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The tensor network algorithm, a family of prevalent numerical methods for quantum many-body problems,
aptly captures the entanglement properties intrinsic to quantum systems, enabling precise representation of quan-
tum states. However, its computational cost is notably high, particularly in calculating physical observables like
correlation functions. To surmount the computational challenge and enhance efficiency, we propose integrating
the Green’s function Monte Carlo (GFMC) method with the projected entangled pair state (PEPS) ansatz. This
approach combines the high-efficiency characteristics of Monte Carlo with the sign-free nature of tensor network
states and proves effective in addressing the computational bottleneck. To showcase its prowess, we apply this
hybrid approach to investigate the antiferromagnetic J1-J2 Heisenberg model on the square lattice, a model
notorious for its sign problem in quantum Monte Carlo simulations. Our results reveal a substantial improvement
in the accuracy of ground-state energy when utilizing a preliminary PEPS as the guiding wave function for
GFMC. By calculating the structure factor and spin-spin correlation functions, we further characterize the
phase diagram, identifying a possible columnar valence-bond state phase within the intermediate parameter
range of 0.52 < J2/J1 < 0.58. This comprehensive study underscores the efficacy of our combined approach,
demonstrating its ability to accurately simulate frustrated quantum spin systems while ensuring computational
efficiency.
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I. INTRODUCTION

Investigating the intricate and novel physics in quantum
many-body systems is a thriving research field in contem-
porary condensed matter physics. Given the limitations of
computational resources, achieving a precise representation of
the quantum state is crucial for addressing these challenges.
Among the various approaches, tensor network states (TNSs)
are drawing increasing attention as they offer faithful repre-
sentations of low entangled quantum states, are free of sign
problems, and have been successfully applied to a range of
strongly correlated systems over the past few decades [1–6].

However, the associated computational cost of TNSs in-
creases extremely quickly with the maximum retained state
number D, commonly referred to as the bond dimension.
This issue becomes particularly pronounced in computing the
physical observables, such as energy density and correlation
functions. Furthermore, since most tensor network algorithms
possess iterative structures [4–8] that cannot be parallelized
straightforwardly, the potential of existing acceleration ar-
chitectures, including CPU multicore parallelism and GPUs,
cannot be explored easily.

*Contact author: qingtaoxie@ruc.edu.cn
†Contact author: zlu@ruc.edu.cn

On the other hand, Green’s function Monte Carlo (GFMC)
[9], belonging to the quantum Monte Carlo family, stands out
as another frequently used numerical method in the study of
strongly correlated many-body systems [10,11]. Starting from
a prescribed trial wave function |�0〉, GFMC employs the
fixed-node approximation [12] to address the sign problem
and leverages imaginary-time evolution to refine its estimation
of the true ground state [11,13,14]. The physical observables,
including the correlation functions, can be obtained efficiently
by importance sampling, and the accuracy can be guaranteed
as long as |�0〉 is provided with a certain degree of accuracy
of the nodal information in particular.

To take advantage of the high efficiency of Monte Carlo
sampling and the sign-free feature of TNSs simultaneously,
in this study, we propose a hybrid approach [15–19] that
integrates the GFMC method with the projected entangled
pair state (PEPS) ansatz [20], a specific type of tensor net-
work state which is expected to be able to capture the
nodal information of the wave function, to address general
quantum many-body problems. To illustrate the efficacy of
this hybrid approach, we focus on the challenging frustrated
J1-J2 Heisenberg model on a square lattice. This model is
known for the possible existence of a quantum spin liquid
in the intermediate J2/J1 regime [21–30] but is difficult for
quantum Monte Carlo simulations due to the severe sign
problem [31,32].
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As expected, our computational results demonstrate a dras-
tic improvement in the accuracy of ground-state energies,
even when a preliminary PEPS is employed as the guiding
wave function for GFMC [17,18]. Furthermore, in compar-
ison with the pure PEPS method, which needs to contract
a tensor network with bond dimension D2 in the expec-
tation value calculations (with leading cost D12 generally)
[7,33,34], the hybrid approach can fully use the highly effi-
cient Markov chain and importance sampling techniques to
expedite the calculations, and the resulting tensor network is
only of dimension D for each physical configuration (with
leading cost D6) and thus can be contracted much more
efficiently [35–37].

