compounds as efficient solar cells. Nevertheless,
recent years have witnessed an increasing effort towards
the growth and characterization of LaVO3 thin films, see,
e.g., [14]. The characterization of Mott-based photovoltaic
devices and the underlying physics governing fast carrier
multiplication processes are subjects of broad interest,
with potential applications across various domains. Indeed,
numerous theoretical investigations have delved into diverse
facets of II, see, e.g., [4,15–23].

Heterostructures with metal oxide compounds like LaVO3

exhibit features, which are typical of Mott insulators, due
to the strong local Coulomb interactions of the electrons in
the outer d shells of vanadium atoms, and therefore they
may be regarded as prototypes for real-space dynamical
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mean-field theory (DMFT) [16,24–31] studies. The Floquet
generalization of this formalism, which allows to include ex-
ternal periodic drivings, provides an important benchmark for
nonequilibrium real-time DMFT for multilayer setups at long
times, which are computationally costly to address [16,18].

In the present paper we characterize a prototype of solar
cell based on the heterostructure schematically depicted in
Fig. 1 in terms of the occurrence of II. The system under
investigation consists of L = 4 Mott insulating layers located
between two wideband metallic leads, which act as charge
collectors to harvest the energy. The Mott region is separated
from the metallic leads by two narrowband layers with ener-
gies aligned with the upper and lower Hubbard bands as in
Fig. 2, which represent the oxide contact layers. An external
time-periodic electric field induces a Floquet steady state with
an average current flowing from the left to the right lead,
against the potential energy established by the leads’ chemical
potentials. Due to the polar interfaces located between the
insulating layers [12], an internal electric field builds up in
the heterostructure, acting as a separation mechanism for the
electron-hole (e-h) pairs produced by the periodic driving.

Our goal is the characterization of this Mott-based photo-
voltaic setup in a nonequilibrium steady state (NESS) in terms
of the occurrence of II and we do so by analyzing some of the
most important observables such as the steady-state current. In
addition to that, we investigate how the electric field amplitude
of the external driving affects II. We then discuss the situation
in which the Mott region is directly connected to wideband
metallic leads without intermediate narrowband contacts, and
address II in this case. The strong-coupling impurity solver
we use allows us to obtain accurate results directly in the
NESS. The downside is that we are restricted to a single-band
model, so that we cannot address Hund’s coupling effects
as in Ref. [18]. Also the effects of local antiferromagnetic
correlations as discussed in Ref. [29] are beyond the scope
of our present study.
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FIG. 1. System under investigation. The central region consisting
of L = 4 correlated layers, in green, is irradiated with a periodic,
monochromatic light with frequency �. Two uncorrelated interfaces
acting as contacts, in red, separate the correlated layers from the
metallic leads, in blue, which are kept at different chemical poten-
tials, and model the collectors for the charges created by the external
driving �.

Our results indicate that II, which we link to the presence
of a sharp increase (“kink”) in the photocurrent for driving
frequency strengths around twice the gap, plays an important
role when the correlated region is connected to narrowband
contacts. This sudden increase in the photocurrent is generally
supported by a corresponding kink in the double occupation
and its fluctuation around its mean value [see Eq. (20) for
details] as well as by a non-negligible occupation of the up-
per bands for driving frequencies compatible with II. Upon
decreasing the electric field amplitude E0, our results suggest
that II is accompanied by a change of behavior of the pho-
tocurrent from quadratic to linear as function of E0. Factors
that hinder II turn out to be (i) a stronger hybridization to the
leads, as we already observed in the case of a single layer [32],
as well as (ii) a direct connection to wideband metallic leads
without intermediate narrowband contacts.

The paper is organized as follows: In Sec. II we introduce
the setup under investigation and its Hamiltonian. In Sec. III
we discuss the nonequilibrium Green’s function formalism
and the mathematical tools hereby employed. Results are dis-
cussed in Sec. IV while Sec. V is left for conclusions and final
remarks.

II. MODEL

We consider a system made of L correlated layers arranged
along the z axis, i.e., z ∈ {1, ..., L}, translationally invariant in
the xy plane, attached to two metallic leads (ρ = l, r) as shown
in Fig. 1.

The Hamiltonian of the system reads

Ĥ (t ) = −
∑

z,〈r,r′〉,σ
tz(t )ĉ†

z,r,σ ĉz,r′,σ −
∑

〈z,z′〉,r,σ
tzz′ ĉ†

z,r,σ ĉz′,r,σ

+
∑
z,r

Uzn̂z,r,↑n̂z,r,↓ +
∑
z,r,σ

ε(0)
z n̂z,r,σ + Ĥleads. (1)

The operator ĉ†
z,r,σ (ĉz,r,σ ) creates (annihilates) an electron

on site r = (x, y) of layer z with spin σ = {↑,↓}. n̂z,r,σ =
ĉ†

z,r,σ ĉz,r,σ denotes the particle number operator on the corre-
lated layer z. Here the brakets 〈z, z′〉 denote neighboring layers
along the z axis while 〈r , r′〉 is referred to neighboring sites
belonging to the same layer.

