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Dynamical defects in a two-dimensional Wigner crystal: Self-doping and kinetic magnetism
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We study the quantum dynamics of interstitials and vacancies in a two-dimensional Wigner crystal (WC)
using a semiclassical instanton method that is asymptotically exact at low density, i.e., in the rs → ∞ limit.
The dynamics of these point defects mediates magnetism with much higher-energy scales than the exchange
energies of the pure WC. Via exact diagonalization of the derived effective Hamiltonians in the single-defect
sectors, we find the dynamical corrections to the defect energies. The resulting expression for the interstitial
energy extrapolates to 0 at rs = rmit ≈ 70 (at rs ≈ 30 for a vacancy), suggestive of a self-doping instability to a
partially melted WC for some range of rs below rmit. We thus propose a “metallic electron crystal” phase of the
two-dimensional electron gas at intermediate densities between a low-density insulating WC and a high-density
Fermi fluid.
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I. INTRODUCTION

Despite its prime importance in the field of condensed mat-
ter physics, some basic aspects remain unsettled concerning
the physics of the two-dimensional electron gas (2DEG) at
intermediate densities where various forms of “strongly cor-
related electron fluids” can arise. The ideal 2DEG is governed
by the simple Hamiltonian

H =
∑

i

p 2
i

2m
+

∑
i< j

e2

4πε

1

|ri − r j | , (1)

with a single dimensionless parameter, rs = a0/aB, charac-
terizing the ratio of the typical interaction strength to the
kinetic energy. Here, a0 = 1/

√
πn is the average interparticle

distance, n is the electron density, and aB = 4πε h̄2/me2 is the
effective Bohr radius. The phases of the 2DEG in the weak
and strong coupling limits are well understood: it forms a
paramagnetic Fermi liquid (FL) for small rs (weak coupling)
and a Wigner crystal (WC) for large rs (strong coupling) [1].
The present study addresses the intermediate coupling regime
near the quantum metal-insulator transition (MIT). Landmark
numerical studies suggested that the MIT occurs as a direct
transition from a Fermi liquid to an insulating WC at rs =
r∗

melt ≈ 31 [2–4]. However, recent experiments [5–8] suggest
that the actual transition may be more complex.

Apart from the charge ordering, there is another subtle
issue regarding the magnetism. In the FL regime, the para-
magnetic state seems to be most favored [4]. Deep within
the WC phase, the magnetism is determined by various
ring-exchange processes. The exchange coefficients can be
calculated using the semiclassical instanton approximation
[9–13], the validity of which has been well tested by a nu-
merically exact path integral Monte Carlo calculation [14].

*Corresponding author: kyungsu@stanford.edu

These calculations imply that the WC is a ferromagnet for
large enough rs > rwc

F ≈ 175 [14] and a (highly frustrated)
antiferromagnet [11] below rwc

F (Fig. 1). However, the pre-
dicted energy scale for the ring-exchange processes are too
small to account for the typical magnetic energy scale of the
insulating phases observed in the large rs regime of various
2DEG systems [5,7,8]. This prompted some of the present
authors to propose a kinetic mechanism that accounts for
higher-temperature magnetism in such a phase mediated by
interstitial hopping processes [15,16].

In the present paper, using a semiclassical instanton ap-
proximation, we carry out a comprehensive study of the
quantum dynamics of an interstitial and a vacancy (Fig. 2),
two point defects of a WC with the smallest classical cre-
ation energies [17–19]. We first review the formulation of the
standard instanton technique and apply it to derive effective
Hamiltonians describing various exchange and defect hopping
processes illustrated in Fig. 4 (Sec. II). In Sec. III, we calculate
the energy of an interstitial and a vacancy via finite-size exact
diagonalization of the derived effective Hamiltonians. We find
that the resulting expression for the interstitial energy, when
evaluated at large but finite rs, vanishes around rs = rmit ≈
70, signaling a possible self-doping instability to a partially
melted WC below rmit. From this, we propose the existence
of a metallic electron crystal (MeC) phase as an interme-
diate phase of the 2DEG (Sec. IV). In Sec. V, we discuss
the magnetic correlations induced by interstitial and vacancy
hopping processes. Such kinetic processes induce magnetism
with much higher-energy scales than the ring-exchange pro-
cesses of the pure WC; this could be experimentally probed
by controlled doping of a WC that is commensurately locked
to a weak periodic substrate potential. Our principal results
are summarized in Fig. 1. We conclude with a remark on the
fate of the phase diagram in the presence of weak quenched
disorder in Sec. VI.
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FIG. 1. Conjectured T = 0 phases of a clean 2DEG as a function
of 1/rs ∝ √

n: WC (Ferro) = fully polarized ferromagnetic WC; WC
(Antiferro) = WC with some form of antiferromagnetism (or a spin
liquid phase); Metallic electron crystal (MeC) = metallic electron
crystal characterized by more than one electron per crystalline unit
cell (in contrast to the WC, which has exactly one electron per unit
cell); FL (Para) = paramagnetic Fermi liquid. The phase transition at
rwc

F ≈ 175 [14] is due to the change of dominant exchange interac-
tions from ferromagnetic to antiferromagnetic and is likely to be first
order. rmit ≈ 70 indicates the “true” metal-insulator transition due to
interstitial self-doping proposed in this paper, and is distinct from
rmelt below which the crystalline order vanishes. rmelt is expected to
be smaller than the value for a direct FL–WC transition from quan-
tum Monte Carlo calculations, r∗

melt ≈ 31 [4], due to the existence of
the intermediate MeC phase. (Additional microemulsion phases may
be expected [20] as well, especially for rs ∼ r∗

melt.) See Sec. IV for a
detailed discussion of the conjectured phase diagram.

II. THE SEMICLASSICAL APPROXIMATION

We first review the standard semiclassical instanton
method as applied to the ideal 2DEG (1) in the large

FIG. 2. (a) A classical centered interstitial and (b) a vacancy
configuration. Small black arrows are drawn to indicate the positions
of the interstitial [panel (a)] and the vacancy [left panel of (b)]. The
vacancy configuration has D2 symmetry, and not the full D6 sym-
metry of the underlying WC; therefore, a vacancy has three possible
orientations α. We introduce a pictorial notation for the vacancy for
later convenience.