Focusing on the intermediate phases, with periodic bound-
ary conditions, to assess the validity and efficiency, we
carefully benchmark the results obtained with the hybrid ap-
proach against those obtained from the exact diagonalization,
density matrix renormalization group (DMRG), and some
other approaches [28,38–41]. Besides the energy density, we
also calculate the bond correlations and the static spin and
dimer structure factors. Finally, we identify a possible colum-
nar valence-bond state (VBS) phase [42] in the intermediate
parameter regime about 0.52 < J2/J1 < 0.58, and we do not
observe a possible nearby quantum spin liquid phase [25,41]
in our calculations.

II. MODEL

The frustrated J1-J2 Heisenberg model is defined by the
following Hamiltonian:

H = J1

∑
〈i, j〉

Si · S j + J2

∑
〈〈i, j〉〉

Si · S j, (1)

where Si is the spin-1/2 angular momentum operator de-
fined at the ith site on a square lattice and 〈· · ·〉 and 〈〈· · ·〉〉
indicate the nearest- and next-nearest-neighbor summations,
respectively. We focus on the case where both J1 and J2 are
antiferromagnetic and consider system size N = L × L with
periodic boundary conditions.

When J1 dominates, the system is in a Néel phase with an-
tiferromagnetic (AFM) long-range order [43,44], while when
J2 dominates, the ground state manifests a well-established
collinear AFM phase [45,46]. Nevertheless, the intermediate
regime with J2/J1 around 0.5 remains a subject of consid-
erable debate and scrutiny [21–30,38–41,47–61]. The strong
quantum frustration and fluctuations pose a great challenge for
numerical simulations. Despite numerous investigations into
the characteristics of this regime, including the plaquette VBS
[48,55–59], the columnar VBS [47,52,60], a gapless quantum
spin liquid [21,28–30], and other proposals [22–27,39,41,61],
the precise nature of this quantum phase remains a topic
of controversy. In this study, we always set J1 = 1 for
simplicity.

III. PEPS GUIDING WAVE FUNCTION

PEPS [20] is a typical tensor network state extensively used
to study two-dimensional quantum many-body systems. The
PEPS ansatz we used in this study is sketched in Fig. 1 for

FIG. 1. Sketch of the PEPS ansatz on a 6 × 6 square lattice
with periodic boundary conditions (denoted by dashed lines). In our
study, the local tensors T (i) of the PEPS wave function are optimized
for |�2D〉 in the thermodynamic limit, as explained in detail in
Appendix 2.

L = 6 and can be formulated as follows:

|�〉 =
∑
{σ }

[
Tr

∏
i

T (i)
liriuidiσi

]
|σ1σ2 · · · σi · · · 〉, (2)

where T (i) is the local tensor defined at the ith site, with
(li, ri, ui, di ) being its link indices and σi being its local phys-
ical configuration, as show in Fig. 1. For any given spin
configuration {σ }, the superposition coefficient is given by
the trace in Eq. (2), which denotes the contraction of a two-
dimensional tensor network, namely, summation over all the
link indices of the local tensors. The bond dimension D, the
highest value that the link indices can take, is an important
parameter in tensor network states. By increasing D, the num-
ber of parameters and the representation capability can be
enhanced, but the computational cost increases quickly too
[7,33]. Therefore, one should balance performance and cost.
In our calculations, the bond dimension we focused on is
D = 4, but near the phase boundary, we pushed to larger D
(no larger than 7) to check consistency. More background on
tensor network states is provided in Appendix 1.

This study considers the PEPS wave function as the trial
ground state and guiding wave function for the GFMC calcu-
lations below. To generate such a trial state, we first perform
energy minimization using the variational approach with the
help of the automatic differentiation technique [62,63] for the
two-dimensional Hamiltonian to get the ground state |�2D〉 in
the thermodynamic limit [53,64,65] and then approximate the
guiding wave function |�0〉 of the same Hamiltonian but on
an L × L torus by placing the local tensors of |�2D〉 there, as
shown in Fig. 1. More details of the preparation of |�0〉 are
explained in Appendix 2.

IV. GFMC METHOD

The basic idea of GFMC is simple [10,11]. Starting from an
arbitrary state |�0〉, it performs the imaginary-time evolution
to get the desired ground state |�g〉, that is,

lim
β→∞

e−βĤ |�0〉 → |�g〉, (3)
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TABLE I. Energies of the J1-J2 Heisenberg model on a 6 × 6 square lattice with J2 = 0.5 and J2 = 0.55. E0 is the initial energy of the PEPS
trial wave function, and Eg is the energy after the GFMC optimization. The relative improvement of Eg over E0 is defined as δ = |Eg − E0|/|E0|.