The time dependence in the Hamiltonian (1) is due to
the time-periodic, homogeneous, and monochromatic, electric
field with frequency � and enters via the Peierls substitution
[33] in the intralayer hopping as

tz(t ) = tz e−i q
h̄ (r−r′ )·A(t ). (2)

In Eq. (2) A(t) is the time-dependent vector potential, h̄
Planck’s constant, and q the charge of the electron. We choose
A(t ) = A(t )e0 to lie along the lattice body diagonal of a hy-
percubic lattice e0 = (1, 1, . . . , 1), with A(t ) = h̄

qaA sin(�t )

and A = − qE0a
h̄�

, where E0 is the electric field amplitude, and
a the lattice spacing [34,35]. In the temporal gauge the electric
field is then given by E = −∂t A(t ) = E0 cos(�t )e0.

The second term in Eq. (1) accounts for electron hopping
processes in between layers and is described by the nearest-
neighbor amplitude tzz′ . The third term introduces the local
on-site Hubbard interaction Uz and the fourth one describes
the on-site energies ε(0)

z , the expression of which will be given
in Sec. III A. Ĥleads represents the Hamiltonian of the metallic
leads, the details of which will be also presented in Sec. III A.

In this paper we consider a uniform Hubbard interaction
Uz = U . For the correlated region, we set tz ≡ t‖ and tzz′ =
t⊥ with tl,1 = tL,r = vρ so that the hybridization between the
correlated region and the leads is the same on both sides of the
heterostructure.

As already mentioned, the xy plane is modeled as a d-
dimensional lattice, which, in the limit d → ∞ introduces
the usual rescaling t‖ = t∗

‖ /(2
√

d ) [36]. In this framework,
sums over the electron crystal momentum k transform
as

∑
k χ (ω, k) → ∫

dε
∫

dε ρ(ε, ε)χ (ω; ε, ε), ρ(ε, ε) =
(1/πt∗2

‖ ) exp[−(ε2 + ε2)/t∗2
‖ ] being the joint density of states

[34], where

ε = −2t‖
d∑

i=1

cos(kia),

ε = −2t‖
d∑

i=1

sin(kia). (3)

Throughout the paper we choose our units so that h̄ = kB =
a = 1 = −q and t∗

‖ /2 = 1 as unit of energy.

III. METHOD AND FORMALISM

We describe the periodic NESS using the Floquet gen-
eralization of the nonequilibrium Green’s function (GF)
formalism [34,37,38]. In this paper a Floquet-represented ma-
trix is denoted as either Xmn or X, while underline stands for
the Keldysh structure

G ≡
(

GR GK

0 GA

)
, (4)
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FIG. 2. Schematic representation of the relevant processes occurring in the system considered in this paper. Electrons are injected into the
correlated region (green) from the (almost full) left reservoir and drained into the (almost empty) right one (red). The potential drop across
the correlated region is denoted as � and is a linear function of the coordinate z of the layers. We set μr > μl so that photovoltaic energy is
collected from the device when current flows from left to right. (a) Direct excitation processes. When � < 2�g, the photoexcited electron in
the upper band escapes directly into the right lead by tunneling through the upper bands. (b) Impact ionization processes. For large values of
�, i.e., � � 2�g, an electron promoted to the upper band can excite, in turn, a second electron across the gap by transferring energy to it via
electron-electron scattering, so that two carriers per photon can now tunnel towards the right lead.

with the retarded, advanced, and Keldysh components GR,A,K

obeying the relations GA = (GR)† and GK ≡ G> + G<, G≶

being the lesser and greater components [39–42].

A. Dyson equation

The lattice electron GF of central correlated region obeys
the Dyson equation [31]

G−1
zz′ (ωn; ε, ε) = G−1

0,zz′ (ωn; ε, ε) − �zz′ (ωn; ε, ε). (5)

The GF corresponding to the noninteracting terms in the
Hamiltonian (1) is

G−1
0,mn,zz′ (ωn; ε, ε)

= g−1
0,mn,zz′ (ωn; ε, ε)

− [
v2

l g
l
(ωn; ε)δz,1 + v2

r g
r
(ωn; ε)δz,L

]
δmnδzz′ , (6)

vl/r representing the hybridization between leads and corre-
lated region, where we have introduced the shorthand notation
ωn ≡ ω + n�, n ∈ Z. The noninteracting GF of the isolated
correlated layer is given by

[
g−1

0 (ωn; ε, ε)
]R

mn,zz′ = (ωn + i0+ − εz )δmnδzz′

− tzz′δmn − εmn(ε, ε)δzz′ , (7)

the Keldysh component of which can be neglected because of
the leads GF.

The internal electric field present in oxide heterostructures,
which originates from the polar interfaces between the dif-
ferent correlated layers [12], is included via a potential drop
� between the outermost layers of the correlated region, i.e.,
z = 1 and z = 4, and is such that the layers’ on-site energies
vary linearly along the z axis, i.e.,

εz = ε(0)
z + �

2
− (z − 1)�

(L − 1)
, (8)
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where ε(0)
z = −U/2 at half-filling. Such potential drop helps

to separate the photoexcited e-h pairs, as shown in Fig. 2.
The Floquet dispersion relation εmn for the periodic field in

a hypercubic lattice is [34]

εmn(ε, ε) =
{

Jm−n(A) ε m − n : even
iJm−n(A) ε m − n : odd,

(9)

where Jn denotes the nth order Bessel function of the first kind
with the argument A defined as in Sec. II.