FIG. 3. An example of a multi-instanton configuration for the
double well potential shown in the inset. The “size” of each instanton
in imaginary time is ∼1/h̄ω0 and the “distance” between them is
∼1/�.

rs limit. The exact partition function of the (fermionic)
2DEG is

Z =
∫

d2N r0

∑
P∈SN

(−1)P

N!

∑
σ

〈Pr0, Pσ|e−βH |r0, σ〉, (2)

〈Pr0, Pσ|e−βH |r0, σ〉 = δσ,Pσ〈Pr0|e−βH |r0〉, (3)

〈r′
0|e−βH |r0〉 =

∫ r̃(β̃ )=r̃′
0

r̃(0)=r̃0

Dr̃(τ )e−√
rsS, (4)

S =
∫ β̃

0
dτ

[
1

2

(
d r̃
dτ

)2

+ V (r̃) − V0

]
, (5)

V (r) ≡
∑
i< j

1

|ri − r j | , (6)

where r(τ ) ≡ {ri(τ )} are the positions of N electrons in
imaginary time, r0 ≡ {ri(τ = 0)} are their initial positions,
σ ≡ {σi =↑,↓} are their respective spin indices, and β =
1/kBT is the inverse temperature. The sum over N! per-
mutations, P, of the coordinates and the sign factor (−1)P

encode the fermionic exchange statistics. For bosonic parti-
cles, one should merely substitute (−1)P → +1. The 2DEG
Hamiltonian (1) does not act on the electron spins, hence the
δσ,Pσ factor in the second line above. The third and fourth
lines are the path integral representation of the N-electron
propagator. The action is rescaled to make the rs dependence
manifest by introducing dimensionless coordinates, r̃ ≡ r/a0,
and dimensionless imaginary time τ . Correspondingly, β̃ ≡
βE∗ is a dimensionless inverse temperature, where E∗ ≡
e2/(4πεaBr3/2

s ). The path integral measure is also defined as
an integration over the dimensionless coordinate r̃(τ ). The
minimum potential energy V0 = minr̃V (r̃) is subtracted for
later convenience [21]. The Coulomb interaction (last line)
is computed numerically using the standard Ewald method.
As usual, the presence of a uniform neutralizing positively
charged background is assumed. Henceforth, we will drop
tildes from the rescaled coordinates to simplify notation: r̃ →
r. We focus on the zero-temperature phase of the problem, and
hence will always take β → ∞ in the end.

We approach this problem using a semiclassical instan-
ton approximation, which is asymptotically exact in the
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FIG. 4. Tunneling processes considered in this paper. (a) WC exchange processes. (b) Exchange processes involving an interstitial.
(c) Interstitial hopping processes. (d) Exchange processes involving a vacancy. (e) Vacancy hopping processes. In (b) and (c), black arrows
indicate the positions of interstitials. In (e), a black (cyan) oval denotes an initial (final) vacancy configuration corresponding to each vacancy
hopping process. t11, t12, t22, t23 exhaust all the nearest-neighbor-vacancy hopping processes; others are related to one of these by symmetry.
Panels (a)–(c) are adapted from Ref. [15].

rs → ∞ (strong coupling) limit. In Sec. II A, we briefly re-
view the semiclassical derivation of ring-exchange processes
in the WC. In Secs. II B and II C, we consider tunneling
processes involving a single interstitial and vacancy, respec-
tively, and derive the corresponding effective Hamiltonians
describing their dynamics. The application of the semiclassics
to a bosonic system is addressed in Sec. II D.

A. Wigner crystal ring-exchange processes

In the rs → ∞ limit, the classical ground-state manifold
consists of a triangular lattice WC with 2N -fold degeneracy
in spin states. The lifting of this degeneracy and the nature
of the resulting magnetic order is determined for 1 � rs <

∞ by WC ring-exchange processes. Various ring-exchange
processes correspond to distinct instanton solutions of the
action and can be calculated via the dilute instanton approx-
imation [9–13,15,22], which we briefly review below. (See
Refs. [12,13] for more details.) The result is an effective
spin Hamiltonian expressed as a sum over all ring-exchange
processes,

Hwc
eff = −

∑
a

(−1)Pa Ja
(
P̂a + P̂−1

a

)
, (7)

where the semiclassical calculation gives a leading-order large
rs asymptotic expression for Ja. Here, P̂a is the permutation
operator corresponding to the permutation Pa, and can be

decomposed as a product of two-particle exchange operators.
The two-particle exchange operators, in turn, can be written
in terms of spin operators as P̂(i, j) = 2(�Si · �S j + 1

4 ).
To illustrate how this works, recall the familiar problem

of the semiclassical calculation of the tunnel splitting in a
symmetric double-well potential [23–25]. For large enough
β such that β h̄ω0 � 1, the excited states in each well can
be neglected. (Here, ω0 is the oscillation frequency in either
well.) In this limit, we obtain asymptotic relations

〈r0|e−βH |r0〉 ∼ |ψ (r0)|2e−βE0 cosh(β�), (8)

〈−r0|e−βH |r0〉 ∼ |ψ (r0)|2e−βE0 sinh(β�), (9)

where the minima of the two wells are at ±r0, |ψ (r0)|2 =
|ψ (−r0)|2 is the probability density of the wave function at
these positions, and E0 and 2� are, respectively, the mean en-
ergy and the splitting between the even and odd parity ground
states. The right-hand side of each expression is obtained by
inserting the resolution of the identity on the left-hand side.

