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The adiabatic connection integrand interpolation (ACII) method represents a general path for calculating
correlation energies in electronic systems within the density functional theory. ACII functionals include both
exact-exchange and the second-order correlation energy, as well as an interpolating function toward the strictly
correlated electron (SCE) regime. Several interpolating functions have been proposed in the last years targeting
different properties, yet an accurate ACII approach with broad applicability is still missing. Recently, we have
proposed an ACII functional that was made accurate for the three-dimensional (3D) uniform electron gas as
well as for model metal clusters. In this paper we present an ACII functional (named genISI2), which is
very accurate for both three-dimensional (3D) and two-dimensional (2D) uniform electron gases and for the
quasi-2D infinite-barrier model, where most of the exchange-correlation functionals fail badly, as well as for
strongly correlated two-electrons systems. Using the exact-exchange Kohn-Sham orbitals, we have also assessed
the genISI2 for various molecular systems, showing a superior performance with respect to the other ACII
methods for total energies, atomization energies, and ionization potentials. The genISI2 functional can thus find
application in a broad range of systems and properties.
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I. INTRODUCTION

Nowadays, the ground-state Kohn-Sham (KS) density
functional theory (DFT) [1,2] is widely used in elec-
tronic structure calculations of finite and extended systems
[3–7], providing an adequate ratio between the accuracy
and computational time. The basic DFT variable is the
ground-state electronic density n(r), which implicitly deter-
mines all the ground-state properties of the electronic system
[8,9]. In the KS-DFT, n(r) is found by solving the Eu-
ler equation via one-particle orbitals {φi,σ (r)}, such that the
noninteracting kinetic energy functional is treated exactly
as Ts[n(r)] = 〈�min

n |T̂ |�min
n 〉 = ∫

dr
∑occ

i,σ |∇φi,σ |2/2, where
�min

n is the Slater determinant build with KS one-particle
orbitals {φi,σ (r)}, that yields the density n(r) and mini-
mizes the expectation value of the kinetic energy operator
〈T̂ 〉. Thus, only the exchange-correlation (XC) energy func-
tional Exc[n(r)] must be approximated. We recall that the
XC energy functional should describe the electron-electron
interactions beyond the classical Hartree energy U [n] =
(1/2)

∫
dr

∫
dr′ n(r)n(r′)/|r − r′|.
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An elegant (and exact in principle) definition of
the XC functional uses the adiabatic connection (AC)
method [10–16],

Exc[n] =
∫ 1

0
dα Wxc,α[n],

Wxc,α[n] = 〈
�min,α

n

∣∣V̂ee

∣∣�min,α
n

〉 − U [n], (1)

where V̂ee is the Coulomb repulsion operator, and �min,α
n is the

antisymmetric wave function that yields the density n(r) and
minimizes the expectation value 〈T̂ + αV̂ee〉, with α � 0 be-
ing the coupling constant (also known as interaction strength).

There are many XC functionals constructed in the frame-
work of the AC method, including accurate hybrid functionals
[8,15,17–19] and the most sophisticated fifth-rung functionals
[20] (which uses the unoccupied orbitals in the functional
definition) such as the random phase approximation (RPA)
[21–23] and double-hybrid (DH) functionals [24].

In the fifth rung are also included the functionals investi-
gated in this paper, i.e., the one based on a Wxc,α[n] model
[25–51], which interpolates between the weak- (α → 0) and
strong- (α → ∞) interaction limits, and that we refer to as
“adiabatic connection integrand interpolation” (ACII).

We recall that the asymptotic behaviors of Wxc,α[n] are
known exactly [26,31,52,53]

Wxc,α→0[n] = W0[n] + W ′
0[n]α + . . .

+W (m)
0 [n]αm + . . . , (2)

Wxc,α→∞[n] = W∞[n] + W ′
∞[n]α−1/2

+W (2)
∞ [n]α−3/2 + . . . . (3)
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Here, W0[n] = Ex[n] is the exact DFT exchange func-
tional, W ′

0[n] = 2EGL2
c [n], and W (m)

0 [n] = (m + 1)EGLm+1
c [n],

where GL indicated the Görling-Levy perturbation theory
[52,54,55]. Usually, only the GL2 correlation (EGL2

c ) is
included in the ACII functionals. In some schemes, the
GL2 terms are approximated with a semilocal functional
[13,47,50,51]: in this way, however, the whole functional does
not belong anymore to the fifth rung.

In the strong-interaction limits the strictly correlated
electron (SCE) approach [56–58] becomes exact. On the
other hand, the SCE method becomes computationally
very demanding, especially for larger systems, such that
usually W∞[n] and W ′

∞[n] are approximated using general-
ized gradient approximation (GGA) or meta-GGA formulas
[27,45,48,51].

One of the first and most known ACII functional is in-
teraction strength interpolation (ISI) [26]. In the last years,
different approaches and investigations have been presented
[39,42,43,45–48,50], including those based on the Hartree-
Fock (HF) density [59–63]. Efficient implementation of
ACII methods is also available in public quantum-chemistry
codes [64].

