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Numerical observation of SU(N) Nagaoka ferromagnetism
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We provide numerical evidence of the Nagaoka’s theorem in the SU(N ) Fermi-Hubbard model on various
cluster geometries, such as the square, the honeycomb, and the triangular lattices. In particular, by diagonalizing
several finite-size clusters, we show that for one hole away from filling 1/N , the itinerant ferromagnetism arises
for U (the positive on-site interaction) larger than Uc (the value at the transition), which depends strongly on
the coordination number z and on N , the number of degenerate orbitals, that we vary from N = 2 to 6 in our
simulations. We prove that Uc is a nondecreasing function of N . In addition, we find that the lattice dependency
is rooted in the kinetic energy of the hole. We find that large coordination numbers z lower the value of Uc.
Complementary, we explore the effect of long-range hopping on the appearance of itinerant ferromagnetism,
and we demonstrate that it acts as an increased coordination number, protecting the ferromagnetic phase at small
U . Finally, the effects of both the presence of some additional holes and the finite size of the clusters are briefly
discussed.
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I. INTRODUCTION

The Fermi-Hubbard model (FHM) has attracted consider-
able attention as an idealized model for strongly interacting
electrons in a solid [1,2]. Despite its apparent simplicity, this
model harbors tremendously rich physics [3]. For instance,
the results obtained studying the FHM help us understand a
plethora of phenomena in strongly correlated systems, includ-
ing pairing mechanisms in unconventional superconductors
[4,5], the Mott metal-insulator transition [6], and diverse kinds
of magnetic orderings [7–9]. Among these phenomena, the
origin of itinerant ferromagnetism observed in some materials
has stimulated many investigations in physical science for a
long time [10–22].

One prime example of a saturated itinerant electron ferro-
magnetism appears for systems containing exactly one hole
with an infinite Hubbard repulsion U , a phenomenon known
as Nagaoka (or Thouless-Nagaoka) ferromagnetism. In fact,
it was initially demonstrated by Thouless for some special
bipartite lattices [23], before being rigorously generalized to
nonbipartite lattices by Nagaoka [24], Lieb [25], and Tasaki
[14,26].

Since then, several studies have focused on determining if
and when Nagaoka ferromagnetism emerged in various lat-
tices and conditions ranging from FHMs with finite U [27–30]
or with various physically realistic hole dopings [31–36],
in multiple orbitals [37,38], or with dispersionless (“flats”)
bands in the spectrum [26,39,40].

Despite the simplicity of the definition of the FHM, it is
difficult to analyze it consistently for finite U and on lattices of
dimensions larger than 1. Actually, the study of such a model
represents a computational challenge that requires state-of-
the-art quantum many-body numerical methods [41,42], and
is still not fully solved.

From an experimental point of view, quantum simulations
using ultracold fermions in optical lattices [8,43] could help
to answer open questions about the FHM.

From a theoretical point of view, inspired by analytical
approaches in high-energy physics, one original way to ad-
dress the SU(2) FHM has been to investigate the large N limit
of the SU(N ) FHM as an asymptotic description of spins
1/2, notably introduced in the context of high-temperature
superconductors [44–47].

Interestingly, these two latter ideas are somehow com-
bined into the cold atomic realization of the SU(N ) invariant
FHM on engineered optical traps [48–52]. In these setups, the
alkaline-earth cold atoms like 173Yb or 87Sr have nuclear spins
that play the role of the N (up to N = 10) different colors
or flavors of a set of atoms that can hop from one site to a
neighboring site of the optical lattice. In fact, the continuous
experimental progress in this field is such that the experi-
mentalists can precisely control several physical parameters
of the SU(N ) FHM, such as the filling, the interaction U ,
the hopping amplitudes, the geometry of the lattices, and the
number of degenerate orbitals N [53–58].

Naturally, the question of itinerant ferromagnetism arises
also in the SU(N ) FHM [59–62]. In the infinite interaction
U limit, an important step towards understanding has been
made in [59], where Nagaoka’s theorem was extended to the
SU(N ) FHM for a restricted class of models satisfying the
connectivity condition, which was later generalized in light of
graph theory [60].

On the other hand, for finite U , several points should be
addressed numerically in order to know quantitatively how the
onset of Nagaoka ferromagnetism depends on the geometry of
the lattices and on the number of degenerate orbitals N , and
what is the impact of the range of the hoppings.
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In this perspective, the recently developed numerical exact
diagonalization (ED) scheme devised in [63] for the SU(N )
FHM is a tool that is particularly well adapted to this purpose.
In fact, such a method, implementing the full SU(N ) symme-
try and which generalizes with semistandard Young tableaus
(ssYT), what was done for the Heisenberg SU(N ) models
with standard Young tableaus (SYT) [64,65], provides us with
the eigenenergies of the model directly in each irreducible
representation (irrep) of SU(N ). As a consequence, it not
only involves a reduction of the dimensions of the matrices
to diagonalize (and thus an increase of the size of the consid-
ered clusters), but it also directly gives the relevant quantum
numbers in order to determine when the ground state belongs
to the fully symmetric irrep.

The remainder of the paper is organized as follows. In
Sec. II, we introduce the SU(N ) FHM. In Sec. II A, we pro-
vide a summary of the method employed to perform ED with
the full SU(N ) symmetry on finite-size clusters. In Sec. II B,
we briefly review the main results of Nagaoka’s theorem and
its extension to SU(N ). In Sec. III, we show the numerical
results for the SU(N ) FHM. First, in Sec. III A, we illustrate
the influence of the lattice geometry on several 2D clusters
and of the number of colors N for N up to N = 6. Then, in
Sec. III B, we analyze the situation with long-range hopping.
Finally, in Sec. III C, we comment briefly about the finite-size
effects, and in Sec. III D we discuss the situation with more
than one hole, before concluding in Sec. IV.