If not otherwise stated, we consider wideband metallic
leads coupled to contact layers with a localized Lorentzian-
shaped DOS (see Fig. 2), centered at their respective on-site
energies ερ , to efficiently collect the photoexcited e-h pairs
from the central region [12,18].

Following Ref. [32], the surface GF g
ρ

of the leads reads

gR
ρ (ω; ε) = (ω − ερ (ε) + iγρ )−1

gK
ρ (ω; ε) = [

gR
ρ (ω; ε) − gA

ρ (ω; ε)
]
[1 − 2 f (ω,μρ, β )], (10)

where ερ (ε) = ερ + tρ
t∗
‖
ε denotes the lead dispersion relation

and f (ω,μρ, β ) = [eβ(ω−μρ ) + 1]−1 the Fermi-Dirac distri-
bution function at inverse temperature β. We recall that
the second relation in Eq. (10) comes from the fluctuation-
dissipation theorem [43].

The electron self-energy (SE) �zz′ is obtained from real-
space Floquet DMFT (F-DMFT) and, in this approximation,
is independent of the crystal momentum and spatially local,
i.e., �zz′ (ω; ε, ε) � �z(ω)δzz′ . Details regarding real-space F-
DMFT are given in Sec. III B.

B. Real-space Floquet DMFT

The electron SE �zz′ in Eq. (5) is computed using DMFT
[44–46], and in particular its nonequilibrium Floquet exten-
sion F-DMFT [34,37,38], and real-space generalization for
inhomogeneous systems, in which one has to consider the spa-
tial dependence from one coordinate [16,24,27,28,30,31,47].
In real-space F-DMFT one considers the electron SE spa-
tially local and neglects its crystal momentum dependence,
i.e., �zz′ (ω; ε, ε) � �z(ω)δzz′ . Such simplification allows us to
solve for each correlated layer z a (nonequilibrium) quantum
impurity model with Hubbard interaction Uz and on-site en-
ergy εz, with a bath hybridization function �z(ω) determined
self-consistently.

More in detail, the self-consistent real-space F-DMFT
scheme is the following: (i) we start from an initial guess for
the electron SE �z(ω), then (ii) we extract the local electron
GF as

Gloc,zz(ω) =
∫

dε

∫
dε ρ(ε, ε)Gzz(ω; ε, ε), (11)

inverting G−1
zz′ (ω; ε, ε) [48] from Eq. (5) and taking the diag-

onal elements in the layer indices. For this goal, either one
directly inverts the matrices in Eq. (5), which results in a
major computational effort due to the double matrix structure
in Floquet and real space, or one uses the recursive Green’s
function method [16,24,30,49,50], which we generalize to the
Floquet formalism in Appendix A, which is much faster than
the plain matrix inversion. (iii) We map the problem onto a

single impurity plus bath, with hybridization function

�z(ω) = g−1
0,z,site

(ω) − G−1
loc,zz(ω) − �z(ω), (12)

where g−1
0,z,site

(ω) is defined as in Eq. (7) with εmn(ε, ε) = 0
and tzz′ = 0. (iv) We solve the nonequilibrium many-body im-
purity problem, which gives the new �z(ω). (v) The electron
SE is inserted into step (ii) and steps (ii)–(v) are iterated until
convergence. For the convergence criterion, we explicitly refer
to Ref. [31].

In Eq. (12) for the bath hybridization function �z(ω), we
have a Floquet structure encoding the periodic time depen-
dence. However, in the parameters range we are considering
it is safe to adopt the Floquet-diagonal self-energy approx-
imation (FDSA), whereby nondiagonal Floquet indices in
�z(ω) are neglected [19,32]. Therefore, the nonequilibrium
impurity problem is stationary and we consider only the
(0,0)-Floquet matrix element of all the quantities in Eq. (12).
The other diagonal components of the SE are obtained by
exploiting the property �mm(ω) = �00(ω + m�). Thanks to
the particle-hole inversion symmetry of the system described
in Appendix (B), the many-body problem in step (iv) of the
real space F-DMFT self-consistent loop has to be solved only
for half of the correlated layers. We employ for such goal the
auxiliary master equation approach (AMEA) [51–55]. We re-
fer to Refs. [56–60] for the details and the latest developments
and applications of the AMEA impurity solver.