After the α integration the total XC energy of ACII func-
tionals becomes a nonlinear function (F) of the Ex, EGL2

c , W∞,
and W ′

∞ ingredients,

Exc[n] = F
(
Ex, EGL2

c ,W∞,W ′
∞

)
. (4)

Equation (4) thus resembles DH functionals [24]: however,
ACII employs a nonlinear dependence from the GL2 term and
does not diverge for systems with vanishing gaps [39,47,64],
which is a clear superiority with respect to DH approaches.

Recently, we have proposed the UEG-ISI functional [50],
an ACII functional (valid in the limit of EGL2

c → −∞) that
gives an improved description of the three-dimensional (3D)
uniform electron gas (UEG). Then, the UEG-ISI has been
supplemented by a term that depends on EGL2

c , finally yielding
the genISI functional [50], with good performance for jellium
clusters and atoms.

In this paper, we construct the genISI2 XC functional as
a revision of the one proposed in Ref. [50], fulfilling the
negativity constraint of the correlation energy (Ec � 0) for
any possible values of the ingredients W0, W ′

0 , W∞, and W ′
∞.

Both the genISI and genISI2 functionals recover UEG-ISI in
the limit of EGL2

c → −∞.
We assess the genISI and genISI2 functionals for various

systems such as the two-dimensional (2D) UEG, the quasi-
2D infinite-barrier model (IBM), the Hooke’s atom and the
dissociation of the spin-restricted H2 molecule, which are very
hard tests for XC functionals:

The 2D UEG is a paradigm for 2D electronic systems [65],
and the 2D local density approximation (LDA) XC functional
yields already quite a good accuracy for the total energy of
many 2D systems [66]. However, most of 3D XC functionals
fail badly for 2D UEG, and only few high-level methods, such
as the inhomogeneous Singwi-Tosi-Land-Sjőlander (ISTLS)
can accurately describe the 2D UEG [67,68].

The quasi-2D IBM [69–74], which is a severe test for the
dimensional crossover from 3D to 2D, is poorly described
both at the RPA and the semilocal (GGA and meta-GGA)

levels of theory, e.g., see Refs. [45,72]. For example, the
popular Perdew–Burke–Ernzerhof (PBE) GGA [75] and the
Tao-Perdew-Staroverov-Scuseria (TPSS) [76] meta-GGA XC
functionals fail badly for this test.

The Hooke’s atom [77–84], also named harmonium, rep-
resents two interacting electrons in an isotropic harmonic
potential of frequency ω (ω = √

κ , where κ is the force
constant). At small values of ω, the electrons are strongly
correlated, and at large frequencies, they are tightly bound
[85]. Because ACII formulas interpolate between the weak-
and strong-correlation limits, this is a very important test.

The H2 dissociation curve using a spin-restricted for-
malism, which is a widely studied prototype of a strongly
correlated system [38–41,86–94]. While most of XC function-
als gives the correct energy at the equilibrium distance, only
the most advanced functionals can correctly describe the static
correlation at infinite distance [41,89,91,95,96].

In addition, we considered the more conventional molec-
ular systems, investigating the accuracy for total energies,
atomization energies, and ionization potentials. The per-
formances of genISI and genISI2 are then discussed in
comparison with the other well-known ACII functionals.

The paper is organized as follows: In Sec. II, we overview
the genISI and present the construction of genISI2 XC func-
tional. Computational details are described in Sec. III, while
in Sec. IV, we report the results for various systems. Finally,
in Sec. V, we summarize our conclusions.

II. THEORY

A. Overview of the genISI exchange-correlation functional

In the UEG-ISI functional [50] the AC integrand is

W UEG−ISI
xc,α [n] = W∞[n] + b(2 + cα + 2d

√
1 + cα)

2
√

1 + cα(d + √
1 + cα)2

, (5)

where

b = b[n] = (W0[n] − W∞[n])(1 + d ) � 0,

c = c[n] = b[n]2/
(
4W ′2

∞[n]
)
� 0,

d = 3.5. (6)

The parameter d has been optimized, minimizing the error
for the correlation energy per particle (εc) of the 3D UEG. For
small α we have

W UEG−ISI
xc,α [n] → W0[n] − s[n]α + . . . (7)

with

s[n] = 1 + d

4

(W0[n] − W∞[n])3

W ′2∞[n]
� 0. (8)

Note that there are no exact conditions for the coefficient
s[n], as the UEG-ISI functional is built for metallic systems,
in which EGL2

c = −∞, see the discussion in Ref. [50]. The
UEG-ISI XC energy is

EUEG−ISI
xc [n] =

∫ 1

0
dα W UEG−ISI

xc,α [n]

= W∞[n] + b[n]

d + √
1 + c[n]

. (9)
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The genISI functional adds a EGL2
c dependent term to

UEG-ISI; it has the following expression for the AC inte-
grand:

W genISI
xc,α [n] = W UEG−ISI

xc,α [n] + A[n]α

(1 + m r[n]p[n]α)3
, (10)

with

p[n] = W ′
0[n]/W0[n] � 0, A[n] = W ′

0[n] + s[n],

r[n] =
(

W0[n]

W∞[n]

)3

� 0, m = 18.0. (11)