In viewing this same problem from the path integral
perspective in the semiclassical limit, one first solves for
the instanton path—the smallest action path that begins at the
bottom of one well and ends at the bottom of the other. The
net duration (in imaginary time) of this tunneling event is of
order ω−1

0 . We then sum over multiple such instanton events
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to obtain an expression of the same form as above, where the
diagonal (off-diagonal) propagator in Eq. 8 [Eq. (9)] contains
all the terms with an even (odd) number of events. Expanding
these expressions in power series, one sees that the typical
number of tunneling events is ∼β� and the mean imaginary
time interval between them is of order h̄/�. Note that in
the semiclassical limit h̄/� � ω−1

0 , the instantons are dilute
and hence effectively noninteracting (see Fig. 3). Looked at
another way, for a range of temperature such that h̄ω0 � T �
�, where multiple instanton events can be neglected, we can
compute � as

� = β−1 〈−r0|e−βH |r0〉|1-inst

〈r0|e−βH |r0〉|0-inst
, (10)

where the subscripts designate the number of instanton events.
The analysis is somewhat more complicated but struc-

turally similar for the present problem. Consider the propa-
gator 〈Par0|e−βH |r0〉 where r0 is an initial WC configuration
and Pa is the permutation corresponding to a particular ring-
exchange process [see Fig. 4(a)]. In the semiclassical (large rs)
limit, this propagator is again expressible as a weighted sum
over multi-instanton contributions. For temperatures such as
h̄� � T � Ja, where Ja is the tunnel splitting correspond-
ing to the process Pa, the propagator is dominated (up to
symmetry) by a single “a” instanton contribution associated
with the path r(a)(τ ) with the smallest action subject to the
boundary conditions r(a)(0) = r0 and r(a)(β̃ ) = Par0. Here,
h̄�/2 ∼ r−3/2

s is the zero-point energy of the WC, while Ja is
exponentially small in

√
rs at large rs. The single-a-instanton

contribution to the propagator can be expressed as

〈Par0|e−βH |r0〉|a,1-inst

≈ e−√
rsSa

∫ δr(β̃ )=0

δr(0)=0
Dδr(τ ) e− 1

2

√
rs

∫ β̃

0 δr(τ )T M̂(a) (τ )δr(τ )

= e−√
rsSa (det[

√
rs M̂(a)(τ )])−1/2, (11)

M̂ (a)
i j (τ ) ≡ δ2S

δr (a)
i (τ ) δr (a)

j (τ )
= −δi j

∂2

∂τ 2
+ ∂i∂ jV [r(a)(τ )],

(12)

where Sa ≡ S[r(a)(τ )] with the trajectory r(a)(τ ) satisfying
δS[r(a)(τ )] = 0, and δr(τ ) ≡ r(τ ) − r(a)(τ ) is the fluctuation
coordinate. Fluctuations are treated within a harmonic ap-
proximation around the semiclassical path. In Eq. (12), the
derivative ∂i is with respect to the normalized coordinates.
Note that M̂(a) has a zero-eigenvalue solution ṙ(a)(τ ) corre-
sponding to the translation in imaginary time, which has to
be treated with care [12,13,23–25]. Separating the zero-mode
contribution from the full determinant, one obtains

〈Par0|e−βH |r0〉|a,1-inst

= β
e2

4πεaBr3/2
s

√
Sa

2π
· e−√

rsSa (det′[
√

rs M̂(a)(τ )])−
1
2 ,

(13)

where the prime denotes that the zero eigenvalue must be
omitted in the calculation of the determinant. Note that since
an instanton is a localized object with a characteristic size

�τ ∼ �−1, one can neglect the exponentially small correction
from its tail provided β h̄� � 1.

On the other hand, the diagonal propagator in the zero
instanton sector 〈r0|e−βH |r0〉|0-inst can be obtained by making
a harmonic approximation of V around r0,

〈r0|e−βH |r0〉|0-inst ≈ (det[
√

rs M̂(0)(τ )])−
1
2 , (14)

M̂ (0)(τ ) ≡ −δi j
∂2

∂τ 2
+ ∂i∂ jV (r0). (15)

Normalizing the propagator in the one instanton sector by that
in the zero instanton sector, as in Eq. (10), one obtains

Ja = β−1 〈Par0|e−βH |r0〉|a,1-inst

〈r0|e−βH |r0〉|0-inst

= e2

4πεaB
· Aa

r5/4
s

√
Sa

2π
e−√

rsSa > 0, (16)

Aa =
[

det′
( − ∂2

τ + V ′′[r(a)(τ )]
)

det
( − ∂2

τ + V ′′(r0)
)

]− 1
2

, (17)

where Aa is called a “fluctuation determinant,” calculated in
the normalized coordinates with rs = 1, and the β → ∞ limit
is implicitly taken in the end. In the second line, the extra
factor of r1/4

s comes from the normalization of the determinant

(
det′[

√
rs M̂(a)(τ )]

det[
√

rs M̂(0)(τ )]

)− 1
2

= r1/4
s

(
det′[M̂(a)(τ )]

det[M̂(0)(τ )]

)− 1
2

.

Hence, Aa (17) (and also Sa) are dimensionless numbers with
no rs dependence. In Eq. (17), V ′′ denotes the Hessian matrix
of V . We refer readers to Appendix for the details of the
numerical calculation of Sa and Aa. For the ring-exchange
processes illustrated in Fig. 4(a), we quote the results for Sa

and Aa from Ref. [13]: S2 = 1.64, A2 = 1.30; S3 = 1.53, A3 =
1.10; S4 = 1.66, A4 = 1.24; S5 = 1.91, A5 = 1.57; S6 = 1.78,
A6 = 1.45. Our calculations, and those of Ref. [12], agree
with these values. The resulting exchange coefficients cal-
culated from the semiclassical expression (16) are shown in
Fig. 5.

The remaining issue concerns the sign factor (−1)Pa that
enters Hwc

eff in Eq. (7), which is due to the antisymmetry
of the many-body electronic wave function (see Chap. V of
Ref. [10] for an explanation). As recognized by Thouless
[22], this implies that a ring-exchange process involving an
even (odd) number of electrons mediates an antiferromagnetic
(ferromagnetic) interaction.