C. Physical quantities

In this section we introduce the observables of interest in
this manuscript. We start with the Floquet generalization of
the steady-state photocurrent flowing from the left to the right
lead [27,31]. Between any of the (L + 1) bonds [61] we have
the following photocurrent:

jz̃,z̃+1 = tz̃,z̃+1

∫ �/2

−�/2

dω

2π

∫
dε

∫
dερ(ε, ε)ReTr[J z̃,z̃+1]

= tz̃,z̃+1

∫ +∞

−∞

dω

2π

∫
dε

∫
dερ(ε, ε)Re(J00,z̃,z̃+1),

(13)

where we omitted the frequency and crystal momentum de-
pendence for the sake of simplicity. The new index z̃ takes
into account the leads’ surface layers and the correlated re-
gion, i.e., z̃ ∈ {0, 1, . . . , L} with z̃ = 0 denoting the left and
z̃ + 1 = L + 1 the right lead surface, the GF of which are
given in Eq. (10). The Floquet-represented integrand J z̃,z̃+1

in (13) reads

J z̃,z̃+1 = GK
z̃+1,z̃ − GK

z̃,z̃+1, (14)

where

GK
z̃+1,z̃ = tz̃,z̃+1

[
RR

z̃+1GK
z̃ + RK

z̃+1GA
z̃

]
,

GK
z̃,z̃+1 = tz̃,z̃+1

[
LR

z̃ GK
z̃+1 + LK

z̃ GA
z̃+1

]
. (15)

The quantities on the right-hand side of (15) are described
in Appendix A. In a steady-state situation jz̃,z̃+1 should take
on the same value for every z̃. However, due to the limited
accuracy of our AMEA impurity solver [31], deviations occur.
For this reason, we introduce the mean j of the photocurrent
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TABLE I. Default values of the main parameters used in this
paper. For simplicity we defined v ≡ vl/r. We recall that the renor-
malized hopping in the correlated region is t∗

‖ = 2.

U E0 γl/r v tl/r μl t⊥ � 1/β L

12 2 2 0.4 2 −1 1 2 0.02 4

(averaged over the bonds) and its corresponding standard de-
viation σ j [62] as

j ≡ 1

L + 1

L∑
z̃=0

jz̃,z̃+1,

σ j ≡
√√√√ L∑

z̃=0

1

L + 1
( jz̃,z̃+1 − j)2. (16)

This allows us to provide an estimate for the uncertainty in the
photocurrent.

In order to characterize the spectral properties of the sys-
tem at hand we study the local electron density of states (DOS)
Az(ω) and occupation function Nz(ω) [63], which are defined
as

Az(ω) = − 1

π
Im

[
GR

loc,00,zz(ω)
]
, (17)

and

Nz(ω) = 1

4π

{
Im

[
GK

loc,00,zz(ω)
] − 2Im

[
GR

loc,00,zz(ω)
]}

. (18)

In Eqs. (17) and (18) GR
loc,00,zz(ω) represents the time-

averaged retarded local GF while GK
loc,00,zz(ω) in Eq. (18) is

the corresponding Keldysh component. The layer-dependent
double occupation

ND,z = 〈n̂z,↑n̂z,↓〉, (19)

provides a measure of the number of doublons in the upper
Hubbard band of the layer z. It consists of a mean-field contri-
bution n2

z , which depends on the number of particles per spin
per layer nz = 〈n̂z,↑〉 = 〈n̂z,↓〉 [64] and is, thus, strongly layer
dependent, and a fluctuation term

�ND,z = 〈(n̂z,↑ − 〈n̂z,↑〉)(n̂z,↓ − 〈n̂z,↓〉)〉
= ND,z − n2

z . (20)

This fluctuation of the double occupation �ND,z has a weaker
dependence on z and it vanishes for an uncorrelated system at
half-filling and is, thus, better suited to discuss the results.

IV. RESULTS

The setup under investigation is shown in Fig. 1 while a
schematic representation of the energy landscape can be found
in Fig. 2. We focus on the situation in which the central region
consists of L = 4 correlated layers, a setup, which has already
been studied in Refs. [12,18]. If not stated otherwise, the
default values for the main parameters employed in this paper
can be found in Table I [65]. The leads’ on-site energies εl/r

are chosen such that the left(right) lead DOS overlaps with the

lower(upper) Hubbard band of the leftmost(rightmost) layer
with εl = ε1 and εr = −εl, see also the scheme in Fig. 2.

The chemical potentials are chosen such that μr=−μl > 0,
so the energy is harvested from periodic driving when an
electron current flows from the left to the right lead, against
the chemical potential difference. The gap of the correlated
layers is �g ≈ 3 [66], while the leads’ bandwidth is Wb ≈ 8.5.

In this paper our focus is on II processes, in which an
electron, promoted to the upper Hubbard band by absorbing
the energy of a photon �, excites a second electron across
the gap by exchanging energy to it via Coulomb interaction.
In order for such processes to be energetically allowed, the
bandwidth of the upper Hubbard band (UHB), which in our
case is roughly equal to the leads’ DOS, has to be at least
twice the size of the gap �g, i.e., Wb � 2�g. Only in this
case an electron promoted to the UHB has sufficient energy to
excite a second one across the gap [19,32].

A. Impact ionization

The main purpose of this section is to study the onset of
the II processes: for this reason we evaluate the photocur-
rent as function of the driving frequency �. As argued in
Refs. [19,32], the onset of II can be possibly identified by
an appreciable change in slope (kink) in the j − � curve at
� ∼ 2�g, as it hints at an increased number of carriers being
promoted to the UHB, which contribute to a steeper increase
of the photocurrent.