The parameter m has been obtained by fitting to the cor-
relation energy of harmonium with force constant κ = 1/4
[45,77]. The genISI functional has been constructed so that
for small α it recovers the exact expansion,

Wxc,α[n] → W0[n] + (
2EGL2

c

)
α + . . . (12)

Integrating over α, we obtain a simple analytical expression
for the genISI XC energy,

EgenISI
xc [n] = EUEG−ISI

xc [n] + A[n]

2(m r[n]p[n] + 1)2
. (13)

B. The genISI2 functional

For the genISI2 functional, we consider the following ex-
pression:

W genISI2
xc,α = W UEG−ISI

xc,α + W a1
xc,α + W a2

xc,α,

W a1
xc,α = W ′

0[n]α

(1 + l1r[n]p[n]α)3
� 0,

W a2
xc,α = −W UEG−ISI

xc,α [n] + W0[n]

(1 + l2r[n]p[n]α)3
� 0. (14)

For small α the genISI2 behaves as

W genISI2
xc,α

→ W0[n] +
(

2 + 6l2W0[n]2
(
W UEG−ISI

xc,α=0 [n] − W0[n]
)

W∞[n]3

)

× αEGL2
c + ... (15)

Thus, using Eq. (7), we have that genISI2 recovers the exact
limit in Eq. (12).

The genISI2 XC energy

EgenISI2
xc [n] =

∫ 1

0
dα W genISI2

xc,α [n], (16)

does not have a simple analytical expression (as genISI). Still,
the integral over the coupling constant can be numerically
computed with high efficiency and accuracy (e.g., using a
Gaussian quadrature with only 16 points).

The genISI2 functional recovers all the exact conditions
fulfilled by revISI [30], LB [31], genISI, and additionally,
the genISI2 correlation energy is always negative. This is not
the case for the genISI functional. We mention that for all
the studied systems, we have found the correct behavior of
genISI (i.e., EgenISI

c � 0); however in principle, EgenISI
c can be

TABLE I. Exact (or almost exact) ACII ingredients (in Eh) and
negative of correlations energies (−Ec in mEh) from several ACII
functionals, computed for the harmonium with force constant κ =
1/4, the two-electron exponential density [n(r) = 2exp(−2r)/π ,
Exp.], and the He, Be, and Ne atoms. The exact values are from
Ref. [50] and references therein. In the last column, we show the
MARE (in %) of each method. Best ACII results are in boldface.

Harm. Exp. He Be Ne

W SCE
∞ −0.743a −0.910c −1.500c −4.021h −20.035h

W ′SCE
∞ 0.208a 0.293e 0.621g 2.590g 22.0g

W0 −0.515b −0.625c −1.024f −2.673f −12.078i

W ′
0 −0.101b −0.093d −0.095g −0.246f −0.948i

MARE (%)
SPL 35.9 35.6 39.9 104.0 428.8 7.1
LB 38.5 37.8 41.6 108.1 436.8 5.8
ISI 36.6 36.4 40.5 102.4 414.3 5.1
revISI 37.0 36.9 40.8 101.7 409.3 4.1
genISI 39.6 37.4 39.3 106.5 415.7 5.8
genISI2 37.2 38.0 42.3 97.2 391.9 1.8

Exact 38.5 37.3 42.1 94.4 391.0

afrom Ref. [31].
bfrom Table IV of Ref. [29].
cfrom Table I of Ref. [25].
dfrom Table I of Ref. [101].
eReference [102].
ffor Table II and Table IV of Ref. [16], using accurate density.
gfrom Table 1 of Ref. [30].
hfrom Table I of Ref. [103], using accurate density.
icomputed in this work at the CCSD(T)/unc-aug-cc-pV6Z density.

positive, probably outside of the physical range of W0, W ′
0 , W∞

and W ′
∞ ingredients. In fact, the quantity A[n] can be positive

for small values of EGL2
c (see Appendix for further details).

Moreover, by construction,

lim
W ′

0→0
EgenISI2

c = 0, (17)

a condition not satisfied by genISI, see Eq. (13). We recall
that W ′

0 vanishes not only for any one-electron systems (where
genISI is also exact because of W0 = W∞), but also for a
perfect insulator (where genISI will fail), an interesting model
system used in the DFT and solid-state physics development
[97,98]. Note that the correlation energy of the jellium-with-
gap model vanishes in the limit of infinite band gap energy
[99,100], such that Eq. (17) remains valid in this case.

Finally, the parameters l1 and l2 were found from the
minimization of the mean absolute relative error (MARE) of
several small spherical systems, as described in the following
subsection.

C. Small systems with accurate ingredients

For few spherical systems (harmonium with force con-
stant κ = 1/4, the two-electron exponential density [n(r) =
2 exp(−2r)/π ], and the He, Be, Ne), the ingredients (W0, W ′

0 ,
W SCE

∞ , and W ′SCE
∞ ) are known (almost) exactly from literature

(see Table I). For the neon atom, we recomputed W0 and W ′
0

using the the coupled-cluster single double and perturbative
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FIG. 1. log[MARE(l1, l2)] (in %) of correlation energies com-
puted for the systems of Table I, from the genISI2 expression of
Eq. (16), as a function of the l1 and l2 parameters. The minimum
of the log[MARE(l1, l2)] is at l1 = 10.65 and l2 = 3.6 (shown with
an empty square), i.e., the parameters used in the genISI2 functional.

triple [CCSD(T)] density and inversion technique (see Sec. III
for details).