J2 = 0.5 J2 = 0.55

D E0 Eg δ E0 Eg δ

2 −0.4817(3) −0.48277(2) 0.0022 −0.4638(3) −0.4712(1) 0.0160
3 −0.4819(2) −0.49777(3) 0.0329 −0.4857(2) −0.4883(1) 0.0054
4 −0.4883(2) −0.50211(7) 0.0283 −0.4920(1) −0.4926(1) 0.0012
5 −0.4919(3) −0.5029(1) 0.0224 −0.4925(4) −0.4931(3) 0.0012
6 −0.4947(4) −0.5033(4) 0.0172 −0.4929(5) −0.4934(6) 0.001
7 − − − −0.4933(2) −0.4939(5) 0.0012

where the initial trial state satisfies 〈�0|�g〉 �= 0. In practice,
the evolution process is divided into many small slices by
setting β = Mτ , with τ being a small number, and then the
so-called Green’s function is defined as the matrix element of
e−τ Ĥ , i.e.,

Gαγ = 〈α|e−τ Ĥ |γ 〉 ≈ δαγ − τHαγ , (4)

where α and γ denote different spin configurations {σ }. By
normalizing the rows of G, the element of G̃ = b−1G can be
considered the transition amplitude between configurations.
Then we can employ a Markov process with the transition
matrix G̃ to evolve the wave function |�0〉. Here, b is a
diagonal matrix whose nonzero elements bα ≡ ∑

γ Gαγ . In
this study, we choose the PEPS |�0〉 to be the initial trial wave
function |�0〉.

In order to improve efficiency, importance sampling is
adopted to guide the sampling process. For quantum systems
with sign problems, the fixed-node approximation is usually
adopted in the GFMC method [11,12], and an appropriate
guiding wave function is expected to circumvent the sign
problem, in which one needs to identify the nodes of the
guiding wave function and fix them during the entire evolution
process of |�0〉. For this reason, it is crucial to ensure that
the guiding wave function can accurately capture the nodal
information of the ground-state wave function [16,18]. As
mentioned above, we choose a PEPS, |�0〉, as the guiding
wave function in our approach. At the beginning, the configu-
rations of the Markov chain follow a distribution characterized
by |�0|2 (in our study, it is also |�0|2), and then it progres-
sively converges to the ground state after a sufficiently long
imaginary-time evolution. It is expected that the PEPS wave
function can capture the nodal information of the ground-state
wave functions, even when D is small, and then GFMC can
be used efficiently to refine the wave function and calculate
the observables.

V. GROUND-STATE ENERGY

To show the validity of the hybrid approach, first, we focus
on an L = 6 torus with J2 = 0.5 and J2 = 0.55, where the
frustration is known to be very strong. We report the ground-
state energy obtained with different bond dimensions D in
Table I. Table I shows clearly that for both the J2 values, the
final energies Eg obtained with the GFMC are, indeed, lower
than the initial values E0 provided by the PEPS wave func-
tion |�0〉, as it should be. Although the ground-state energy
becomes more and more accurate as D becomes larger, the

GFMC can always improve the PEPS energy further. This
reflects the fact that the GFMC method goes beyond varia-
tional, and its performance relies significantly on the accuracy
of the starting wave function. In this study, we keep D � 7 to
balance performance and efficiency.

Tables II and III compare our benchmark results with
existing data in the literature for L = 6 and L = 10, respec-
tively. For the L = 6 torus, for which the exact diagonalization
results are available, the hybrid approach can obtain very ac-
curate results even with D = 5, which is relatively small. The
hybrid approach performs better than variational Monte Carlo
(VMC) [28] and the convolutional neural network (CNN)
[40] and similar to the DMRG [39] and improved restricted
Boltzmann machine (RBM) method [41]. In Fig. 2, we plot
the energy Eg as a function of D. Figure 2 shows clearly
that the energy can be systematically improved as D becomes
larger, and the extrapolated values in the large-D limit can be
expected to reproduce the exact value accurately [66]. For the
L = 10 torus, the conclusion is similar. Even with D = 4, our
hybrid approach can provide lower energies than the VMC
[28] and CNN [40], and the values coincide very well with
those obtained with DMRG calculations [39].