II. THE SU(N) FERMI-HUBBARD MODEL

The SU(N ) Fermi-Hubbard model (FHM) can be written
as

H =
∑

〈i, j〉
(ti jEi j + H.c.) + U

2

L∑

i=1

E2
ii , (1)

where ti j are the hopping amplitudes between sites i and j,
and U is the on-site density-density interaction. The SU(N )
invariant hopping terms read

Ei j = E†
ji =

N∑

σ=1

c†
i,σ c j,σ , (2)

where the σ are the color (or flavors) indexes. Note that we
use the following notations: Latin letters for the site indexes
and Greek letters (or capital Latin letters) for the colors. The
hopping operators satisfy the commutation relation of the
U(L) generators (∀ 1 � i, j, k, l � L):

[Ei j, Ekl ] = δ jkEil − δliEk j . (3)

In Eq. (1), the integer parameter N is hidden: This Hamilto-
nian should be seen as an element of the Lie algebra of the
unitary group U(L) [66]. One can define a set of number op-
erators, flavor-raising operators, and flavor-lowering operators
as (∀ 1 � σ,μ � N)

F σ,μ =
L∑

i=1

c†
i,σ ci,μ. (4)

From the commutation relation of fermions, they satisfy
(∀ 1 � σ,μ, γ , β � N)

[F σ,μ, F γ ,β] = δμ,γ F σ,β − δβ,σ F γ ,μ. (5)

They are dual of the Ei j operators. Importantly, since
(∀ 1 � σ,μ � N and ∀ 1 � i, j � L)

[F σ,μ, Ei j] = 0, (6)

the Hamiltonian in Eq. (1) not only conserves the number
of fermions in each specie (or color) Mσ ≡ F σ,σ , but it also
exhibits a global U(N ) symmetry. Consequently, the eigen-
states of H are separated into different disconnected sectors
labeled by the irreducible representations (irreps) of U(N ).
In that case, an efficient method has been devised to work
directly in these independent sectors in Ref. [63]. Here, we
summarize the most important results, and we introduce the
basic definitions needed to understand the rest of the paper.

A. Review of the method

In this section, we review the cornerstone principle in-
stigating our ED procedure, i.e., the color factorization
decomposition of HM,N

L , which is the Hilbert space of
M SU(N) fermions on L sites interacting through the Hamil-
tonian in Eq. (1), and where each fermion wave function
belongs to the fundamental representation of SU(N ). An ir-
rep of SU(N ) is identified by a Young diagram (YD) or
shape α = [α1, α2, . . . , αq], with q the number of rows of
the diagram (1 � q � N) such that α1 � α2 � · · · � αq � 1.
Please note that the irreps of U(N ) or SU(N ) are basically
the same; the distinction is relevant when we include/exclude
a representation of generators with nonvanishing trace like
some combinations of Eii (or Fσ,σ ), and when we deal with the
Casimirs (cf. below). We should use instead the common ter-
minology, talking about SU(N ) irreps. In this representation,
the number of particles M = ∑

σ F σ,σ = ∑
i Eii is equal to the

number of boxes, i.e.,
∑N

i=1 αi = M (cf. Fig. 1 for examples).
It appears that HM,N

L can be decomposed as

HM,N
L = ⊕

α

dα
N⊕

k=1
Hᾱ,k

L , (7)

where the outer sum runs over all the M-boxes YD α of
maximum L columns and N rows (see Ref. [63] for in-depth
details). For a given α, there are dα

N independent sectors Hᾱ,k
L

(for k = 1 · · · dα
N ) that are invariant under the action of the

Hamiltonian H . They are isomorphic with each other, with
the same dimension d ᾱ

L , where ᾱ is the transpose of a YD
α, transforming its rows into columns (cf. Fig. 1). They will
give rise to some multiple copies (some multiplicities) of
the eigenspectrum corresponding to the irrep α in the full
eigenspectrum of the Hamiltonian H [cf. Eq. (1)] on HM,N

L .
In particular, the dimension DM,N

L of the Hilbert space HM,N
L

is given by

DM,N
L ≡ dim

(
HM,N

L

) =
∑

α

dα
N d ᾱ

L . (8)

The quantity dα
N (d ᾱ

L ) stands for the dimension of the
SU(N ) irrep α [the U(L) irrep ᾱ], which one can obtain using,
e.g., the hook length formulas [67,68].
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FIG. 1. (a) Example of SU(3) irrep for L = 4 sites and M = 3 fermions, labeled by the Young diagram (YD) α = [1, 1, 1]. We associate
the transpose YD, transforming rows into columns, ᾱ = [3]. We fill up ᾱ to get the highest weight state (hws), with which we associate dα

N=3

different orthonormal physical states that generate the d ᾱ
L -dimensional and independent sectors Hᾱ,k

L (for k = 1 · · · dα
N=3, here d [1,1,1]

N=3 = 1)
under the application of the operators Ei j . (b) Examples of fully polarized states (living in the one-row irrep α = αsym = [M]) for L = 3 sites,
M = 2 fermions for SU(3). Similarly to (a), we present all the different physical states associated with the hws. Additionally, we show an
example of the operator F σ,μ acting on a fully polarized state, showing how it connects the different sectors Hᾱ,k

L (for k = 1 · · · dα
N=3, see the

text for details). The Young diagram representation shows the connection with the ED method. For convenience, we illustrate only one hole
configuration.