Figure 1 reports the MARE(l1, l2) of the correlation ener-
gies of these systems, computed with the genISI2 expression,
as a function of the l1 and l2 parameters. The minimum error
is found at l1 = 10.65 and l2 = 3.6, which we use to define
the genISI2 functional. Basically, the same parameters are
obtained if we consider the absolute error per electron instead
of the absolute relative error.

In Table I, we show the correlation energies of these sys-
tems, computed from several ACII functionals. The genISI2
functional gives the best MARE (≈2%) showing that the
genISI2 functional form is flexible enough to describe the
correlation in these systems.

In Fig. 2, we show a comparison between UEG-ISI, ISI,
genISI, and genISI2 for adiabatic connection correlation in-
tegrand Wc,α = Wxc,α − W0 of harmonium (κ = 1/4) and Ne
atom. We observe that both genISI and genISI2 curves are
smooth and realistic, being close to the exact result. On the
other hand, the UEG-ISI integrand does not have the right
slope at α = 0, showing a strong underestimation. We re-
call that the area under the curves for 0 � α � 1 represents
the correlation energy Ec = ∫ 1

0 dαWc,α . However, we mention
that for both atoms, the genISI2 gives the best performance,
being better than ISI and genISI. Noting that the CCSD(T)
correlation energy of the reference curve of the lower panel of
Fig. 2 is about 14 mEh bigger than the benchmark reference
(see Table I), we may even expect that W genISI2

α,c is the most
accurate shown result for the Ne atom.

III. COMPUTATIONAL DETAILS

A. (quasi-)2d systems

The calculations for the quasi-2D IBM in Sec. IV A use
exact orbitals and densities [69]. Thus W0 and W ′

0 ingredients
are exactly computed [104], while for the strong-interaction
limit ingredients W∞ and W ′

∞ we use (at any quantum well
thickness) accurate interpolations between the 2D and 3D lim-
its, as explained in detail in Sec. IV A. Note that for W∞(Lmax)

FIG. 2. The adiabatic connection correlation integrand Wc,α =
Wxc,α − W0, for harmonium (κ = 1/4) (upper panel) and for the Ne
atom (lower panel). The harmonium exact curve is from Ref. [29] and
the Ne atom CCSD(T) reference (with uncontracted aug-cc-pCVQZ
basis set) is from Ref. [94]. We use the exact/accurate (SCE) ingre-
dients shown in Table I.

and W ′
∞(Lmax) we use the meta-GGA functional of Ref. [105]

and Ref. [27], respectively. For the 2D uniform electron gas in
Sec. IV B, we use the exact ingredients.

B. Atoms and molecules

All calculations have been performed with a locally modi-
fied version of ACES II [106] program. All ACII results have
been obtained in a post-self-consistent-field (SCF) fashion,
using as a reference OEPx SCF converged quantities (i.e.,
orbitals, orbital energies, and densities). As in our previous
studies [47,48,107,108] to solve OEPx equations, we have
employed the finite-basis set procedure from Ref. [109]. The
harmonium point-charge-plus-continuum (PC) model (hPC)
[48] was used in all calculations to evaluate the W∞ and W ′

∞.
In particular, we have investigated:
(i) Harmonium: We have performed calculations for vari-

ous values of ω ∈ [0.03, 1000] in the harmonium model [110]
using the computational setup and an even-tempered Gaus-
sian basis set (up to f angular momentum functions) from
Ref. [111].

(ii) Total energies: The total energies (reported in Table V)
have been calculated for the systems listed in Table I of
Ref. [112], using an identical computational setup.
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(iii) Atomization energies: AE6 [113,114] atomization
energies listed in Table VI. These calculations have been
performed using uncontracted cc-pVTZ basis sets of Dun-
ning [115] without counterpoise corrections for basis set
superposition error (BSSE). The results have been corrected
for size-consistency error according to Ref. [43]. (Note,
however, that this correction is very small for atomization
energies.)

(iv) Vertical ionization potentials: 32 vertical ionization
potentials (VIP) [116] computed as the energy differ-
ence between the neutral and the ionic species [117].
The computational setup, namely basis sets and ge-
ometries (in the case of molecules), is identical as in
Ref. [116].

For total energies, atomization energies, and ionization po-
tentials, we used, as reference data, the CCSD(T) [118] results
obtained in the same basis set to make a comparison on the
same footing and to reduce basis set related errors.