To better illustrate the point, below we summarize the
relevant physical processes that may occur in this periodically
driven system.

(1) For � < �g, we expect a negligible photocurrent pro-
duced by the residual DOS in the gap, due to the hybridization
with the leads.

(2) For �g < � < �g + 2Wb as shown in Fig. 2(a), an
electron from a lower Hubbard band (LHB) gets photoexcited
to the corresponding UHB and moves to the right along the
potential drop without further exciting e-h pairs. Such process
is often referred to as direct excitation (DE).

(3) For 2�g < � < �g + 2Wb as shown in Fig. 2(b), a
photoexcited electron in the UHB may excite a second one
across the gap via II, before both move to the right due to the
potential drop.

(4) For � > �g + 2Wb, a photoexcited electron ends up
near the border of the UHB where the DOS is greatly reduced,
and the photocurrent gets strongly suppressed.

1. Photocurrent and spectral features

By the analysis of the j − � curve in Fig. 3(a) we see
an increase of the photocurrent as � grows larger, with the
maximum reached at � ≈ 11, which is followed by a decrease
until � ≈ 17 [67]. A slight change of slope of the curve
around � ≈ 7 seems to indicate an onset of II processes,
which are indeed expected to start showing up at ∼2�g,
confirmed by the numerical derivative of j with respect to �

in Fig. 3(b). This is also corroborated by a similar behavior of
the double occupation ND,z as function of � for the different
layers z = {1, . . . , 4} displayed in Fig. 3(d). All these curves
show a change in slope around � ≈ 7, although this appears
relatively weak for the z = 3 and 4 layers. This behavior is
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FIG. 3. (a) Photocurrent j [Eq. (16)] as function of the driving frequency � with error bars corresponding to σ j . (b) Numerical derivative
of the photocurrent d j/d� as function of the driving frequency �. (c) Fluctuation of the double occupation �ND,z as function of the driving
frequency � for the layers z = 1 and z = 2. (d) Double occupation ND,z as a function of the driving frequency � for all the layers of the
correlated region. The black arrows in (a), (b), and (c) highlight the change in slope ∼2�g. Due to the PhI symmetry (see Appendix B),
�ND,L+1−z = �ND,z so the curves for z = 3 and z = 4 in (c) are omitted. Default parameters are specified in Table I. (Here � = 2, μl = −1,
�g ≈ 3, and Wb ≈ 8.5.)

due to the different occupation in the layers as discussed
in Sec. III C. In order to concentrate on electronic correla-
tions effects we plot the corresponding fluctuation �ND,z [see
Eq. (20)] in Fig. 3(c) for z = 1, 2. These curves are much
less z dependent and, more importantly, display a clear kink
at � ≈ 7, corroborating the onset of II beyond that driving
frequency.

The ND,z plots display also a reduction of the magnitude
and a slight shift of the maximum with increasing z: the reason
lies in the (almost) perfect overlap between the rightmost
layer’s UHB and the right lead’s DOS (see Fig. 2), which
provides electrons with an easy way out into the lead as they
tunnel through layers located further to the right. In con-
trast, �ND,z does not display any layer-dependent magnitude
change and position of the maximum.

Such indications of II processes are supported by Fig. 4,
in which the electron DOS Az(ω) and spectral occupation
Nz(ω) are shown for selected values of the driving �. As
schematically represented in Fig. 2, we first notice that the
electron DOS of all layers features a finite spectral weight

in the gap for both � = 5 and � = 11. At � = 5, when the
photocurrent j is mainly due to DE processes, the UHB of all
correlated layers is only very weakly occupied, see Fig. 4(a).
This signals that the excited electrons are being drained quite
effectively out of the central region by the right lead.

At � = 11, where II is expected to happen, we observe that
an important fraction of the electrons now occupies the UHB
of all layers in the correlated region, see Fig. 4(b). As argued
at the beginning of Sec. IV A, a larger occupation of the UHB
is consistent with an increased scattering probability among
electrons across the gap, the key mechanism for II.

B. Dependence on the electric field amplitude

In this section we investigate the behavior of the photocur-
rent and of II upon reducing the amplitude E0 of the driving
electric field [68].

We consider three values of the driving frequency, � =
5, 8, and 11, in order to characterize the behavior in the
regions before, around and after the onset of II processes.
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FIG. 4. Electron DOS Az(ω) (solid lines) and occupation function Nz(ω) (shaded areas) for the different layers at (a) � = 5 and (b) � = 11.
Dashed-vertical lines in (a) mark the position of the leads’ chemical potentials μl and μr, while those in (b) highlight the separation between
the center of the bands of the layers z = 1 and z = 4, which roughly equals the potential drop �, depicted in Fig. 2. Default parameters are
specified in Table I. (Here � = 2, μl = −1, �g ≈ 3, and Wb ≈ 8.5.)