VI. PHASE DIAGRAM

To study the ground-state phase diagram, we first calculate
the magnetization density, which is defined as follows:

M =
√

〈Sx〉2 + 〈Sy〉2 + 〈Sz〉2, (5)

TABLE II. Comparison between the VMC [28], DMRG [39],
CNN [40], improved RBM [41], and PEPS-GFMC combined ap-
proach used in this paper on the 6 × 6 square lattice with periodic
boundary conditions. The energies obtained from exact diagonaliza-
tion (ED) are taken from Ref. [38].

J2 = 0.5 J2 = 0.55

ED −0.503810 −0.495178
VMC −0.50117(1) −0.48992(1)
DMRG −0.503805 −0.495167
CNN −0.50185(1) −0.49067(2)
Improved RBM −0.503765(1) −0.495075(1)
This work (D = 4) −0.50211(7) −0.4926(1)
This work (D = 5) −0.5029(1) −0.4931(3)
This work (D = 6) −0.5033(4) −0.4934(6)
This work (D = 7) − −0.4939(5)
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TABLE III. Comparison between the VMC [28], DMRG [39],
CNN [40], and hybrid approach used in this paper on the 10 × 10
square lattice with periodic boundary conditions.

J2 = 0.5 J2 = 0.55

VMC −0.49521(1) −0.48335(1)
DMRG −0.495530 −0.485434
CNN −0.49516(1) −0.48277(1)
This work (D = 4) −0.4954(6) −0.4852(3)
This work (D = 5) −0.4957(2) −0.4853(4)

where

Sα = 1

L2

∑
i j

Sα
i j (−1)n, α = x, y, z. (6)

Here, the subscripts i j denote that the spin is defined in
the ith row and the jth column of the square lattice. For the
antiferromagnetic Néel order parameter, n = i + j in Eq. (6),
while for the antiferromagnetic collinear order parameter, n =
i or n = j, depending on how the collinear order stretches
in space. As shown in Fig. 3, the Néel magnetization Mneel

is nonzero when J2 is small and rapidly decays to roughly
zero when J2 > 0.52. On the other hand, Fig. 4 shows that
the collinear magnetization Mcoll is zero when J2 is small but
increases quickly when J2 > 0.58. In the intermediate region,
about 0.52 < J2 < 0.58, both magnetizations are very small,
indicating a possible nonmagnetic state.

To unveil the nature of the intermediate phase, we plot the
bond correlation 〈Si · S j〉 for each nearest neighbor in Fig. 5
for J2 = 0.55, where the Néel phase (J2 = 0) and collinear
phase (J2 = 1) are also included for comparison. Figure 5
shows clearly that different from the J2 = 0 (Néel phase) and
J2 = 1 (collinear phase) cases, where lattice translation sym-
metry for this quantity is conserved, the intermediate phase
simultaneously breaks translational symmetry and rotational

FIG. 2. The ground-state energy Eg as a function of D for a
6 × 6 torus at J2 = 0.5 (blue) and J2 = 0.55 (red). The dashed lines
represent the value obtained from exact diagonalization [38]. The
extrapolated values in the large-D limit can be expected to reproduce
the exact value accurately [66].

FIG. 3. The relevant local order parameter Mneel to the antifer-
romagnetic Néel phase for D = 4 and a series of lattice sizes. The
orange dashed line shows a direct extrapolation to the thermody-
namic limit.

symmetry. In fact, this phase shows a clear columnar VBS
feature along the y direction, which can be characterized by a
local order parameter 
 defined as


 = 2

N

⎛
⎝ ∑

i∈even, j

〈Si, j · Si+1, j〉 −
∑

i∈odd, j

〈Si, j · Si+1, j〉
⎞
⎠. (7)

In Fig. 6, we plot its expectation value with respect to J2.
Figure 6 shows clearly that this quantity is nonzero only in a
narrow region of about 0.52 < J2 < 0.58, which agrees well
with what we have concluded from the magnetizations.