C. Accurate reference for atomic systems

To compute the reference W0, W∞, W ′
∞, and EGL2

c values
reported in Tables I and III, one needs to obtain accurate KS
occupied and unoccupied orbitals from which EGL2

c can be
evaluated. To this end, we have considered the densities from
full configuration interaction (FCI), in the case of harmonium
and He atoms, and CCSD(T), for Ne atom. The KS potential
is then obtained using the Wu-Yang (WY) [119] inversion
procedure. All calculations have been performed in a locally
modified PySCF [120] program together with KS-pies pack-
age [121] for the WY method. In all calculation, the lambda
regularization parameter [122] was set to 10−5 and the Fermi-
Amaldi guide potential was used to correct the asymptotic
behavior of the XC potentials. We used the uncontracted
aug-cc-pV6Z [123] basis set for He and Ne atoms and for
harmonium the basis set from Ref. [111].

IV. RESULTS

In this section, we validate the accuracy of the genISI2
functional for the quasi-2D IBM model (see Sec. IV A) for
the two-dimensional electron gas (see Sec. IV B) and for finite
systems (see Sec. IV C).

A. quasi-2d IBM

Let us consider the quasi-2D IBM quantum well of thick-
ness L in the z direction [69–74]. The true 2D uniform electron
gas limit is recovered by shrinking the z coordinate, keeping
fixed the total number of electrons per unit area (n2D). The
quasi-2D regime is obtained when L � √

3/2πr2D
s = Lmax

[69], being equivalent to a nonuniform scaling in one dimen-
sion [i.e., nz

λ(x, y, z) = λn(x, y, λz), with λ = Lmax/L]. The
3D density of this quasi-2D system is

n(z) = 2

Lπ
(
r2D

s

)2 sin2(πz/L). (18)

We perform similar calculations to those reported in Fig. 6
of Ref. [69]. Thus, we use the following ingredients for the

ACII methods:

W0(L)/N = Ex(L)/N, (19)

where Ex(L)/N is the exact exchange per particle calculated
with exact orbitals for the quasi-2D IBM of thickness L �
Lmax. We recall that most semilocal exchange functionals fail
badly for the quasi-2D IBM system [70,74], diverging in the
limit L → 0. Note that

W0(0)/N = Ex(0)/N = −4

√
2

3π

1

r2D
s

, (20)

is the exchange energy per particle of the 2D uniform
electron gas.

For W∞(L)/N we use the physically motivated interpola-
tion proposed in Ref. [69],

W∞(L)

N
=

[
W∞(0)

W0(0)

(
1 − L

Lmax

)
+ W∞(Lmax)

W0(Lmax)

L

Lmax

]
W0(L)

N
,

(21)

where

W∞(0)/N = W 2D
∞ /N =

(
8

3π
− 2

)
1

r2D
s

, (22)

and W∞(Lmax)/N has been computed using the W T PSS
∞ of

Eq. (37) of Ref. [105], that is one of the most accurate models
for W∞ of 3D electronic systems.

On the other hand, for W ′
∞(L)/N we use the simplest inter-

polation

W ′
∞(L)

N
= W ′

∞(0)

N

(
1 − L

Lmax

)
+ W ′

∞(Lmax)

N

L

Lmax
, (23)

where

W ′
∞(0)/N = W ′2D

∞ /N = 1

2
(
r2D

s

)3/2 , (24)

and W ′
∞(Lmax)/N has been computed using W ′MGGA

∞ of
Eq. (D16) of Ref. [27].

Finally, the W ′
0 (L)/N is known exactly

W ′
0 (L)/N = 2EGL2

c (L)/N, (25)

where EGL2
c (L)/N is given by Eq. (45) of Ref. [104]. We

observe that for 2D UEG, EGL2
c (0)/N = −0.1925 Ha, being

independent on r2D
s and finite, in contrast to the 3D UEG case

where EGL2
c /N → −∞. In fact, in the high-density limit of

2D UEG (r2D
s → 0), εc → EGL2

c (0)/N = −0.1925 Eh [65].
In Fig. 3, we show all these ingredients for r2D

s = 1, 3,
and 5, respectively. At high densities (for r2D

s = 1), we ob-
serve that W∞/N � Ex/N � W ′

0/N � 0 � W ′
∞/N , while at

low densities (for r2D
s = 5), the pattern is different W ′

0/N �
W∞/N � Ex/N � 0 � W ′

∞/N . In the figure, we also show
εLDA

c , for a better comparison with the other ingredients. Note
that, εLDA

c ∝ ln(rs) has a logarithmic divergence at L → 0,
where the 3D bulk parameter is going to vanish (rs → 0) due
to the 3D high-density regime.

Next, in Fig. 4, we show the quasi-2D IBM correlation
energy per particle from several ACII functionals in the whole
quasi-2D regime (i.e., 0 � L/Lmax � 1), for r2D

s = 1, 3, and 5,
respectively. We compare the genISI, genISI2, and UEG-ISI
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FIG. 3. The quasi-2D IBM ingredients for the ACII functionals.
The exact exchange per particle Ex (L)/N , W∞(L)/N of Eq. (21),
W ′

∞(L)/N of Eq. (23), and the W ′
0 (L)/N for the 2D bulk parameters

r2D
s = 1 (upper panel), r2D

s = 3 (middle panel), and r2D
s = 5 (lower

panel), respectively.