B. Processes involving a single interstitial

Tunneling processes involving a single centered interstitial
(CI) defect [Fig. 2(a)] were first considered in Ref. [15]. We
correct and refine the results obtained there: (1) The sign
error in the correlated hopping terms t2 and t ′

2 in Eq. (4)
of Ref. [15] is corrected in Eq. (18); (2) We improve the
estimate of the classical action (which is done by solving the
classical equations of motion for a finite-sized system with
periodic boundary conditions) using a hexagonal, instead of a
rectangular, supercell with 12 × 12 + 1 electrons; and (3) We
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FIG. 5. Exchange coefficients of the pure WC (in units of the
Hartree energy e2/4πεaB) as a function of rs, calculated from the
semiclassical expression (16). The processes corresponding to J2,...,
J6 are schematically illustrated in Fig. 4(a). Within the WC phase
(rs � 30), the instanton approximation is well-justified for the calcu-
lation of these ring-exchange processes since

√
rsSa � 1.

explicitly calculate the fluctuation determinants Aa rather than
simply making dimensional estimates. Figures 4(b) and 4(c)
show the tunneling processes considered in this paper with
the corresponding Sa and Aa listed in Table I. The hopping
matrix elements ta > 0 are again expressed in terms of Sa

and Aa as in Eq. (16). Note that four hopping processes have

TABLE I. Dimensionless actions Sa and fluctuation determinants
Aa for tunneling processes illustrated in Figs. 4(b)–4(e) calculated in
this paper. The parentheses in the first and fourth columns denote
(Nmove, M ), where Nmove is the number of electrons that are allowed
to adjust their positions during minimization and M is the number
of time slices for the discretized tunneling paths (i.e., there are M −
1 intermediate configurations). Processes for a centered interstitial
(vacancy) are calculated in a hexagonal supercell with 12 × 12 + 1
(10 × 10 − 1) electrons starting and ending at fully relaxed defect
configurations.

smaller actions than those of exchange processes and hence
are more important when rs � 1. The effective Hamiltonian
in the presence of a dilute concentration of interstitials is

H i
eff = − t1

∑
〈n,n′〉

∑
σ

c†
n,σ cn′,σ

− t2
∑

(n, j,n′ )
∈(t2 path)

∑
σ,σ ′

f †
j,σ c†

n,σ ′ f j,σ ′cn′,σ

− t ′
2

∑
(n, j,n′ )

∈(t ′
2 path)

∑
σ,σ ′

f †
j,σ c†

n,σ ′ f j,σ ′cn′,σ

− t ′′
2

∑
(n, j,n′ )

∈(t ′′
2 path)

∑
σ,σ ′

f †
j,σ c†

n,σ ′ f j,σ ′cn′,σ

−
∑

a∈(CI ex.)

(−1)Pa,i Ja,i
(
P̂a,i + P̂−1

a,i

)
+ · · · + [U = ∞], (18)

where f †
jσ (c†

n,σ ) is the creation operator of electrons that live
on the WC sites j (triangular plaquette centers n) and the
U = ∞ condition precludes any double occupancy. σ, σ ′ =
↑,↓ are the spin indices that are summed over. a ∈ (CI ex.)
denotes one of the exchange processes involving an interstitial
shown in Fig. 4(b). The omitted terms correspond to hopping
and exchange processes other than those shown in Figs. 4(b)
and 4(c) and direct (elastic) interactions between interstitials
[26]. Figures 6(a) and 6(b) show the hopping matrix elements
(t) and exchange coefficients (J) for processes involving an
interstitial calculated from the semiclassical expression (16).

C. Processes involving a single vacancy

The classical vacancy defect has D2 symmetry instead of
the full D6 symmetry of the underlying triangular lattice [18]
[see Fig. 2(b)]. Therefore, associated with each location of
a vacancy, there are 3 inequivalent orientations related by C6

rotations. We will denote these by an index α = 1, 2, 3; α = 2
and 3 are related to α = 1 by C6 and C2

6 respectively.
We considered tunneling processes involving a single va-

cancy defect as illustrated in Figs. 4(d) and 4(e), with their
corresponding values of Sa and Aa listed in Table I. The calcu-
lation is done in a hexagonal supercell containing 10 × 10 − 1
electrons. Again, matrix elements �, ta, Ja,v > 0 are given by
Eq. (16) in terms of Sa and Aa. Note that, as in the intersti-
tial case, the tunnel barriers (determined by Sa) for hopping
processes are smaller than those for exchange processes [27].

The resulting effective Hamiltonian describing the dynam-
ics of vacancies can be written straightforwardly as follows.
First, corresponding to each orientation α of a vacancy, we
introduce a (hardcore) bosonic operator b†

i,α that suitably re-
laxes the positions of the WC electrons near the vacancy site
i to the associated configuration that minimizes the (classical)
Coulomb energy. The operator that creates a vacancy in the
WC at site i with orientation α is thus fi,σ b†

i,α . Then, with the
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FIG. 6. Hopping matrix elements and exchange coefficients involving a defect (in units of e2/4πεaB) within the semiclassical approxima-
tion. Note that the y-axis scale here is a factor of 100 larger than in Fig. 5. Hence, the dynamical processes involving an interstitial or a vacancy
have much larger energy scales than the exchange processes in the pure WC.

definitions b†
i ≡ [b†

i,1, b†
i,2, b†

i,3] and

D ≡

⎡
⎢⎣

0 � �

� 0 �

� � 0

⎤
⎥⎦, ϒ ≡

⎡
⎢⎣

t11 t12 t12

t12 t22 t23

t12 t23 t22

⎤
⎥⎦,

C6 =

⎡
⎢⎣

0 1 0

0 0 1

1 0 0

⎤
⎥⎦, (19)

the effective Hamiltonian in the presence of a dilute concen-
tration of vacancies is

Hv
eff = −

∑
i,σ

[
b†

i Dbi +
∑

δ=±e1

f †
i,σ fi+δ,σ b†

i+δϒ bi

+
∑

δ=±e2

f †
i,σ fi+δ,σ b†

i+δ C−1
6 ϒC6 bi

+
∑

δ=±e3

f †
i,σ fi+δ,σ b†

i+δ C−2
6 ϒC2

6 bi

]

−
∑

a∈(V ex.)