In addition to the results for the 6 × 6 torus, in Figs. 3,
4, and 6, we also plot the results for larger clusters up to
L = 12 as well as extrapolations to the thermodynamic limit.
These plots show that, when system size becomes larger,

FIG. 4. The relevant local order parameter Mcoll to the antifer-
romagnetic collinear phase for D = 4 and a series of lattice sizes.
The orange dashed line shows a direct extrapolation to the thermo-
dynamic limit.
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FIG. 5. Bond correlation for each nearest neighbor for D = 4 and L = 6. The color indicates the strength of the bond correlation. For each
square, the number in the center represents the mean of the correlations corresponding to the four sides.

Mneel, Mcoll, and 
 roughly become stronger in the regions
of J2 < 0.52, J2 > 0.58, and 0.52 < J2 < 0.58, respectively.
Results obtained for tori of different sizes give consistent
conclusions.

In Fig. 7, we also check the Néel order parameter Mneel

and columnar VBS order parameter 
 for larger D, near the
boundary between the two phases. Figure 7 shows that the
qualitative conclusion holds for larger D: when J2 > 0.52,
Mneel rapidly decays to roughly zero, and 
 rises quickly; that
is, the columnar VBS order is gradually established in this
region. This verifies our expectation that the PEPS |�0〉 can
roughly capture the nodal structure of the true ground-state
wave function, even when D is small, and the GFMC method
can perform further optimization based on this nice feature.
Moreover, it shows that when D becomes larger, the Néel
and columnar VBS phases become more stable in the J2 <

0.52 and 0.52 < J2 < 0.58 regions, respectively. Therefore,
together with the finite-size analysis, we find a columnar VBS
phase in the intermediate region of 0.52 < J2 < 0.58 and do

FIG. 6. The relevant order parameter to the columnar VBS phase
for D = 4 and a series of lattice sizes. The orange dashed line shows
a direct extrapolation to the thermodynamic limit.

not observe the possible quantum spin liquid phase between
the Néel phase and VBS phase.

To further justify our result, we also calculate the static
structure factors S(k) for spin-spin correlation

S(k) = 1

N2

∑
i, j

〈Si · S j〉eik·(ri−r j ) (8)

and dimer-dimer correlation

Sd,α (k) = 1

N2

∑
i, j

[〈Di,αDj,α〉 − 〈Di,α〉〈Dj,α〉]eik·(ri−r j ), (9)

where Di,α = Si · Si+α̂ is the bond correlation defined for the
ith site, where α = x, y denotes the two orientations for a
square lattice.

The structure factors for J2 = 0.45, 0.55, 0.65 are shown
in detail in Figs. 8(a)–8(c), respectively. Figure 8 shows that
when J2 = 0.45, S(k) displays a clear peak at (π, π ). Al-
though Sd,x(k) also develops weak peaks along ky = 0, it
does not show clear kx dependence. The same is true for
Sd,y(k). This means that when the ground state is in an

FIG. 7. The Néel order parameter Mneel (solid lines) and colum-
nar VBS order parameter 
 (dashed lines) as a function of D for a
6 × 6 torus near the critical region 0.5 � J2 � 0.55. The orange lines
indicate direct extrapolation to the large-D limit.
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FIG. 8. Static structure factors near the intermediate phase for D = 4 and L = 6. (a) J2 = 0.45. (b) J2 = 0.55. (c) J2 = 0.65.

antiferromagnetic Néel order, the columnar VBS order is not
well established. When J2 = 0.55, S(k) still peaks at (π, π ),
but its magnitude is much smaller. Meanwhile, Sd,y(k) shows
a clear peak at (0, π ). This means that the Néel order is
significantly suppressed and, meanwhile, the columnar VBS
order in the y direction is well established and dominates
in this phase. When J2 = 0.65, as shown in Fig. 8(c), S(k)
peaks at (0, π ), Sd,x(k) peaks weakly at (0,0), and at the same
time Sd,y(k) shows a clear peak at (0,0). All these signatures
indicate that the ground state has entered a collinear anti-
ferromagnetic phase, and the bond correlation preserves the
translation symmetry. The analysis here coincides well with
the pattern sketched in Fig. 5.

The above evolution picture can also be identified in
Fig. 9, where we plot the values of the characteristic peaks,
i.e., S(π, π ) for Néel order, S(0, π ) for collinear order, and
Sd,x(π, 0) and Sd,y(0, π ) for columnar VBS order, with regard
to J2. To show the finite-size effect, we plot the results for L =
6 and L = 10 together for comparison. Figure 9 shows clearly
that as J2 becomes larger, the Néel order becomes weaker
and weaker, while the collinear order gradually develops.
The columnar VBS order is established in the intermediate
phase and is consistent with the order parameter analysis. The
results from the two tori differ by only small values, and the
qualitative conclusion remains the same. More details about

the finite-size analysis of the structure factors can be found in
Appendix 3.