with the revISI functional, which we have found to be the
actual state-of-the-art functional for predicting the 2D correla-
tion energy at L → 0. We observe that genISI2 performs even
better than revISI, being significantly better than genISI. On
the other hand, the UEG-ISI underestimates the 2D correlation
energy, being accurate only in a mild quasi-2D regime (i.e.,
L/Lmax � 0.6). Nevertheless, we recall that the quasi-2D IBM
is a very difficult test for any XC functional, and for example,
the random phase approximation (RPA) performs worse than
UEG-ISI (see Fig. 3 of Ref. [72]). On the other hand, the
semilocal correlation functional, e.g., PBE [75], cannot de-

FIG. 4. Correlation energy per particle (εc) of the IBM quasi-2D
electron gas of fixed 2D electron density [r2D

s = 1 (upper panel),
r2D

s = 3 (middle panel), and r2D
s = 5 (lower panel), respectively], as a

function of the normalized quantum-well thickness L/Lmax. The dots
at L = 0 represent the exact correlation energies of the 2D UEG.

scribe the moderate and strong quasi-2D IBM regimes, being
accurate at L/Lmax = 1 but approaching 0 at L/Lmax = 0 [45].

B. Two-dimensional uniform electron gas (2D UEG)

We test the ACII functionals for the 2D UEG, where
all the ingredients are known and discussed above;
W 2D

0 /N = −4
√

2
3π

1
r2D

s
, EGL2−2D

c /N = −0.1925 Ha, W 2D
∞ /N =

( 8
3π

− 2) 1
r2D

s
, and W ′2D

∞ /N = 1
2(r2D

s )3/2 .
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FIG. 5. (Upper panel) 2D UEG correlation energy per parti-
cle εc vs the 2D bulk parameter r2D

s . The exact curve is the
2D LDA correlation energy parametrization of Ref. [65]. (Lower
panel) Relative errors (in %) of the correlation energy of the 2D
UEG [100 × (approx − exact )/exact] obtained from various ACII
functionals.

In the upper panel of Fig. 5, we show that genISI2 is
remarkably close to the 2D exact LDA correlation energy
per particle [65] for any value of the 2D bulk parameter
r2D

s , even in the high-density limit. In the lower panel of
Fig. 5, we report the relative errors (in %) of the ACII
functionals. The best performance is found for genISI2, fol-
lowed by revISI and ISI, while LB and genISI give the worst
results.

To better quantify these results, let us consider the follow-
ing integrated MARE (iMARE):

iMARE = 1

(10 − b)

∫ 10

b
drs

∣∣εapprox
c (rs) − εexact

c (rs)
∣∣∣∣εexact

c (rs)
∣∣ × 100,

(26)

where we take (b = 0) for the 2D UEG. We also com-
pute Eq. (26) for the 3D UEG with the choices (b = 0)
and (b = 1). We recall that the considered ACII func-
tionals are not accurate for the 3D UEG in the limit
rs → 0, where εexact

c → 0.031091 ln(rs) − 0.0469203, while
εISI

c , εrevISI
c ∼ 1/

√
rs, εUEG−ISI

c → −0.086. In contrast, SPL
and LB functionals perform as → 1/rs not being integrable
in the high-density limit. Nevertheless, we note that most
bulk metals have 1 � rs � 10. The iMARE values of Eq. (26)

TABLE II. The iMARE of Eq. (26) for the 2D UEG and 3D
UEG. Best result is shown in bold style.

2D UEG 3D UEG

b = 0 b = 1 b = 0

ISI 5.0 45.0 59.4
revISI 4.3 27.3 37.7
SPL 6.6 241.5 ∞
LB 17.2 241.5 ∞
UEG-ISI 18.9 0.9 2.4
genISI 8.9 0.9 2.4
genISI2 2.5 0.9 2.4

PBE 100 0.0 0.0

for both the 2D and 3D UEG are reported in Table II from
the considered ACII functionals. For completeness, we also
show the PBE values. For the 2D UEG (considering the
limit L/Lmax → 0), the PBE correlation vanishes [70], while
for the 3D UEG becomes exact, recovering the Perdew-
Wang parametrization of the 3D UEG correlation energy per
particle [124].

Thus, we conclude this subsection by noting that the im-
provement of genISI2 over the genISI is substantial for both
quasi-2D IBM and 2D UEG and, corroborated with its 3D
UEG accurate behavior, can make this functional attractive for
various solid-state applications.

C. Finite systems

1. Role of reference orbitals

The genISI2 functional has been parametrized on exact
ingredients, reported in Table I. For practical applications,
however, such exact values are not known. In Table III, we re-
port accurate results for the harmonium (κ = 1/4), He, and Ne
atoms as obtained from accurate FCI [or CCSD(T)] density
(as described in Sec. III C). Our results for W0 and EGL2

c for
the harmonium and He atom reproduce previous exact results
from the literature obtained in different ways, see Table I. Data
for W∞ and W ′

∞ in Table III have been computed with the hPC
functional with the accurate density.