The j − E0 curves (in green) displayed in Figs. 5(a)–5(c) for
L = 4 clearly indicate a different behavior of the photocurrent
in the cases with and without II. More specifically, in the sit-
uation without II [� = 5, Fig. 5(a)] the photocurrent displays
a quadratic behavior above the background current threshold
[69] up to electric fields E0 ≈ 2. On the other hand, in the two
cases around [� = 8, Fig. 5(b)] and after [� = 11, Fig. 5(c)]
the onset of II, the j − E0 behavior is rather linear in a wide
region down to E0 ∼ 0.5.

These results suggest a correlation between the occurrence
of II and the behavior of the j − E0 curves. A rough expla-
nation for the deviation from a quadratic behavior in the II
case may be provided by the following argument, deduced
a posteriori from our results in Fig. 5. One expects the DE
photocurrent to be proportional to |E0|2 for small E0, while
in presence of II j ∝ |E0|2[1 + rII], in which the II scattering
rate rII [70] accounts for the creation of two doublons and two
holons (see Ref. [1] for details), increases as function of � and
contributes only when � � 2�g. rII is certainly dependent on
the occupation of the UHB, and may be responsible for the
linear behavior of the photocurrent above a certain threshold
field E � E0,th. We argue that this crossover from a quadratic
to a linear-like j − E0 behavior may be considered as a signa-
ture of II.

The value of E0,th, above which the curve j − E0 becomes
linear, increases when decreasing the number of layers L in
the central region, as one sees from Figs. 5(a)–5(c), which
displays the j − E0 curves for L = 1 [71]. This can be un-
derstood by the observation that excited doublons exhibit a
swifter departure from a more confined correlated region,
which in turn decreases the probability of II for a fixed E0. A
similar effect is observed when increasing the hybridization
to the leads as displayed in Figs. 5(e) and 5(f), as already
observed in Ref. [32]. Due to the larger value v = 0.8 [72],
which disfavors II, the linear regime sets in at larger field
amplitudes (E0 � 1) and it is more marked at larger driving
frequencies (� = 11) with respect to v = 0.4, see Figs. 5(e)
and 5(f).

Comparing the green and red curves in Figs. 5(e) and
5(f) we further notice that the photocurrent for v = 0.4 is
larger than for v = 0.8 in an intermediate region of E0 val-
ues, which becomes wider for � = 11. The reason is the
following: If the field amplitude is large, the number of pho-
toexcited carriers in the UHB will be also consistently large
and a higher hybridization will provide a larger contribution
to the photocurrent. On the other hand, for weaker fields
the occupations of the upper bands is sensibly smaller and
a carrier multiplication mechanism as II becomes more im-
portant. To complete our analysis, in Fig. 6 we analyze the
behavior of the j − � curves for values of the field amplitude
E0 = {0.75, . . . , 1.75}. These curves display no appreciable
change in slope for E0 � 1.25 and only a slight bend for
larger fields [see Fig. 6(a)] around � ≈ 5 − 7, even though
II is expected to occur at E0 � 0.5, as suggested by Figs. 5(b)
and 5(c). On the other hand, the numerical derivative of the
photocurrent d j/d� in Fig. 6(b) increases for � ∼ 2�g and
the �ND − � curve in Fig. 6(c) displays a small but clearer
kink already at smaller field amplitudes, in support of II. The
behavior of this quantity as function of E0 in Fig. 7 confirms
the II onset from E0 � 0.5, with a clear transition from the
small E0 quadratic regime to a linear one for � = 8, 11 (green
curve) in accordance with Fig. 5. Also the curves for L = 1
and v = 0.8 in Figs. 7(b) and 7(c) undergo a crossover to a
linear behavior at larger E0 values (E0 � 1), here especially
evident for � = 11, as already observed in Fig. 5.

C. Direct connection to wideband metallic leads

In contrast to the setup of Fig. 2 we now consider the case
of a direct connection between the metallic wideband leads
and the correlated layers without intermediate narrowband
contacts. It is interesting to study this situation because the
carriers, which are photoexcited to the upper Hubbard band
may now escape to the “wrong” side (here the left lead) of the
device and only the potential gradient induces a net flow of
charges moving in the “right” direction (the right lead).
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FIG. 5. Photocurrent j (with error bars σ j) as function of E0 at (a) (d) � = 5, (b) (e) � = 8, and (c) (f) � = 11 for different number of
correlated layers L and hybridizations v. Horizontal-dashed lines denote the value of the background current obtained with E0 = 0 and refer
to the curves of the same color. Green curves in (e) and (f) corresponding to L = 4 and v = 0.4 from (b) and (c) are replotted for comparison.
Default parameters for the L = 4 curves are specified in Table I, while the L = 1 curve is obtained with the same parameters used in Ref. [32].
(Here � = 2, μl = −1, �g ≈ 3, Wb ≈ 8.5).