These dimensions are equal to the number of semistandard
Young tableaus (ssYT) of shape α (ᾱ) filled with numbers
from 1 to N (L), since these latter form a basis of the SU(N ) or
U(L) irreps. More precisely, a ssYT is filled up with numbers
from 1 to N (L) in nondescending order from left to right in
rows and top to bottom in columns; importantly, repetition is
allowed in rows only. For instance,

Moreover, for k = 1 · · · dα
N , each sector Hᾱ,k

L can be gener-
ated by the applications of the generators Ei j (for 1 � i, j �
L) on a state |φα,k

hws〉, which has the defining properties of the
highest weight state (hws) of the U(L) irrep ᾱ [69],

Eii

∣∣φα,k
hws

〉 = ᾱi

∣∣φα,k
hws

〉
, ∀i ∈ �1; L�, (9)

Ei j

∣∣φα,k
hws

〉 = 0 for i < j, (10)

where ᾱi is the number of fermions on site i.
For a given ᾱ, the ssYT representing the hws has its first

row filled with 1, its second row filled with 2, and so on. For
example, for L = 10 sites, with M = 9 particles, and for α =

[5, 4], we have

(cf. Fig. 1 for other examples). In HM,N
L , for a given shape α,

there are dα
N orthonormal states |φα,k

hws〉(k = 1 · · · dα
N ), and we

pass from one to another by applying the operators F σ,μ (cf.
Fig. 1). And from Eq. (6), we pass from one sector Hᾱ,k

L to
another Hᾱ,k′

L (for k′ 	= k) through the same operations.
Each sector Hᾱ,k

L independently represents the U(L) irrep ᾱ

(for k = 1 · · · dα
N ), so that our algorithm is simple. Targeting a

global SU(N ) irrep α, we first generate the basis of ssYT of ᾱ,
which we denote {|ν〉}. This is a very convenient basis, where
the matrix elements of the infinitesimal generators between
equal or consecutive sites Epp, Ep−1p, Epp−1, take a simple
form derived from group theory results due to Gelfand and
Tsetlin [70]. Calling |ν〉 a ssYT, one has for p = 1 · · · L:

Epp|ν〉 = (#p ∈ ν)|ν〉, (11)

where (#p ∈ ν) is equal to the number of occurrences of p
inside |ν〉, corresponding thus to the occupation number on
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site p (see examples in Fig. 1). And we have also, for p =
2 · · · L,

Ep−1p|ν〉 =
p−1∑

j=1

a j
p−1

∣∣ν+ j
p−1

〉
, (12)

Epp−1|ν〉 =
p−1∑

j=1

bj
p−1

∣∣ν− j
p−1

〉
, (13)

where |ν+ j
p−1〉 (|ν− j

p−1〉) is the same ssYT as |ν〉, except that we
have transformed p into p − 1 (p − 1 into p) in the jth row
in |ν〉. As for the coefficients a j

p−1 and bj
p−1, which vanish

in case such transformations are not possible either because
there is no p (p − 1) in the jth row of |ν〉, either because the
resulting tableau is not a proper ssYT, they read [71]

a j
p−1 =

∣∣∣∣∣

∏p
i=1(li,p − l j,p−1)

∏p−2
i=1 (li,p−2 − l j,p−1 − 1)∏

i 	= j (li,p−1 − l j,p−1)
∏

i 	= j (li,p−1 − l j,p−1 − 1)

∣∣∣∣∣

1/2

,

(14)

bj
p−1 =

∣∣∣∣∣

∏p
i=1(li,p − l j,p−1 + 1)

∏p−2
i=1 (li,p−2 − l j,p−1)∏

i 	= j (li,p−1 − l j,p−1)
∏

i 	= j (li,p−1 − l j,p−1 + 1)

∣∣∣∣∣

1/2

,

(15)

where lk,q = mk,q − k, with mk,q the length of the kth row
of the subtableau that remains when we delete all the boxes
containing numbers > q in |ν〉. For instance, for the SU(4)
adjoint irrep α = [4320] for L = 10 and M = 9 (the basis has
then 566 280 elements), we have

(16)

Moreover, from successive applications of the commuta-
tion relations Eq. (3), the generators Epp+ j ( j > 1) are
deduced from the generators Epp+q (q < j) through Epp+ j =
[Epp+1, Ep+1p+ j]. Additionally, by using the Hermitian conju-
gate properties of the matrices representing the operators Ei j ,
i.e., Ei j = E†

ji, one gets the matrix representing H defined in
Eq. (1) in the irrep ᾱ, which corresponds to the SU(N ) irrep
α. The eigenvalues of the matrices are the eigenenergies of H ,
with a multiplicity equal to dα

N .
Finally, it will be useful for our purpose to characterize the

irreps of U(N) or SU(N) by the values of some polynomial
invariant operators, or Casimirs.

Among the Casimirs of U(N) and U(L), the two simplest
ones are the linear and the quadratic one:

I1 =
∑

i

Eii =
∑

σ

F σ,σ , (17)

I2 =
∑

i, j

Ei jE ji = −
∑

σ,μ

F σ,μFμ,σ + M(L + N ), (18)

which commute with all the U(L) generators Ei j and with
the U(N) generators F σ,μ, as a simple consequence of the
commutation rules in Eq. (3) and (5) [69]. From Schur’s
Lemma, on a given irrep α = [α1, α2, . . . , αN ] of U(N), they
take constant values [69], χ (I1) = ∑

i αi = M and χ (I2) =∑
i α

2
i − ∑

j ᾱ j
2 + NM. Note that this is consistent with the

transpose operation to pass from the U(N) irrep α to the U(L)
irrep ᾱ.

The quadratic Casimir of SU(N), which we call C2, is
a quadratic polynomial in the SU(N) (traceless) generators,
and a linear combination of I1 and I2 so that the vanishing
commutation with the SU(N) generators can also be seen as a
simple consequence of the properties of the U(N) invariants.
A natural choice [63] for C2, that we use in some of the plots
of the current paper, is C2 = I2 − I2

1 /N so that the constant
value on an irrep α = [α1, α2, . . . , αN ] of SU(N) is [72]

χ (C2) =
∑

i

α2
i −

∑

j

ᾱ j
2 + NM − M2/N, (19)

which vanishes for the rectangular N-rows SU(N) singlets
irreps.