(−1)Pa,v Ja,v
(
P̂a,v + P̂−1

a,v

)

+ · · · + [U = ∞], (20)

where e1 = [1, 0], e2 = [1/2,
√

3/2], e3 = [−1/2,
√

3/2],
and f †

i,σ is again the creation operator of an electron living
at the WC site i. The first term describes on-site orientation-
mixing processes corresponding to �; the second term
describes vacancy hopping processes in the ±e1 directions;
and the third (fourth) term describes vacancy hopping pro-
cesses in the ±e2 (±e3) directions, which can be related to
the second term by C6 (C2

6 ) rotation [see Fig. 4(e)]. In the
fifth term, a ∈ (V ex.) denotes one of the exchange processes
around a vacancy shown in Fig. 4(d). The omitted terms cor-
respond to hopping and exchange processes other than those
shown in Figs. 4(d) and 4(e) and direct (elastic) interactions
between vacancies [26]. Figures 6(c) and 6(d) shows the hop-
ping matrix elements (t) and exchange coefficients (J) for
processes involving a vacancy calculated from the semiclas-
sical expression (16).
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FIG. 7. The rs dependence of single-defect properties from exact
diagonalization of the effective Hamiltonians, Eqs. (18) and (23),
on a 3 × 6 triangular lattice WC with periodic boundary conditions.
(That is, there are total 3 × 6 ± 1 electrons for the interstitial and
vacancy, respectively.) The semiclassical expressions are used to
compute the various matrix elements. (a) The ground state energy,
as defined in Eqs. (21) and (25), of a single interstitial (Ei) and a
vacancy (Ev); Ei (rs)[Ev(rs)] crosses zero around rs = rmit ≈ 70[rs ≈
30]. (b) The total spin polarization (0 � 2Stot/Ne � 1) induced by a
single interstitial and vacancy.

D. Two-dimensional Bose gas

For Coulomb-interacting bosonic particles, one merely
needs to substitute (−1)Pa → +1 in Hwc

eff (7) without changing
the forms of H i

eff and Hv
eff [(18) and (20)]. The consequence is

that all ring-exchange processes and interstitial and vacancy
hopping processes mediate ferromagnetism. This is a special
case of a more general result that the ground state of an in-
teracting multicomponent bosonic system is a fully polarized
ferromagnet [28,29].

III. A SINGLE DEFECT: EXACT DIAGONALIZATION
STUDY

In this section, we present the results of a finite-size ex-
act diagonalization study (up to 3 × 6 ± 1 electrons) of the
derived effective Hamiltonians in the single-defect sector of
Eqs. (18) and (20) [30]. Figure 7 summarizes the result of the
exact diagonalization calculation.

The maximum kinetic energy gain for an interstitial is
calculated by obtaining the ground state of H i

eff (18) in the
single-interstitial sector. We retained all the terms shown in
Figs. 4(b) and 4(c) except for J ′′

3,i and J4,i. (In the range of

20 � rs � 100 considered, they are more than an order of
magnitude smaller than the dominant terms.) The resulting
kinetic energy gain, Ekin

i (rs) < 0, is calculated for a system
of 3 × 6 WC sites with an additional interstitial (i.e., a total
of 3 × 6 + 1 electrons) with periodic boundary conditions.
Including the classical Coulomb energy and the zero-point
vibrational energy, the minimum interstitial energy (in units
of e2/4πεaB) is

Ei(rs) = C1,i

rs
+ C3/2,i

r3/2
s

+ Ekin
i (rs) + · · · . (21)

Here, we have neglected terms corresponding to higher-order
perturbative corrections (i.e., higher powers of r−1/2

s ) from
phonon anharmonicity as well as higher-order corrections to
the semiclassical instanton approximation. We calculated C1,i

and C3/2,i for supercells up to size 28 × 28 + 1; extrapolation
to an infinite supercell size gives C1,i = 0.0769 and C3/2,i =
−0.295 [31]. The semiclassical expression for the interstitial
energy (21) is plotted as a function of rs in Fig. 7(a).

For the vacancy, the on-site orientation-mixing term �

is the largest energy scale in the range of 20 � rs � 100,
as shown in Figs. 6(c) and 6(d). Therefore, we simplify the
vacancy problem by projecting it into the “isotropic single
vacancy sector,” whose basis states are equal superpositions
of all the vacancy orientations α at a site i,

|i; {σ }wc〉 ≡ 1√
3

3∑
α=1

|i, α; {σ }wc〉

= 1√
3

3∑
α=1

b†
i,α f †

1,σ1
· · · ��f †

i,σi
· · · f †

N,σN
|∅〉. (22)

Here {σ }wc are the spins of the WC electrons, and the slash in
��f i,σi denotes that the corresponding operator is omitted from
the product. The projection of Hv

eff (20) to the isotropic single-
vacancy sector is straightforward, and yields

Hv
eff

∣∣
�

= − 2� − t eff
�

∑
〈i, j〉

( f †
i,σ f j,σ + H.c.)

+
∑

i

(1 − ni )

[
Jeff

2

∑
〈 j,k〉

P̂ j,k − Jeff
3

∑
〈 j,k,l〉

P̂ j,k,l + Jeff
4

×
∑

〈 j,k,l,m〉
P̂ j,k,l,m+Jeff

6

∑
〈 j,k,l,m,n,p〉

P̂ j,k,l,m,n,p + H.c.

]
,

(23)

where

t eff
� ≡ 1

3
[1, 1, 1]ϒ

⎡
⎣1

1
1

⎤
⎦ = 1

3
(t11 + 2t22 + 4t12 + 2t23),

Jeff
2 ≡ 1

3

(
J2,v + 2J ′

2,v + 1

2
J ′′

2,v

)
,

Jeff
3 ≡ 2

3
(J3,v + J ′

3,v), Jeff
4 ≡ 1

3
J4,v, Jeff

6 ≡ J6,v. (24)
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In the presence of Nv isotropic vacancies, one substi-
tutes 2� → 2Nv�. The (1 − ni ) factor locates the vacancy,
where ni = ∑

σ f †
i,σ fi,σ , and 〈 j, k〉, 〈 j, k, l〉, 〈 j, k, l, m〉, and

〈 j, k, l, m, n, p〉 are the 2, 3, 4, and 6 sites neighboring
the vacancy location i participating in the corresponding
ring-exchange processes ( j, k, l, m, n, p themselves are also
nearest neighbors). J ′′

2,v, J ′
3,v, J6,v are much smaller than other

terms in Hv
eff and hence will be ignored.