VII. SUMMARY AND DISCUSSION

In this study, we proposed a hybrid approach that combines
the GFMC method with the PEPS ansatz to investigate the

FIG. 9. The structure factors as a function of J2 for D = 4 on
6 × 6 (solid lines) and 10 × 10 (dashed lines) tori.
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ground-state phase diagram of the frustrated J1-J2 model on
a square lattice. By utilizing the preliminary PEPS state ob-
tained through automatic differentiation [64,67] as a guiding
wave function for GFMC, the hybrid approach significantly
enhances the accuracy of the ground-state energy. This sup-
ports the argument that the PEPS can accurately characterize
the nodal structure of quantum frustrated systems, as also evi-
denced in previous studies [16,17]. Furthermore, the GFMC
can efficiently give the physical observables, including the
correlation functions [18]. Our results, obtained from system
sizes up to L = 12 and bond dimensions up to D = 7, in-
cluding various order parameters and static structure factors,
reveal the presence of a possible columnar VBS phase in the
intermediate regime around 0.52 < J2 < 0.58. This conclu-
sion is consistent with previous studies using the Schwinger
boson approach [60], series expansion [47], and the more re-
cent symmetric infinite PEPS [52]. Although we cannot fully
exclude the possibility of the existence of a narrow quantum
spin liquid phase [25,41], we tend to believe that there is no
such state between the Néel phase and the VBS phase from
the finite-size and finite-D analysis of the order parameters.

The hybrid approach capitalizes on PEPS’s capability to
characterize the nodal structure of quantum many-body states
and the full parallelizability of Monte Carlo sampling. Specif-
ically, given the PEPS guiding wave function with bond
dimension D, the hybrid method can further optimize it with
computational cost scaling as nD6, where n is the number
of spin configurations sampled in the GFMC and D6 comes
from the evaluation of 〈{σ }|�〉 for a given {σ }. While PEPS
with a larger D is expected to capture a more accurate nodal
structure, n should increase with L but can be parallelized
completely. Consequently, more computational resources di-
rectly translate to enhanced results. For instance, employing
larger D, e.g., through the nested tensor network technique
[33,34], and more accurate trial states for frustrated systems
with finite size, e.g., using other tensor network ansatzes like
the projected entangled simplex state [68] and energy min-
imization at finite size directly; increasing system size; and
augmenting the number of samples can further refine the out-
comes and provide a clearer understanding of the intermediate
phase, such as the exact boundaries of the VBS phase and the
nature of the transition between this VBS phase and the Néel
phase [69]. We leave these topics as future pursuits.

ACKNOWLEDGMENTS

Computational resources used in this study were provided
by the National Supercomputer Center in Guangzhou with
the Tianhe-2 Supercomputer and the Physical Laboratory
of High-Performance Computing in Renmin University of
China. This work was supported by the National R&D Pro-
gram of China (Grant No. 2023YFA1406500), the National
Natural Science Foundation of China (Grants No. 11934020
and No. 12274458), and the Innovation Program for Quantum
Science and Technology (Grant No. 2021ZD0302402).

H.-Y.L. and Y.G. contributed equally to this work.

APPENDIX

In this Appendix, we provide more background on the
tensor network states, more details on the guiding wave

function preparation, and more finite-size analysis of the static
structure factors.

1. More background on tensor network states

The PEPS wave function, a cornerstone of our research,
is a widely used tensor network state in the study of quan-
tum many-body physics [1–8]. The two important features of
PEPS and many other tensor network states are area-law scal-
ing of the entanglement entropy and the absence of negative
sign problem.

The area-law scaling originates from its specific dense
structure [7]; i.e., any bipartition of the physical degrees of
freedom in a PEPS will inevitably cut multiple links/bonds
whose number is proportional to the system size, and this
is quite different from other one-dimensional wave function
ansatzes like matrix product states.