B. Nagaoka’s theorem

This section summarizes Nagaoka’s theorem [24] and its
extension to SU(N ) [59]. The approach used here has been de-
veloped in [59,60]. Let us consider the subspace with a given
content in colors {Mμ} = {MA, MB, MC, . . . }, where the Mσ

are fixed and such that M = ∑N
σ=1 Mσ = L − 1 (exactly one

hole). Such a subspace, which we can name H{Mμ}
L , contains

many-body states that belong to different SU(N ) irreps α [73],
and from a simple argument based on the Perron-Frobenius
theorem, one can show that the ground state of the Hamilto-
nian H on H{Mμ}

L is, under simple conditions, fully symmetric.
In the limit U → ∞, every site has exactly one fermion apart
from the site with a hole. Thus, the basis states spanning H{Mμ}

L
have the form

|h, {σ }〉 = (−1)h
L∏

j 	=h, j=1

c†
j,σ j

|0〉, (20)

where |0〉 is the vacuum (no-particle) state, {σ } =
{σ1, σ2, . . . , σL} is a color configuration of content {Mμ},
i.e., σ j is the color on site j for j = 1 · · · L, and h is the
location of the hole. The c†

j,σ j
are defined with an arbitrary

(but fixed) ordered sequence on the lattice sites. If the
hopping matrix element is positive ti j > 0—albeit in the case
of bipartite lattices this condition can be relaxed since the sign
can be changed by a gauge transformation on one sublattice
c†

j,σ → −c†
j,σ —the Hamiltonian satisfies a nonpositivity

condition in that all its elements are 0 or −ti j . Additionally,
we suppose that the Hamiltonian satisfies the connectivity
condition, which states that for any two basis elements
|h, {σ }〉 and |h′, {σ ′}〉, there is a positive integer n such that

〈h′, {σ ′}|Hn|h, {σ }〉 	= 0. (21)

It means that any spatial configuration of spins and a hole
within H{Mμ}

L can be converted to any other spatial spins and a
hole configuration via a sequence of hole hoppings. As shown
in [60], one sufficient condition for the connectivity condition
to hold for the SU(N ) FHM is to have a nonseparable [74]
lattice, other than the 
0 graph (i.e., a single hexagon with
an additional vertex—i.e., site—in the center connecting two
opposite vertices) and the polygons (i.e., closed chains with
hoppings between nearest neighbors) with L � 4, with the
additional condition for bipartite lattices that L � N + 2. Note
that Nagaoka’s ferromagnetism in one-dimensional chains
was investigated in [75,76].
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If the connectivity and the nonpositivity conditions are re-
united for H , the Perron-Frobenius theorem is applicable [59],
implying that the lowest-energy state in H{Mμ}

L is unique and
is given by a certain linear combination of all configurations
|h, {σ }〉 with positive coefficients, i.e., the ground state reads

∣∣φ{Mμ}
gs

〉 =
∑

h,σ

αh,{σ }|h, {σ }〉, (22)

with αh,{σ } > 0. This state corresponds to a fully polarized
state, i.e., living in the one row irrep α = [L − 1]. To see
that, one can construct a trial state with equal weight |φt〉 =∑

h,σ |h, {σ }〉 which is by definition fully symmetric. Since we
have 〈φt|φ{Mμ}

gs 〉 > 0, |φ{Mμ}
gs 〉 and |φt〉 are in the same SU(N )

irrep (otherwise their overlap is null) and thus |φ{Mμ}
gs 〉 is fully

polarized.
It is worth noticing that fully polarized states in dif-

ferent sectors H{Mμ}
L can be constructed from the state

|φA
gs〉 ≡ |φ{L−1,0,...,0}

gs 〉, which has flavor A only (i.e., MA =
L − 1, MB = MC = · · · = 0), by successive application of the
operators F σ,μ (for 1 � σ,μ � N).

III. RESULTS AND DISCUSSION

In this paper, we investigate the stability against finite
on-site interaction U and the number of degenerate orbitals
N of Nagaoka’s ferromagnetism in the SU(N ) FHM on var-
ious lattice geometries with periodic boundary conditions. In
particular, for our numerical simulations we consider (unless
otherwise specified) M = L − 1 particles (exactly one hole),
and finite-size clusters that all satisfy the connectivity condi-
tion, which is easily fulfilled for the standard 2D lattices with
hopping between nearest neighbors (provided that L � N + 2
for bipartite lattices). Moreover, we choose a positive hop-
ping amplitude: ∀ 〈i j〉 : ti j ≡ t > 0 (set to 1 in our numerical
simulations). Thus, in the limit U → +∞, the existence of
Nagaoka ferromagnetism is a consequence of the theorem
reviewed above [59,60], and the appearance of the ferromag-
netism at a finite value of U must be addressed numerically.
We used the method explained in Sec. II A to perform ED with
N up to 6 on small clusters, such as the hexagonal, square,
and triangular lattices for L = 10 and 12 sites, as depicted
in Figs. 2(a), 2(c), and 2(e). For larger lattice sizes (e.g., 16
sites), the numerical analysis is restricted to N = 2. To find
out the ground state within the full Hilbert space for various
parameters, we had to consider independently all the possible
irreps so that the symmetry-resolved ED method we employed
was particularly adapted. Some basic information about the
systems we address in this work (size of Hilbert space, lattice
site, maximum dimension of irrep) is summarized in Table I.