By solving Hv
eff |� (23) in the single-vacancy sector, we

numerically find the minimum possible vacancy kinetic en-
ergy, Ekin

v (rs) < 0, on 3 × 6 WC sites in the presence of a
single vacancy (3 × 6 − 1 electrons). The full semiclassical
expression, including the Coulomb and zero-point energy, for
the vacancy energy (in units of e2/4πεaB) is then

Ev(rs) = C1,v

rs
+ C3/2,v

r3/2
s

+ Ekin
v (rs) + · · · , (25)

where, again, the neglected terms correspond to higher-order
perturbative and nonperturbative corrections. We calculated
C1,v and C3/2,v for supercells up to 24 × 24 − 1; extrapolation
to an infinite supercell size gives C1,v = 0.1094 and C3/2,v =
−0.368. Whereas our result for C1,v agrees with Ref. [18] up
to the fourth digit, our value for C3/2,v is slightly different
from theirs [32]. The semiclassical expression for the vacancy
energy (25) is plotted as a function of rs in Fig. 7(a).

There is an obvious subtlety in extrapolating the finite-size
calculations to the thermodynamic limit due to the presence of
small competing exchange interactions of the underlying WC.
Although they are relatively small compared to the dynami-
cal processes of the defects and omitted in our calculations,
they can never be truly negligible in a large enough system.
Instead, in an extended system, a single defect will induce
magnetism only in a finite region around it and form a large
magnetic polaron, thereby increasing its energy by a corre-
spondingly small amount, as we will discuss below.

The semiclassical expressions for the interstitial (vacancy)
energy vanishes around rs = rmit ≈ 70 (rs ≈ 30), indicating a
possible instability of the WC to interstitial self-doping for
rs < rmit (Fig. 7).

IV. INTERMEDIATE PHASES OF THE 2DEG

Our predicted value of rmit ≈ 70 is larger than r∗
melt ≈ 31,

where r∗
melt is the value below which—according to exist-

ing variational calculations—the energy of the paramagnetic
Fermi liquid becomes smaller than the energy of a WC (with a
particular assumed antiferromagnetic order) [4]. This suggests
that there is a range of densities, rmelt < rs < rmit, for which
a metallic electron crystal (MeC) phase with more than one
electron per crystalline unit cell is stable [33,34]. Here, rmelt

is the value below which the crystalline order vanishes (see
Fig. 1). To the best of our knowledge, the proposed MeC
phase with more than one electron per crystalline unit cell has
not been studied using the variational quantum Monte Carlo
method. A related, but distinct, MeC phase with less than one
electron per crystalline unit cell has been studied in Refs. [35]
and [4]; however, these studies are in disagreement with each
other.

As discussed in the next section, an interstitial forms a large
magnetic polaron in a WC, so the MeC phase occurring near
rmit (Fig. 1) is expected to be characterized by an anomalously
large quasiparticle (interstitial) effective mass. Such massive
magnetic polarons have a tendency to agglomerate, leading to
phase separation [36–38] and rendering the transition at rmit to
be first order [39]. Note that for single component (spinless)
electrons, polaron formation is not an issue so the self-doping
transition may be continuous [40].

Finally, the transition to a fully melted Fermi fluid occurs
when the energy of the MeC phase crosses that of the liquid
phase. Existing variational quantum Monte Carlo estimates
of the critical rs involve comparing the energy of the liquid
to that of the insulating WC. If, as we have suggested, the
MeC has lower energy than the insulating WC in an inter-
mediate rs regime, it would presumably be stable against
quantum melting at somewhat higher densities (smaller
rs). Thus, this carries with it the likely implication that
rmelt < r∗

melt ≈ 31.

V. KINETIC MAGNETISM

Here, we discuss the magnetic correlations induced by
defect hopping processes [41].

Distinct interstitial hopping terms induce different mag-
netic correlations in the underlying WC. The character of
the dominant magnetic correlations induced by each hopping
process is determined by the parity of the smallest spin per-
mutation it induces [22]. For example, by applying t ′′

2 terms
twice on the interstitial, one recovers the same charge config-
uration but with three electrons (spins) permuted. This is an
even permutation and mediates ferromagnetism as discussed
in Sec. II A. Similarly, the smallest permutation that the t2
terms induce involves seven electrons (even permutation) and
also mediates ferromagnetism. On the other hand, the smallest
spin permutation induced by t ′

2 process involves four elec-
trons (odd permutation) and mediates antiferromagnetism.
The t1 term does not modify the spin order of the underlying
WC and hence does not induce magnetism by itself. Taken
together, the various hopping terms, in combination with ex-
change processes Ja,i, lead to a complicated problem with
competing magnetic tendencies. Despite this complexity, the
magnetic properties are nevertheless determined completely
by the single parameter rs that enters in Eq. (18) through t’s
and J’s.

The interstitial dynamics induces nontrivial spin polariza-
tion 2Stot/Ne, as shown in Fig. 7(b), where Stot is the total
spin (i.e., the maximum allowed value of Sz) and Ne is the
number of electrons in the system. In the most interesting
range, 20 � rs < 70, the interstitial seems to always favor a
single spin-flip in an otherwise fully polarized background.
(This is also true for smaller systems of 3 × 4 + 1, 3 × 5 + 1
or 4 × 4 + 1 electrons [42].)

In the presence of small antiferromagnetic WC exchange
interactions, a single interstitial can only induce its own mag-
netism in a finite region, forming a large magnetic polaron of
size ∼a2

0

√
t/Jwc [15,36,43], where t and Jwc are characteristic

values of interstitial hopping matrix elements and pure WC
exchange coefficients, respectively. This effectively increases
its energy by O(

√
tJwc). At rs ≈ 45, we estimate that a single
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interstitial induces a magnetic polaron involving ∼40 WC
spins.