The general statement that the tensor network state is free
of the sign problem [1,5,6,8] stems from the fact that tensor
network algorithms are usually based on the idea of the renor-
malization group, and the concept of probability of a given
configuration, like in quantum Monte Carlo, is not touched
on directly. For example, when tensor networks are used to
study a quantum lattice model, the main task is to determine
the tensor network state representation of the target quantum
state [7,20], such as the ground state, and the strategies to
achieve this include energy minimization and imaginary-time
evolution. While performing the strategies and, later on, the
expectation value calculations, the work that needs to be
done is to contract the tensor networks approximately through
some renormalization-group-based techniques, such as a
boundary matrix product state or corner transfer matrix renor-
malization group [6,7,70]. In the entire process mentioned
above, the concept of probability is not covered at all. Even
in the imaginary-time evolution, which can be regarded as the
counterpart of the path integral, the only thing one needs to do
is to update the wave function using variational approaches
or some singular-value-decomposition-based techniques [71]
instead of evaluating e−τH itself. Therefore, in this sense, the
problem of negative probability for a given basis is avoided
completely, and it is similar to the case of variational Monte
Carlo or any other wave-function-based method. That is why
it is generally said that the tensor network state is free of sign
problems. There are many successful applications of TNSs
in systems that have sign problems for Monte Carlo, such as
kagome spin liquids [68], the Shastry-Sutherland model [72],
lattice gauge theory with finite density [73], and the Hubbard
[74] and t-J models [75].

The bond dimension D is an important hyperparameter for
controlling the number of variational parameters in the tensor
network state ansatz. For example, for the PEPS defined on
an L × L torus like in Fig. 1, if no translational symmetry is
used, then the total number of parameters is L2D4d , where d
is the dimension of the local Hilbert space extended by σi.

Physically, the PEPS wave function can be understood in
terms of maximally entangled states of some auxiliary sys-
tems, as originally proposed in Refs. [20,76]. The idea is
illustrated in Fig. 10. First, one can arrange four auxiliary vir-
tual particles around each lattice site and let every two virtual
particles on the same link form a maximally entangled paired
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FIG. 10. An interpretation of the PEPS wave function con-
structed on a square lattice. The red dots denote the auxiliary virtual
particles, the blue lines denote the maximally entangled paired state
|ω〉, and the black lines denote local physical degrees of freedom.
The green dashed circles denote projectors P defined at each site,
which map the space expanded by the four virtual particles to the
physical space. More details can be found, e.g., in Refs. [20,76].

state, e.g., |ω〉 = ∑D
i=1 |i, i〉, where |i = 1, 2, . . . , D〉 charac-

terizes the specific quantum state of the virtual particles. Then
the final state is obtained by applying a projector (namely, a
linear map) P at each lattice site to map the space extended
by the four virtual particles to the physical Hilbert space.
Therefore, in this sense, D actually represents the dimension
of the auxiliary virtual systems. Generally, the PEPS ansatz
can be more accurate when D is larger, but unfortunately, the
computational cost of determining and evaluating the state can
scale as D12 and increase extremely quickly [7,33]. Therefore,
as mentioned in the main text, one needs to balance the per-
formance and the cost.

2. Preparation of |�0〉
This section provides more details about the preparation of

the guiding PEPS wave function |�0〉. As mentioned in the
main text, the PEPS ansatz is optimized for systems in the
thermodynamic limit for simplicity. To be specific, we mainly
follow the procedures below:

(1) Choose a supercell of size 2 × 2, the smallest size nec-
essary to distinguish the four possible phases of this model.
As illustrated in Fig. 11(a), this means there are four dis-
tinct tensors in the supercell (denoted in different colors),

FIG. 11. (a) Sketch of the supercell used to construct the PEPS
wave function |�2D〉 in (b) the thermodynamic limit and (c) the wave
function |�0〉 on an L × L torus. Here, we use L = 4 as an illustration
for simplicity.

FIG. 12. The relevant structure factor S(π, π ) to the antiferro-
magnetic Néel phase for D = 4 and a series of lattice sizes. The
orange dashed line shows a direct extrapolation to the thermody-
namic limit.

say, {Ta, Tb, Tc, Td}, each of which is a tensor with shape
D × D × D × D × 2 and is initialized arbitrarily.

(2) Duplicate the supercell and arrange it periodically to
construct the PEPS ansatz |�2D〉 in the thermodynamic limit.
Here, the subscript 2D addresses the thermodynamic limit of a
two-dimensional lattice. In this case, only four different local
tensors construct |�2D〉, i.e., {Ta, Tb, Tc, Td}. See Fig. 11(b).