A. The effect of the number of degenerate orbitals N
and of the lattice structure

1. Spectrum analysis

To study the effect of the number of degenerate orbitals
N as well as the impact of the coordination number z, i.e.,
the number of nearest neighbors, we start by looking at the
complete spectrum of various cluster geometry lattices. In
Figs. 2(b), 2(d), and 2(f), we present Eα

gs, i.e., the lowest

FIG. 2. Panels (a), (c), and (e) show sketches of 10-site clusters
of the hexagonal, square, and triangular lattices, respectively. The
lowest energy Eα

gs of the SU(N) FHM (with ti j = 1 ∀〈i, j〉) for each
irrep α of SU(4), for M = L − 1 fermions, for the hexagonal, square,
and triangular lattice, is plotted in panels (b), (d), and (f), respec-
tively. To each energy, we subtract the lowest energy of the fully
symmetric irrep αsym, i.e., E

αsym
gs , which is represented as blue-gray

square dots (= 0). Each irrep of SU(N ) has an edge color code
depending on its number of rows: red for N = 4, blue for N = 3,
green for N = 2. All irreps are shown in the legend in the top left.

energy in each irrep α of SU(4), as a function of U for the
hexagonal, the square, and the triangular lattice, respectively.
For each energy, we withdraw E

αsym
gs , i.e., the lowest energy

of the irrep of fully polarized states αsym = [M], correspond-

TABLE I. Table of the maximum dimension of the matrices to
diagonalize, i.e., Max(d ᾱ

L ), for different lattice sizes and various N
for one hole (i.e., M = L − 1) compared with the dimensions of the
full Hilbert space, i.e.,

∑
M DM,N

L = 2NL .

SU(N ) L 2NL ≈ Max(d ᾱ
L ) =

2 10 10 × 105 2.7720 × 104

2 12 1.7 × 107 3.39768 × 105

2 16 4.3 × 109 56.632576 × 106

3 10 1.1 × 109 3.04920 × 105

3 13 5.5 × 1011 44.660616 × 106

4 10 1.1 × 1010 5.66280 × 105

4 12 2.8 × 1014 152.252100 × 106

5 10 1.1 × 1015 8.49420 × 105

6 10 1.2 × 1018 7.50750 × 105
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FIG. 3. Ground-state energy Eα
gs − MU/2 of the SU(N) FHM (with ti j = t = 1 ∀〈i, j〉) vs the quadratic Casimir C2 of all the irreps α of

SU(2), SU(3), and SU(4) from left to right for the 10-site hexagonal (a), square (b), and triangular lattice (c), respectively. The lines are a
guide to the eye corresponding to Eq. (26). The critical values in the legend are rounded to the nearest integer and are depicted in black.

ing to an M-boxes single column ᾱsym = [1, 1, . . . , ᾱM = 1].
With this shift, the lowest energies of αsym are obviously equal
to zero. They are represented as blue-gray square dots with
black edges in Figs. 2(b), 2(d), and 2(f). It is worth remember-
ing that by looking at SU(4), we study as well the symmetry
sector N < 4, since for N < N ′ all the irreps contained in
SU(N ) are also contained in SU(N ′). As a consequence, each
irrep can be associated with a symmetry sector N correspond-
ing directly to its number of rows. To highlight the different
cases, in Fig. 2 we choose a color code for each N . The irreps
with four rows have red edges, those with three rows have
blue edges, and those with two rows have green edges. The
respective irreps are shown in the legend.

In Fig. 2, we indicate by color lines—with a color code
matching the one used for the irreps of N—the on-site in-
teraction U where the ground state starts to be in the irrep
αsym. This provides a critical Uc that locates the transition
to a Nagaoka transition, for which the ground state becomes
ferromagnetic. For the hexagonal [Fig. 2(b)] and the square
lattice [Fig. 2(d)], we see that Uc increases with N . For the
triangular lattice [Fig. 2(f)], Uc increases between N = 2 and
3, but it seems to become independent of N for N > 3. Indeed,
in this case we observe that the lowest energies for U < Uc

belong to an irrep of SU(3).

This tendency can be understood from the properties of
the SU(N ) group. For N < N ′, by definition, all the SU(N )
irreps are also SU(N ′) irreps. Importantly, we note then that
the most symmetric irrep is contained in all N . This implies
that when one finds an irrep with an energy lower than the
minimal one in αsym for SU(N ) (for a given U � Uc), it is
also true for SU(N ′). As a consequence, Uc(N ) � Uc(N ′). The
ferromagnetic phase can thus only appear for a higher (or
equal) value of U when N increases.

For completeness, in Fig. 3 we present the results of the
minimal energies Eα

gs − MU/2 as a function of the quadratic
Casimir C2 of all the irreps of SU(2), SU(3), and SU(4) from
left to right for the 10-site cluster hexagonal [Fig. 3(a)], square
[Fig. 3(b)], and triangular lattice [Fig. 3(c)]. For clarity, the
irreps of two rows (N = 2) are represented by circle dots,
those of three rows (N = 3) by triangle dots, and those of
four rows (N = 4) by diamond dots with color edges matching
the previous color code. The critical values in the legend are
rounded to the nearest integer and are depicted in black.

When N = 2, for the square (b) and the triangle (c) in
Fig. 3, in the vicinity of the transition, the curve flattens,
indicating possible near degeneracy of all spin states, as ob-
served in larger lattices in [30]. In contrast, this is not the
case for the hexagonal lattice (c), where only two irreps have
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FIG. 4. (a) Normalized difference between the global ground-state energy of the SU(N) FHM, i.e., Egs and E
αsym
gs , i.e., the lowest energy

of the fully symmetric irrep αsym = [L − 1] as a function of U for the L = 10 square lattice and various N . (b) Average occupation number,
rescaled by its maximal value (at U = 20) dmax, of the ground state as a function of U . This quantity goes to zero at the transition, in agreement
with (a). (c) Extracted critical Uc from (a) vs N . The lines are best fits of the form aN + b.

the same energy, reducing the degeneracy. Above the critical
value Uc, we see that the global minimal energy is given by
E

αsym
gs − MU/2 = −zt [cf. Eq. (26)] indicating a ferromag-

netic phase. In symmetry sectors of higher energies, we find
a distinctively different behavior of Eα

gs. First, two different
irreps can have the same Casimir C2, leading to strong oscil-
lations in the spectrum. Consequently, the curve is no longer
flat near the critical point. We point out that some irreps still
have the same energy at Uc. Lastly, we confirm that for the
triangular lattice, as seen in Fig. 4, Uc is independent of N for
N � 3, since the irrep with the lowest energy always belongs
to SU(3).