On the other hand, it is known that the dynamics of a single
hole in the U = ∞ Hubbard model on a nonbipartite lattice
leads to some form of antiferromagnetism [44–48]; therefore,
assuming that the isotropic vacancy is energetically favored,
its hopping processes mediate antiferromagnetic correlations
around it. In the presence of competing exchange interactions
of the underlying WC, a vacancy forms a finite-sized antifer-
romagnetic polaron.

By controlled doping of a WC in the presence of a
smoothly varying weak external periodic potential, one can
obtain the defect-doped commensurate WC phase as a stable
ground state, when the defect creation energies are positive,
as the following reasoning shows. Consider a weak commen-
surate potential that has minima −W < 0 at the triangular
lattice WC sites. When the density is tuned away (but not
too far away) from the commensurate value, the defect-doped
commensurate WC has an energy per electron �Ecomm/N ≈
−W + Edef |δ| + O(W |δ|, δ2) as compared to the pure incom-
mensurate WC, where δ is the ratio of defect electrons to the
total number of electrons, and Edef = Ei (Ev) is the energy
of an interstitial (vacancy) defect in the absence of the ex-
ternal potential. Therefore, for a range of doping −W/Ev <

δ < W/Ei, the system will form a defect-doped metallic WC
phase that is commensurately locked to the external poten-
tial. Such a phase, in turn, is characterized by defect-induced
magnetic correlations with much higher-energy scales than
the exchange processes of the pure WC. Therefore, one ex-
pects that the magnetic energy scale increases as one moves
away from the commensurate filling. Such a proposal may be
experimentally tested in certain Moiré systems that support a
commensurately locked WC phase [49–53].

VI. EFFECTS OF WEAK DISORDER

Before concluding, we remark on the effect of small
quenched disorder on the phase diagram (Fig. 1). Firstly, even
weak disorder is expected to destroy any long-range crys-
talline order; hence all the electronic crystalline states we have
discussed are defined only in an approximate sense as short-
range ordered states. Also, the MeC phase is characterized by
the reduced density of mobile electrons and their increased
effective mass; hence, even weak disorder is likely to result
in strong localization and destroy the metallic character of the
phase. The resulting disorder-induced intermediate insulating
phase is characterized by large magnetic energy scales, associ-
ated with the dynamical processes of defects. This may be an
explanation for the recently observed insulating phases with
much higher magnetic energy than the exchange scales of the
pure WC [5,7,8]. Note that such a proposal predicts an expo-
nential reduction of magnetic energy scales with increasing rs

for rs > rmit [54].
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APPENDIX: NUMERICAL CALCULATIONS OF S AND A

In this section, we review a numerical method for cal-
culating Sa (5) and Aa (17), closely following Ref. [13].
Although we applied the semiclassical instanton calculation to
the 2DEG specifically, the method outlined here applies to any
system with a general potential V (r) with degenerate minima
in the semiclassical limit. We first calculate the instanton
action Sa (5) by discretizing a tunneling path,

Sa =
∫ r′

0

r0

dr
√

2�V (r)

≈
Ntime∑
k=1

1

2
|rk − rk−1| · [

√
2�V (rk ) +

√
2�V (rk−1)],

(A1)

where we defined �V (r) ≡ V (r) − V (r0) and used the semi-
classical equation of motion r̈ = ∇V (r). r0 and r′

0 are initial
and final minimum configurations of V , respectively, rk ≡
r(τk ) is the collective coordinate of particles at time τk , where
0 ≡ τ0 < τ1 < τ2 < · · · < τM ≡ β̃, and rM ≡ r′

0. In order to
make the distances |rk − rk−1| approximately equal, each
rk is taken to be constrained in the hyperplane defined by
(rk − r0) · (r′

0 − r0) = k
M |r′

0 − r0|2. Numerical minimization
of the discretized action (A1) is performed with a standard
optimization package [55]. We will henceforth denote by
rk (k = 0, 1, .., M) the optimized tunneling path for the a-
instanton process.

The fluctuation determinant Aa captures the Gaussian fluc-
tuations around the semiclassical path

Aa = F ′[r(a)(τ )
]

F
[
r0

] =
[

det′
( − ∂2

τ + V ′′[r(a)(τ )
])

det
( − ∂2

τ + V ′′(r0)
)

]− 1
2

, (A2)
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F
[
r(τ )

] ≡
∫ δr(β̃ )=0

δr(0)=0
Dδr(τ ) exp

[
−1

2

∫ β̃

0
(δṙ(τ )2 + δr(τ )TV ′′[r(a)(τ )

]
δr(τ ))

]
= 〈0|T exp

(
−

∫ β̃

0
dτ h

[
r(a)(τ )

])|0〉, (A3)

h[r(τ )] ≡ −1

2
∇2 + 1

2
δr(τ )TV ′′[r(τ )

]
δr(τ ), (A4)

where T exp(· · · ) denotes the imaginary-time-ordered exponential, δr(τ ) ≡ r(τ ) − r(a)(τ ) is the fluctuation coordinate, and the
primed determinant in the first line is again computed with the zero mode omitted. β̃ → ∞ is implicitly taken in the end in
calculating Aa. As discussed below, the calculation of Aa can be done numerically by first computing F [r(a)(τ )]/F [r0] that
includes the zero-mode contribution, and then multiplying by the square root of the smallest eigenvalue (which is exponentially
small in β̃) of the operator −∂2

τ + V ′′[r(a)(τ )].
F [r(a)(τ )] can be calculated by discretizing the path integral expression (A3). First, we further define the time slices

intermediate to those defined above

0 < τ1/2 < τ1 < τ1+1/2 < · · · < τM−1/2 < τM ≡ β̃, (A5)

where each interval, �τk ≡ τk+ 1
2
− τk− 1

2
(k = 1, · · · , M − 1), is calculated by inverting the semiclassical equation of motion

�τk ≡
∫ r

k+ 1
2

r
k− 1

2

dr√
2�V [r(a)(τ )]

≈ 1√
2�V (rk )

· 1

2
(|rk+1 − rk| + |rk − rk−1|), (A6)

and analogously for the end intervals, �τ0 ≡ τ 1
2

≈ 1√
2�V (r0 )