The second row (labelled with ∂i) of each section of
Table III reports the relative derivatives of EgenISI2

c with re-
spect to the various ingredients, i.e.,

∂i = 1

Wi

∂EgenISI2
c

∂Wi
(27)

where Wi is one of the four ingredients (W0, W∞, W ′
∞, and

EGL2
c ). The EGL2

c ingredient has the largest coefficients, par-
ticularly for atomic systems. For those systems, thus the
W ′

0 = 2EGL2
c ingredient has a very large impact on the final

correlation energy. For this reason, its accurate calculation is
much more important than the SCE ingredient.

Then, we compute the ACII ingredients considering dif-
ferent input orbitals and densities (S-VWN [125], PBE, HF,
and OEPx), which are routinely available. We can see that
the type of input orbitals has a drastic effect on the EGL2

c
energy (relative deviations –38%· · · +11%). In contrast, the
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TABLE III. The ACII ingredients for different input densities, in case of the the harmonium (κ = 1/4), helium, and neon atoms. We used
the uncontracted aug-cc-pV6Z basis set, except for harmonium, where a special basis set is utilized [111]. Values of W∞ and W ′

∞ are computed
with the hPC functional [48]. The last two columns report the genISI2 correlation energy and the HOMO-LUMO gap. We also report the
relative derivatives [∂i, see Eq. (27)] for FCI / CCSD(T) densities.

W0 W∞ W ′
∞ EGL2

c EgenISI2
c Gap (eV)

Harmonium
FCI −0.515 −0.743 0.207 −0.0496 −0.0370 11.47
∂ −15.7% 15.7% 8.4% 18.9%
S-VWN −0.511 (−0.8%) −0.738 (−0.7%) 0.204(−1.4%) −0.0497(+0.2%) −0.0371 11.32
PBE −0.513 (−0.4%) −0.741 (−0.3%) 0.205(−1.0%) −0.0498(+0.4%) −0.0372 11.42
HF −0.515 (0%) −0.743 (0%) 0.208(0.5%) −0.0304(−38%) −0.0283 20.84
OEPx −0.515 (0%) −0.743 (0%) 0.208(0.5%) −0.0494(−0.4%) −0.0368 11.45

Helium
FCI −1.024 −1.491 0.644 −0.0480 −0.0414 20.40
∂ −6.9% +6.9% +2.6% +27.1%
S-VWN −0.998 (−2.5%) −1.454 (−2.5%) 0.619 (−3.9%) −0.0533 (+11%) −0.0440 16.90
PBE −1.013 (−1.1%) −1.476 (−1.0%) 0.634 (−1.6%) −0.0514 (+7.1%) −0.0431 17.00
HF −1.026 (+0.2%) −1.492 (+0.1%) 0.645 (+0.2%) −0.0366 (−23%) −0.0345 27.46
OEPx −1.026 (+0.2%) −1.492 (+0.1%) 0.646 (+0.3%) −0.0478 (−0.4%) −0.0412 20.77

Neon
CCSD(T) −12.078 −20.051 23.041 −0.4741 −0.3884 17.12
∂ −2.6% +2.5% +0.3% +29.5%
S-VWN −12.008 (−0.6%) −19.964 (−0.4%) 22.952 (−0.4%) −0.499 (+5.3%) −0.403 15.53
PBE −12.044 (−0.3%) −20.011 (−0.2%) 23.016 (−0.1%) −0.491 (+3.6%) −0.421 15.15
HF −12.108 (+0.2%) −20.076 (+0.1%) 23.045 (0%) −0.367 (−22.6%) −0.320 27.39
OEPx −12.104 (+0.2%) −20.078 (+0.1%) 23.044 (0%) −0.4631(−2.3%) −0.3819 18.44

other quantities are not much affected (with a relative devi-
ation of few percent, and often much smaller). In fact, the
value of the EGL2

c energy is directly related to the HOMO-
LUMO energy gap (last column of Table III), whereas the
other ingredients depend only on the ground-state density
(matrix), which does not change much. PBE overestimates
|EGL2

c |, whereas HF largely underestimates it. Similarly, re-
duced values of |EGL2

c | will be obtained for all global and
range-separated hybrid functionals with a HOMO-LUMO gap
approaching the many-body one [126,127]. Instead, the ACII
functionals require the much smaller KS gap, so that a |EGL2

c |
larger than the exact correlation energy is obtained. In fact,
the total correlation energy from ACII formulas is always a
fraction of the input |EGL2

c | correlation. The best agreement
with the reference EGL2

c is obtained using OEPx orbitals, and
in fact, OEPx gives an energy gap closer to the reference
KS one [48,128].

More sophisticated approaches [48,112] are more com-
putationally demanding or numerically cumbersome. In
addition, although a full self-consistent calculation of ACII
functionals is possible [48], a more direct assessment of the
functionals can be done using the same exact-exchange ref-
erence orbitals (i.e., OEPx), resembling the density-corrected
DFT [129]. Thus, the calculation of genISI2 correlation ener-
gies on OEPx orbitals seems the best choice, considering both
the accuracy and the computational cost. Then, for all finite
systems, the considered ACII functionals have been evaluated
using OEPx orbitals.

If the genISI2 functional is used with very different orbitals
(PBE, HF), a proper scaling of the EGL2

c must be used. Other-
wise, the results can be quite nonphysical.