2. Location of the transition

Now, to locate precisely the transition, in Fig. 4(a) we show
the difference between the global ground-state energy Egs ≡
minα{Eα

gs} and the lowest energy of αsym as a function of U for
different N (cf. the color code) for the 10-site square lattice.
When this indicator nullifies, the ground state belongs to the
fully symmetrized irrep, and there is thus ferromagnetism in
the system. In an experimental setup, however, the complete
spectrum is often inaccessible. It is easier to target appropriate
observables. An interesting quantity to look at is the double
occupation on sites. Since Nagaoka’s ferromagnetism appears
in the sector without double occupation, we naturally expect
this indicator to become null in the ferromagnetic phase. We
define the average occupation number as

d = 1

L

L∑

i=1

E2
ii − M

L
. (23)

In Fig. 4(b), we show the expectation value of 〈d〉 (rescaled
by its maximum value dmax) taken in the ground state of a
10-site square lattice as a function of U . We see that at the
critical Uc this quantity becomes zero, in complete agreement
with Fig. 4(a). Figure 4(c) summarizes our main results by
showing Uc as a function of N for different lattice geometries.
The dashed lines are the best fit of the forms aN + b and are a
guide to the eye.

3. Influence of the lattice structure:
Analysis at U = 0 and U = +∞

From Figs. 2 and 4, we further find that Uc strongly de-
pends on the lattice structure. Precisely, we observe that Uc

decreases with an increasing coordination number z. For in-
stance, for N = 3, the critical Uc ≈ 170 for the hexagonal
lattice (z = 3), Uc ≈ 55 for the square (z = 4), and Uc ≈ 34
(z = 6) for the triangular lattice. We can rationalize this ob-
servation by considering the Hamiltonian in both limits U = 0
and U → ∞.

At U = 0, the Hamiltonian solely contains a linear expres-
sion in the hopping terms and is diagonalizable in Fourier
space. It reads

H =
∑

k j

ε(k j )Ẽk j k j , (24)

where ε(k j ) is the dispersion relation: The allowed wave
vectors k j are determined by the lattice, and we order them
by ascending energies, i.e., ε(ki ) � ε(k j ) for 1 � i < j � L.
The operators Ẽk j ki are the hopping terms from the mode ki

to the mode k j , and they can be seen as some rotated U(L)
generators, which also satisfy the commutation relation in
Eq. (3).

We denote the eigenstates as |nk〉 ≡ |nk1 nk2 · · · nkL 〉, where
nkj is the number of modes (�N) with a specific wave vector
k j . From this representation, one can readily obtain Eα

gs, i.e.,
the lowest energy in each irrep α by filling the associated
YD of the irrep with the different modes k. In this scenario,
the length of each row of the shape ᾱ indicates the nkj

( j = 1, . . . , L). Then, the energy for U = 0 can be simply
written as

Eα
gs(U = 0) =

L∑

j

ᾱ jε(k j ). (25)

Figure 5 shows the lowest energy of the SU(N) FHM with
U = 0 for each SU(5) irrep for L = 9 sites for a closed chain
(a), a square lattice (b), and a triangular lattice (c). An example
of the construction related to Eq. (25) is shown in (a). In
Figs. 5(d), 5(e), and 5(f), we show the spectrum for a larger
cluster size of 36 sites.
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FIG. 5. Lowest energy of the SU(N) FHM (with ti j = 1 and U = 0) for each SU(5) irrep as a function of the Casimir C2 for a closed chain
(a),(d), a square lattice (b),(e), and a triangular lattice (c),(f), for L = 9 and L = 36 sites, respectively. In (a) we illustrate the construction of
Eq. (25) in order to find the minimal energy in each irrep. Dashed lines indicate the energy Eq. (26).

It is worth noticing that for the fully symmetric irrep αsym,
the calculations are simple. Since ᾱsym = [1, 1, . . . , ᾱM = 1],
one has E

αsym
gs = ∑M

j ε(k j ), which gives for M = L − 1

E
αsym
gs (U = 0) = −zt = E

αsym
gs − MU/2. (26)

The first equality can be shown by recalling that this is equal
to the lowest energy of the subspace with color A only (i.e.,
such that MA = L − 1, MB = MC = · · · = 0). Then, there is
no double occupancy. The L-dimensional basis [cf. Eq. (20)]
is just in one-to-one correspondence with {h}, the L possible
locations of the hole, so that we end up with a simple tight-
binding model on a regular lattice for which the ground-state
eigenvector |φA

gs〉 is (1/
√

L)(1, 1, . . . , 1)T , with eigenenergy
given by (26). Secondly, since there is no double occupancy,
E2

ii ≡ Eii (∀i = 1 · · · L), and when we subtract the constant
MU/2 from the eigenenergies of the FHM defined in Eq. (1),
they become independent of U . Consequently, the limit
U → ∞ (or U > 0) and U = 0 are completely equivalent for
the fully symmetric irrep αsym.

Now, following Nagaoka’s theorem, we immediately see
that the global ground-state energy of the FHM, i.e., Egs, also
satisfies Egs − MU/2 = −zt in the limit U → ∞.