FIG. 6. (a) Photocurrent j, (b) numerical derivative of the photocurrent d j/d�, and (c) fluctuation of double occupancy �ND,z for the layer
z = 2, as function of the driving frequency � for selected values of the electric field amplitude E0. Error bars corresponding to σ j in (a) are not
shown for better visualization of the data. Default parameters are specified in Table I. (Here � = 2, μl = −1, �g ≈ 3, and Wb ≈ 8.5.)
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FIG. 7. Fluctuation of double occupancy �ND,z for the layer z = 1 as function of E0 at (a) � = 5, (b) � = 8, and (c) � = 11 for different
number of correlated layers L and hybridizations v. Default parameters for the L = 4 curves are specified in Table I, while the L = 1 curve is
obtained with the same parameters used in Ref. [32]. (Here � = 2, μl = −1, �g ≈ 3, Wb ≈ 8.5.)

By taking the metallic leads in the wideband limit (WBL),
the retarded component of the leads’ surface GF in Eq. (10)
reads

v2
ρgR

b,ρ (ω, k) ≈ − i

2
�ρ, (21)

where [73] �ρ ≡ 2v2
ρ/γρ , while the Keldysh component in

(21) is obtained by means of the fluctuation-dissipation the-
orem [43]. The WBL parameters are such that the magnitude
of the gap and the bandwidth of the Hubbard bands are the
same as in Sec. IV, i.e., �g ≈ 3 and Wb ≈ 8.5.

We start by analyzing the photocurrent j as function of
the driving frequency � for different values of the WBL rate
� = �ρ . In Fig. 8(a) [74] we observe that the peak of the
photocurrent j occurs at smaller driving frequencies � ≈ 9
and its magnitude is roughly one order of magnitude smaller
than the results in Fig. 3(a) [75]. This is due to the mentioned
effect that photoexcited carriers can escape to the “wrong”
side of the device. Moreover, the slight kink ∼2�g in the

j − � curve present in Fig. 3(a) is here completely absent
at the corresponding � = 0.16 [blue curve in Fig. 8(a)]. For
smaller values of the WBL rate � there is also no evidence
of such change of slope, which instead would be present with
lower hybridizations in the setup discussed in Secs. IV A and
IV B, due to the presence of II. Considering also the large field
amplitude E0 = 2 chosen in this situation, this clearly points
to a drastic reduction of II in this setup.

On the other hand, a kink around ∼2�g can be observed in
�ND,z, see Fig. 8(b). This kink gets particularly pronounced
for small �, and is connected with a higher occupation of
the UHB of the heterostructure [Fig. 8(c)]. This may favor
II, although its signatures are absent in the photocurrent.

Without potential gradient (� = 0), the photocurrent flows
in the opposite direction (right to left), as shown in Fig. 8(a).
This is expected, as the e-h pairs created by photoexcitations
do not have a preferred direction and the drag of charges from
the left lead equals the flow to the right so that the chemical
potential imbalance determines the net current.

FIG. 8. (a) Photocurrent j and (b) fluctuation of double occupancy �ND,z for the layer z = 2, as function of the driving frequency � for
selected values of the WBL rate �. (c) Occupation function Nz(ω) for the different layers at � = 9 for � = 0.16, 0.02. Dashed-brown line in
(a) represents the photocurrent j for φ = 0 at � = 0.16. Error bars corresponding to σ j in (a) are not shown for better visualization of the data.
Default parameters are specified in Table I. (Here � = 2, μl = −1, �g ≈ 3, and Wb ≈ 8.5.)
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Summarizing, such WBL analysis indicates that a setup
with narrowband intermediate contacts, as interfacial Ti layers
in Refs. [12,18], is much more favorable for II than a direct
coupling to wideband metallic leads.

V. CONCLUSIONS

In this paper we study a simplified setup for a Mott photo-
voltaic system consisting of L = 4 correlated layers displaced
along the z axis under the driving of a monochromatic, peri-
odic electromagnetic field with frequency �. The correlated
layers are connected to wideband metallic leads at different
chemical potentials with a narrowband layer in between, so
to reach a (Floquet) steady-state photocurrent and collect the
energy of the electromagnetic field. Correlations are treated
within Floquet dynamical mean-field theory with an accurate
steady-state impurity solver.

We find that impact ionization contributes substantially to
the photocurrent for driving frequencies larger than twice the
gap at the considered electric field amplitudes. Our results
further suggest a correlation between impact ionization and
the onset of a linear behavior of the photocurrent as a function
of the field strength. Impact ionization is amplified by increas-
ing the thickness of the correlated region and/or reducing
the hybridization with the metallic leads. This enhancement
occurs because these factors increase the “duration” of the
stay of photoexcited carriers in the upper Hubbard bands. As
a result, there is a larger probability for additional scattering
events, which consequently increases the likelihood of gener-
ating extra electron-hole pairs.

On the other hand, a direct coupling to wideband metal-
lic leads without intermediate narrowband layers reduces the
photocurrent by an order of magnitude and drastically sup-
presses the contribution of II. This is consistent with the
choices made in Refs. [12,18]: in order to efficiently collect
photoexcited carriers produced by the external driving and
obtain a higher efficiency in Mott photovoltaic setups, one has
to narrow the wide band of the metallic leads so as to achieve
a localized density of states on the surface, which matches the
LHB of the first and the UHB of the last correlated layer of
the heterostructure. This enables to inject and drag particles
in and out of selected regions of the energy spectrum.