(3) Find the optimal {Ta, Tb, Tc, Td} which can min-
imize the ground-state energy E = 〈�2D|H |�2D〉

〈�2D|�2D〉 . This can
be achieved by optimizing them from their initial val-
ues through a gradient-based optimization method, such as
the Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-
BFGS) quasi-Newton method [77], as long as their gradients,
i.e., { ∂E

∂Ta
, ∂E

∂Tb
, ∂E

∂Tc
, ∂E

∂Td
} are known. Fortunately, these gradi-

ents can effectively be obtained with the so-called automatic
differentiation (AD) technique, which essentially uses back-
propagation (i.e., chain rule of derivatives) to calculate the

FIG. 13. The relevant structure factor S(0, π ) to the antiferro-
magnetic collinear phase for D = 4 and a series of lattice sizes. The
orange dashed line shows a direct extrapolation to the thermody-
namic limit.
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FIG. 14. The relevant structure factor Sd,y(0, π ) to the columnar
VBS phase for D = 4 and a series of lattice sizes. The orange dashed
line shows a direct extrapolation to the thermodynamic limit.

gradients [62,63]. Therefore, from the arbitrarily initialized
{Ta, Tb, Tc, Td}, one can calculate the energy E ; then the AD
package [78] can effectively obtain their gradients, which can
be used in the L-BFGS method to update these local tensors,
and |�2D〉 is thus updated in the direction of lower energy.
This update procedure can be repeated until some conver-
gence is reached, and then we obtain a PEPS representation
|�2D〉 of the ground-state wave function with some accuracy.

(4) When |�2D〉 is obtained, in order to combine it with
the GFMC method, use the obtained supercell to approxi-
mately construct a ground-state wave function with the same
Hamiltonian but on an L × L torus. Again, this is done by
duplicating the supercells and arranging them periodically on
a torus [79]. Then, finally, the trial PEPS wave function |�0〉
is obtained and can be used as the guiding wave function of
the GFMC method. See Fig. 11(c).

The AD technique lies at the heart of the back-propagation
algorithm in training neural networks [80], is closely related
to the second renormalization group in optimizing a tensor
network [64], and thus serves as the computational engine of
modern deep learning applications and differential program-
ming tensor networks. The basic idea is the chain rule of
the derivative. For simplicity, we introduce the notation 
T0 to
denote the initial {Ta, Tb, Tc, Td} vectorized and stacked as a
single vector. In order to evaluate the evaluation of the energy,
suppose that a series of intermediate results { 
T1, 
T2, . . . , 
Tm}
is generated sequentially, e.g., in the corner transfer matrix
renormalization group algorithm; then the gradient can be

FIG. 15. The relevant structure factor Sd,x (0, π ) to the columnar
VBS phase for D = 4 and a series of lattice sizes. The orange dashed
line shows a direct extrapolation to the thermodynamic limit.

calculated using

∂E

∂ 
T0

= ∂E

∂ 
Tm

∂ 
Tm

∂ 
Tm−1

∂ 
Tm−1

∂ 
Tm−2

. . .
∂ 
T2

∂ 
T1

∂ 
T1

∂ 
T0

. (A1)

There are well-developed AD packages [78] to perform this
reversed mode calculation effectively. For more details about
this technique for tensor networks, one can refer to, e.g.,
Refs. [64,67].

3. More detailed finite-size analysis of the static structure factors

In Fig. 9 in the main text, we show only the data obtained
on 6 × 6 and 10 × 10 tori in order to clarify the plot. In this
section, we provide more data for the finite-size analysis for
each structure factor separately. The results for S(π, π ) (rel-
evant to the antiferromagnetic Néel phase), S(0, π ) (relevant
to the antiferromagnetic collinear phase), and Sd,y(0, π ) and
Sd,x(π, 0) (relevant to the columnar VBS phase) are shown
in Figs. 12–15, respectively. The extrapolations to the ther-
modynamic limit obtained with a direct power fitting are also
included. Figures 12–15 show that although some slight finite-
size effect exists, the peak structures of all four quantities
remain the same as L becomes larger. Significantly, Sd,y(0, π )
and Sd,x(π, 0) show apparent peaks in the intermediate region
consistently and evidence the possible existence of a columnar
VBS phase.
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