Qualitatively, we can now understand the z-dependence of
Uc from the behavior of the kinetic energy of the hole. In
fact, since the energy of the hole is lowered when z increases,
it is more likely that the ground state becomes a Nagaoka
state at a lower U . However, one must also consider how the
energy of all the other irreps changes with U for each lattice.
An estimate can be extracted from a perturbation theory at
small U to determine if the perturbation is z-dependent. In the

rotated basis, we can express the on-site interaction as

W = U

2L

∑

k,l,q

∑

σ,σ ′
c̃†

k,σ
c̃k−q,σ c̃†

l,σ ′ c̃l+q,σ ′ . (27)

The perturbation—in the nondegenerate case—〈n′
k|W |nk〉 de-

pends then solely on the filling numbers nkj (for j = 1 · · · L)
and not on the coordination number. Therefore, we could
expect a similar behavior at small U for each of our lattices. To
corroborate this statement, in Fig. 6, we show the ground-state
energy Egs − MU/2 as a function of U for the hexagonal
(diamond dots), square (square dots), and triangular (triangle
dots) lattices for the two cases N = 3 (a) and N = 4 (b). As a
guide to the eye, we present the energy E

αsym
gs − MU/2, equal

to Eq. (26), as lines with two dots in both extremities. For
U < 1, the ground-state energy grows linearly with U , which
appears comparable for each lattice geometry. To obtain a
better estimate, we perform best fits of the form aU + b,
depicted as black lines, and we first extract a to demonstrate
that it is lattice-independent. While we find that this is the
case for N = 2 (not shown), the situation for N > 2 is more
complex with a slope that changes slightly depending on
the geometry. However, we cannot attribute these differences
to the coordination number. For example, in Fig. 6(a), the
hexagonal and triangular lattice, respectively, with z = 3 and
6, have the same slope. However, the square lattice (z = 4) has
a different one (cf. the legend). As for the b values, they are
similar for the different lattices investigated, and clearly not
monotonic with z.

In this simplified picture, since Egs [given by Eq. (26) at
large U ] decreases with z, and the energy behavior at small U
is comparable for all lattices, we understand that the value of
Uc decreases with an increasing z.
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FIG. 6. Ground-state energy of the SU(N) FHM Egs − MU/2
and that of the fully symmetric irrep αsym equal to Eq. (26) (lines)
as a function of U for the 10-site hexagonal (diamond dots), square
(square dots), and triangular lattice (triangle dots) for N = 3 (a) and
N = 4 (b). The black lines are best fits of the form aU + b.

B. The effect of the range of the hopping

Interestingly, an extension of Nagaoka’s ferromagnetism
exists in the SU(2) FHM with long-range (LR) hopping.
It states that in a homogeneous long-range (HLR) hopping
model with exactly one hole, the ground states are fully po-
larized states for any U > 0 [26].

Is it also true for N > 2? To understand the robustness of
SU(N) Nagaoka’s ferromagnetism in the presence of LR hop-
pings, we consider a chain of fermions with periodic boundary
conditions and with hopping amplitudes of the form ti j =
1/d (i, j)β , where d (i, j) = |i − j| represents the distance be-
tween sites i and j. An example is depicted in Fig. 7(a).

On the one hand, the case β = 0 corresponds to HLR
hopping. In this case, we know from the analytical result
developed in [26] that the ferromagnetism appears at any
U > 0 for N = 2. In a simplified picture, increasing the range
of hopping can also be seen as increasing the coordination
number, so that for general N , Eq. (26) might become

E
αsym
gs − MU/2 = −z̃t, (28)

where z̃ = ∑L
j=1, j 	=i0

z/d (i0, j)β , with i0 an arbitrary site of
reference. This hypothesis is confirmed in Fig. 7(a). Addi-
tionally, one can show that this energy is equal to the global
minimal energy Egs at U = 0 [via Eq. (25)]—which is often
degenerate. Then it appears that a finite U perturbation is
sufficient to increase the energy of every irrep except the fully
polarized one since the latter remains unchanged by a one-site
interaction perturbation. Consequently, at β = 0 and for all N ,
the ground states are fully polarized for any finite U > 0.

FIG. 7. Sketch of the chain with long-range hopping and Eq. (28) (black line) compared to numerical values (red dots). (b) Critical Uc as
a function of β for a chain of L = 9 sites for various N . For U > Uc the phase is ferromagnetic. The inset shows a semilogarithmic scale Uc at
larger β for N = 2. (c) Uc vs N for different system size L for β = 0.5. (d) Difference between Uc (N = 2) and Uc (N = 3) (triangle dots), and
difference between Uc (N = 4) and Uc (N = 3) (square dots) as a function of β for L = 7. (e) Finite-size analysis for N = 2, 3 for β = 0.25,
0.5, and 1. We show Uc as a function of 1/L. The dashed lines are best fits of the form a/L2 + b/L + c.
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On the other hand, the case β → ∞ corresponds to a
closed chain with nearest-neighbor hopping, i.e., the usual
short-range (SR) hopping. In this limit, we know from the
Lieb-Mattis theorem that for one-dimensional systems, ferro-
magnetism can never occur [11].

Moreover, by varying the range of hopping, i.e., β, we can
study the robustness of the ferromagnetic phase. In Fig. 7(b),
we show the phase diagram of the closed chain with LR
hopping as a function of the exponent β and various N for
L = 9. The dots correspond to the critical Uc, which indicates
the appearance of Nagaoka’s ferromagnetism for U > Uc. We
find that the boundary indicating the appearance of the ferro-
magnetic phase does not depend on N when N � 3. While in
(b) the situation at low β is unclear, we show that a difference
still persists between Uc (N = 2) and Uc (N � 3) in Fig. 7(d)
for L = 7. Furthermore, we observe that the critical value
increases rapidly with β. The inset of Fig. 7(b) shows (in
a y-logarithmic scale) Uc for β up to 10. Crucially, we see
that at β → ∞, Uc → ∞, in agreement with the Lieb-Mattis
theorem. These results suggest that a finite all-to-all hopping
could be sufficient to observe a ferromagnetic phase at a
finite U . To corroborate the independence of Uc with N � 3,
Fig. 7(c) shows Uc as a function of N for different sizes of the
chain for β = 0.5. Lastly, Fig. 7(e) shows a finite-size analysis
of Uc for N = 2 and 3 for β = 0.25, 0.5, and 1. We present
Uc as a function of 1/L, and we perform best fits of the form
a/L2 + b/L + c. We find that in the limit L → ∞, the critical
value is finite and increases quickly with β. However, we point
out that the system sizes considered are too small to have an
accurate value for the limit of Uc at L → ∞. At most we can
give an approximate range: for instance, Uc(+∞) ≈ 16 ± 9
for N = 3 and β = 0.5.