Some comments are in order. The electromagnetic field
amplitudes and intensities of the external driving discussed
in this paper are orders of magnitude larger than those typical
of the sunlight and are usually achievable only in experiments
with ultrashort pulsed lasers [35]. On the other hand, a thicker
Mott photovoltaic device would consist of a larger number
of layers L, and as demonstrated, the threshold field E0,th

decreases with increasing L. While the current analysis does
not give a definitive assessment of the rate of this decrease, it
cannot then be excluded that for larger devices, II may occur
at intensities comparable to those provided by solar radiation.
Addressing such possibility would be an interesting question
for future investigations.

Furthermore, it is well known [24,27,28] that a central role
for transport properties in strongly correlated heterostructures
is played by the overlap of the density of states of the different
layers. When phonons are taken into account, electronic scat-
tering processes and spectral features are inevitably modified,

which reflect in changes of the photocurrent. Multiple orbitals
and magnetic effects also affect drastically the layers’ density
of states and will change considerably the transport properties
as already shown in Refs. [18,29]. For future studies then, the
inclusion of such effects will be an important step to better
describe and understand the mechanisms of impact ionization
in a more realistic setup and to provide useful benchmarks for
possible experimental realizations.
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APPENDIX A: GENERALIZATION OF THE ZIP
ALGORITHM FOR REAL-SPACE F-DMFT

We present here the generalization to the Floquet formal-
ism of the recursive Green’s function method [16,24,30], also
known as zip algorithm. To facilitate the reading, we omit the
(ωn, ε, ε) dependence.

In this procedure, the expressions for the lattice GF in
Eq. (5) are

GR
zz = (

[G−1]R
zz − t2

z−1,zL
R
z−1 − t2

z,z+1RR
z+1

)−1
, (A1)

GK
zz = −GR

zz[G
−1]K

z GA
zz, (A2)

with z ∈ {1, ..., L}, where

[G−1]K
z = [g−1]K

z − t2
z−1,zL

K
z−1 − t2

z,z+1RK
z+1, (A3)

[g−1]K
mn,z = −[

v2
l gK

l δz,1 + v2
r gK

r δz,L
]
δmn − �K

mn,z, (A4)

L0 = 0 and RL+1 = 0. We denote with Lz−1 and Rz+1 respec-
tively the GFs for the (z − 1)th and (z + 1)th layer of the
isolated system at the left and at the right of the zth layer,
which we call from now the left and right GF. The boldface
stays for a Floquet-represented matrix, as in Sec. III. As a
remark, the inverse lattice Keldysh GFs in Eqs. (A3) and (A4)
are diagonal in the layer indices because of the real-space
DMFT approximation for the electron SE, i.e., �zz′ � �zδzz′ .

The left GF is obtained recursively as follows:

LR
z = (

[G−1]R
zz − t2

z−1,zL
R
z−1

)−1
, (A5)

LK
z = −LR

z

(
[g−1]K

z − t2
z−1,zL

K
z−1

)
LA

z , (A6)

for z ∈ {2, ..., L-1}, with the initial conditions

LR
1 = GR

11, (A7)

LK
1 = −LR

1 [g−1]K
1 LA

1 . (A8)
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In the same way for the right GF,

RR
z = (

[G−1]R
zz − t2

z+1,zR
R
z+1

)−1
, (A9)

RK
z = −RR

z

(
[g−1]K

z − t2
z,z+1RK

z+1

)
RA

z , (A10)

for z ∈ {L-1, ..., 2}, with the initial conditions

RR
L = GR

LL, (A11)

RK
L = −RR

L [g−1]K
L RA

L . (A12)

APPENDIX B: PARTICLE-HOLE INVERSION SYMMETRY

The system, with the Hamiltonian given in the main text
in Eq. (1), the choice of the on-site energies in Sec. III A,
and the parameters chosen as in Sec. IV, is invariant under
a simultaneous particle-hole transformation and reflection of
the z axis respect to the center of the heterostructure [30,31].
For this reason, the properties of zth and (L + 1 − z)th layers
are related by a particle-hole transformation. Due to this PhI

(particle-hole inversion) symmetry, the (0,0)-Floquet matrix
element of the SEs obeys the relations

�R
L+1−z,00(ω) = −[

�R
z,00(−ω)

]∗ + Uz, (B1)

�K
L+1−z,00(ω) = [

�K
z,00(−ω)

]∗
. (B2)

The other diagonal Floquet elements of the SEs are recon-
structed by using �mm(ω) = �00(ω + m�). Thanks to the
relations in Eqs. (B1) and (B2), one has to solve in the real-
space F-DMFT loop only the many-body impurity problems
relative to half of the correlated region.

For the quantities defined in Sec. III C the PhI symmetry
gives

AL+1−z(ω) = Az(−ω), (B3)

nL+1−z = 1 − nz, (B4)

ND,L+1−z = 1 − 2nz + ND,z, (B5)

�ND,L+1−z = �ND,z. (B6)
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also [35]) and far from the intensity of solar radiation. See also
the discussion in Sec. V.

[69] This background current is due to the limited accuracy of our
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