· 1
2 |r1 − r0| and �τM ≡ τM − τM− 1

2
≈ 1√

2�V (rM )
· 1

2 |rM − rM−1|.
(Note that the end intervals formally diverge, �τ0,M → ∞, as β̃ → ∞.) Then, the propagator at each interval can be approxi-
mated by that of the quantum harmonic oscillator (Mehler kernel) of h[r(a)(τ )] ≈ hk ≡ h[rk],

〈δrk+ 1
2
|e−�τkhk |δrk− 1

2
〉 =

2N∏
n=1

(√
B(a)

n,k exp
[ − S(a)

n,k

])
, (A7)

S(a)
n,k = A(a)

n,k

2
[〈vn,k|δrk− 1

2
〉2 + 〈vn,k|δrk+ 1

2
〉2] − B(a)

n,k〈vn,k|δrk− 1
2
〉〈vn,k|δrk+ 1

2
〉, (A8)

where

V ′′(rk )vn,k ≡ (ωn,k )2vn,k, (n = 1, · · · , 2N ), (A9)

A(a)
n,k ≡ ωn,k

tanh(ωn,k�τk )
, B(a)

n,k ≡ ωn,k

sinh(ωn,k�τk )
. (A10)

Equation (A9) defines normal mode frequencies and eigenmodes at each time slice k. Note that at intermediate times k �= 0, M,
ωn,k is in general complex. At the end intervals k = 0, M, one substitutes δr− 1

2
→ δr0 = 0 and δrM+ 1

2
→ δrM = 0 in the above

expressions. (Note that as β̃ → ∞, the propagators at the end intervals approach zero exponentially. However, as we will see
below, such contributions cancel when calculating Aa as we are calculating the ratio between two Fs.)

F [r(a)(τ )] can finally be computed by integrating over the intermediate fluctuation coordinates δrk− 1
2
,

F [r(a)(τ )] =
∫ (

M∏
k=1

d2Nδrk− 1
2

)
〈0|e−�τM hM |δrM− 1

2
〉〈δrM− 1

2
|e−�τM−1hM−1 |δrM− 3

2
〉 · · · 〈δr 1

2
|e−�τ0h0 |0〉

=
(

M∏
k=0

2N∏
n=1

√
B(a)

n,k

)
det(M(a) )−

1
2 , (A11)

M(a) ≡
M∑

k=1

ek,k ⊗ (
A(a)

k−1 + A(a)
k

) −
M−1∑
k=1

(ek,k+1 + ek+1,k ) ⊗ B(a)
k
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=

⎡
⎢⎢⎢⎢⎢⎢⎣

A(a)
0 + A(a)

1 −B(a)
1 0 · · · 0

−B(a)
1 A(a)

1 + A(a)
2 −B(a)

2 · · · 0

0 −B(a)
2 A(a)

2 + A(a)
3

. . .
...

...
...

. . .
. . . −B(a)

M−1

0 0 · · · −B(a)
M−1 A(a)

M−1 + A(a)
M

⎤
⎥⎥⎥⎥⎥⎥⎦

, (A12)

A(a)
k ≡

2N∑
n=1

A(a)
n,kvn,kvT

n,k, B(a)
k ≡

2N∑
n=1

B(a)
n,kvn,kvT

n,k . (A13)

Here, M(a) is a real symmetric block tridiagonal matrix, ei, j

is the M × M matrix with 1 at the (i, j)th entry with all other
entries 0, ⊗ is the Kronecker product of two matrices and A(a)

k

and B(a)
k are 2N × 2N matrices. [Note that in the present WC

problem, one needs to project out two zero eigenmodes vn,k

(for each k) corresponding to uniform translations in the x and
y directions; hence A(a)

k and B(a)
k become (2N − 2) × (2N −

2) matrices.]
In calculating F [r0]—which essentially is the propagator

of a quantum harmonic oscillator—with the same proce-
dure, one merely substitutes hk → h0 in every equation
Eqs. (A7)–(A13),

F [r0] =
(

M∏
k=0

2N∏
n=1

√
B(0)

n,k

)
det(M(0) )−

1
2 , (A14)

A(0)
n,k ≡ ωn,0

tanh(ωn,0�τk )
, B(0)

n,k ≡ ωn,0

sinh(ωn,0�τk )
, (A15)

A(0)
k ≡

2N∑
n=1

A(0)
n,kvn,0vT

n,0, B(0)
k ≡

2N∑
n=1

B(0)
n,kvn,0vT

n,0, (A16)

M(0) ≡
M∑

k=1

ek,k ⊗ (
A(0)

k−1 + A(0)
k

)

−
M−1∑
k=1

(ek,k+1 + ek+1,k ) ⊗ B(0)
k . (A17)

Therefore,

F [r(a)(τ )]

F [r0]
=

(
M−1∏
k=1

2N∏
n=1

B(a)
n,k

B(0)
n,k

) 1
2 [

det(M(a) )

det(M(0) )

]− 1
2

. (A18)

Here the product over k runs only from 1 to M − 1 be-
cause the end interval contributions (k = 0, M) of B(a)

n,k and

B(0)
n,k are identical although they formally approach 0 as β̃ →

∞ [since �τ0,M → ∞]. Similarly, one takes A(a)
n,0 = A(0)

n,0 =
A(a)

n,M = A(0)
n,M = ωn,0 in calculating det M, as �τ → ∞ [since

tanh(ωn,0�τ ) → 1].
Finally, one needs to divide Eq. (A18) by the (formally di-

verging) zero mode contribution to F [r(a)(τ )] = det( − ∂2
τ +

V ′′[r(a)(τ )])
−1/2

. For this, we numerically find the smallest λ

such that
1

Fλ[r(a)(τ )]
≡ det(−∂2

τ + V ′′[r(a)(τ )] − λ)
1
2 = 0, (A19)

where the left-hand side is calculated similarly as in
Eqs. (A7)–(A13) with the substitution V ′′(rk ) → V ′′(rk ) − λ.
The fluctuation determinant is then obtained as

Aa =
√

λ · F [r(a)(τ )]

F [r0]
. (A20)
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