C. Stability of the SU(N) Nagaoka states
in the thermodynamic limit

We comment now on the stability of the ferromagnetic
phase in the thermodynamic limit. In Fig. 8, we show the
scaling of Uc versus 1/L for N = 2 and 3 for a square lattice.
We see that Uc increases with the system sizes. We performed
best fits of the form a/L + b (lines) to highlight the general
trend. From our finite-size data, the critical Uc(L → ∞) re-
mains finite: Uc ∼ 100 for N = 2 and Uc ∼ 140 for N = 3.
Nevertheless, with the limited finite-size data accessible here
(as well as the goodness of the fit) one cannot exclude another
trend either, or even a critical Uc → ∞ in the thermody-
namic limit. For general N , addressing this difficult question
clearly requires complementary numerical results based, for
instance, on approximate schemes [such as, e.g., density ma-
trix renormalization groups (DMRGs) [18,21,22,77]], which
are beyond the scope of our manuscript. Note that in the
large-U limit, finite-temperature strong-coupling expansion is
an alternative way to reveal the Nagaoka ferromagnetism of
the SU(N) FHM in the thermodynamic limit [78].

D. Stability of the SU(N) Nagaoka states against more holes

Hitherto, we have only focused on the strict constraint
behind Nagaoka’s ferromagnetism to have a single hole. How-
ever, a more general situation in which hole density varies
is also relevant. In this section, we propose to study the

FIG. 8. Uc vs 1/L for N = 2 and 3 for a square lattice with SR
hopping. The lines are best fits of the form a/L + b. Note that the
lattice unit vectors for the L = 12 site square cluster that we have
used are t1 = (1, 3) and t2 = (4, 0). For the other square clusters of
size L = 8, 10, 9, 13, 16 = n2 + m2 with n and m integers, they are
t1 = (n, m) and t2 = (m,−n).

robustness of the ferromagnetic phase when the number of
holes (Nh) exceeds one. It is convenient to note that choosing
an integer number of holes is trivial with our exact diago-
nalization method since it amounts to having YD containing
M = L − Nh boxes.

For instance, we consider the situation with two holes, and
we restrict the study to the case N = 2. This case is actually
sufficient to conclude for all N > 2. For N = 2, we find that
the ground state is never fully polarized for all the different
two-dimensional lattices considered (hexagonal, square, tri-
angular) as shown in Fig. 9. The ground states often belong
to the singlet sector, i.e., with a total spin equal to zero.
The absence of ferromagnetism is immediately extendable to
N > 2, since all the SU(2) irreps are also SU(N ) irreps. It
means that having an irrep of SU(2) containing a lower energy
than the energy in αsym remains correct for any N > 2. These
results extended previous ED results obtained for U → ∞
[79]. Here, we have thus corroborated the absence of ferro-

FIG. 9. Lowest energies (shifted by −MU/2) of each SU(2)
irreps as a function of U (log scale), for L = 12 sites, on the square
lattice (a) and the triangular lattice (b) for Nh = 2 holes [cf. legend
panel (a) for the irreps of L = 12]. The behavior is similar for the
hexagonal lattice (not shown). The inset shows the case L = 16 on a
square lattice for U = 105.
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magnetism for Nh = 2 in several two-dimensional systems for
L � 12, any U � 105, and any N � 2. Note that since the
energies in Fig. 9 reach a plateau for large U , one can safely
generalize the previous statement for all U > 0. Additionally,
we show [inset panel (a)] that on a square lattice of L = 16
sites, the ferromagnetism is absent at least up to U � 105.

For other densities of holes (i.e., Nh > 2), the situation can
become rapidly more complex. The model for N = 2 might
accommodate ferromagnetism even in the thermodynamic
limit [79].

Finally, it is worth noticing that even for a ground state
living in the singlet sector, certain types of magnetism can
happen. For instance, antiferromagnetism, paramagnetism, as
well as low-spin coupled ferromagnetic domains could also
correspond to S = 0. A recent study [80] has notably high-
lighted the presence of ferromagnetic domains when Nh > 1
in the SU(2) FHM.

IV. CONCLUSION

In this work, we have studied the presence of the ferromag-
netic phase in the SU(N ) Fermi-Hubbard model on several
finite-size clusters geometries for one hole away from filling
1/N . To do so, we have used an exact diagonalization method
recently developed in [63].

First, we demonstrated that the appearance of the ferro-
magnetic phase arises for a positive on-site interaction U

larger than a finite Uc. We exhibited the fact that Uc strongly
depends on the coordination number z and the number of
degenerate orbitals N . While the dependency with N can be
directly traced back to some properties of the SU(N ) group,
the lattice dependency can be apprehended in a free-fermion
hopping model framework. In this simplified picture, the ki-
netic energy of a hole tends to be lowered with an increasing
z, leading to a lower value of Uc.

Interestingly, we extend this study to a long-range hopping
framework, where the fermionic hopping can now take place
between arbitrary distant lattice sites on a chain. We motivated
this picture with a hopping term suited to easily vary its range
and/or strength. By doing so, we established a general picture
of the robustness of Nagaoka’s ferromagnetism due to z.

Finally, we showed that having two holes leads to a com-
plete loss of the ferromagnetic phase.

Among the perspectives, one could try to address larger
systems for the SU(N) FHM to be able to extrapolate
accurately the value of the critical interaction Uc in the ther-
modynamic limit. However difficult, such a problem could be
addressed by using tensor networks/DMRG algorithms with
the full SU(N) symmetry, in a fashion similar to what was
done for the Heisenberg SU(N) models [81–84].
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