2. Harmonium

In Fig. 6, we show the relative errors (in %) given by
ACII functionals for harmonium within a broad interval of
frequencies 0.03 � ω � 1000. Calculations are done using
OEPx orbitals, which gives quite an accurate density in this
case [47,48].

In the strongly correlated regime (i.e., ω � 0.5), the best
result is given by the LB followed by the genISI2 (with

FIG. 6. Relative error on correlation energies of harmonium at
various values of ω computed with OEPx orbitals for several ACII
functionals using the hPC model for the strong-interaction function-
als. The errors have been computed with respect to FCI data obtained
in the same basis set [111].
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FIG. 7. H2 dissociation curve computed in a spin-restricted for-
malism with several ACII functionals, using OEPx orbitals. The
exact curve is also reported.

−2% � RE � −0.5%), while the worst is SPL (with the er-
ror below 10%). GL2 is very inaccurate in this region. On
the other hand, for the tighter bound electrons (ω � 1) until
the high-density limit (ω � 100), the genISI2 gives a similar
performance to other methods being much better than genISI,
which is the worst.

Overall, the genISI2 (MARE = 2.77%) improves over the
genISI (MARE = 4.55%), being better than other function-
als, such as SPL (MARE = 7.66%), ISI (MARE = 5.09%),
and revISI (MARE = 3.79%). The LB gives the smallest
MARE = 0.52%, which is consistent with other predictions
[44], and it has been related to a very efficient error cancel-
lation effect in the coupling-constant-averaged energy density
for small and large distances.

3. H2 Dissociation

In Fig. 7, we report the H2 dissociation curve using a
spin-restricted formalism for ISI, revISI, genISI, and genISI2,
as well as the FCI (exact) results. We used OEPx orbitals and
aug-cc-pV5Z basis-set. Note that, for two-electron systems,
OEPx calculation can be done exactly, as the exchange po-
tential is half of the Hartree potential [130]. In addition, the
singly excited term vanishes [112]. Figure 7 highlights three
important regions:

(i) at equilibrium distance (see inset on the left), all meth-
ods are quite accurate. The highest accuracy is obtained from
LB, genISI2, ISI, and revISI, while genISI over-binds and SPL
under-binds.

(ii) at the dissociation limit, all ISI methods converge to a
constant D, in contrast to GL2, which diverges. The constant
D can be directly computed as

D = E [H2] − 2E [H] = 2(E [H1/2,1/2] − E [H]), (28)

where E [H1/2,1/2] is the total energy of the strongly correlated
hydrogen atom [86] with half electron spin-up spin-down
occupation. The resulting energies are reported in Table IV. In
the limit EGL2

c = −∞, genISI and genISI2 reduce to the same
UEG-ISI functional, and thus the same energy (–0.47239 Eh)

TABLE IV. Total energy in Eh of H1/2,1/2 and the hydrogen atom
(H) for different methods. Results for H1/2,1/2 are reported with both
OEPx and exact orbitals. For H, OEPx orbital is exact. The MARE%
is 100(H1/2,1/2 – H)/0.5 at OEPx orbitals.

H1/2,1/2 H

@OEPx @Exact @Exact MARE%

OEPx −0.35769 −0.34373 −0.5 28.5%
PBE −0.45366 −0.45639 −0.49941 9.1%
r2SCAN −0.44804 −0.45034 −0.5 10.4%
M06 −0.43481 −0.43552 −0.49958 13.0%

ISI −0.47591 −0.48120 −0.5 4.82%
revISI −0.47350 −0.47738 −0.5 5.30%
genISI −0.47239 −0.47536 −0.49840 5.20%
genISI2 −0.47239 −0.47536 −0.5 5.52%
SPL −0.49994 −0.51676 −0.5 0.01%
LB −0.49994 −0.51676 −0.5 0.01%

Exact −0.5 −0.5

is obtained. An almost perfect agreement is obtained with
the SPL and LB functionals. We recall that SPL and LB
perform identical (as W∞), in the limit EGL2

c = −∞. However,
it should be considered that this is just an error cancellation
between the approximated electronic density and the (approx-
imated) hPC SCE model. Using the exact density, in fact, the
SPL and LB give a too low energy. The difference between
SPL (LB) and the other ACII functionals originates from the
W ′

∞ contribution, which does not vanish using approximated
expressions, such as PC or hPC, see Ref. [48]. The exact W ′

∞ is
zero for E [H1/2,1/2], and, in this case, all the ACII functionals
will be identical to SPL (LB). Table IV also shows that all
ACII functionals are more accurate than other conventional
functionals, such as PBE, r2SCAN [131] and M06 [132]

(iii) in the region around 4–8 a.u. (see right inset), a large
repulsive bump emerges in the case of SPL and LB, and also
for ISI and revISI. On the other hand, genISI and genISI2
show a much smoother curve. The bump is related to defi-
ciencies of XC energy expression to describe fully the regions
where static and dynamic correlation effects interplay. This
issue has already been discussed in the literature in different
contexts [41,90–92]. We note that proper dissociation for H2

can be recovered using highly nonlocal [41] forms of AC or by
using simple AC formulas [93] with accurate input ingredients
for W∞ and W ′

∞.
In summary, the genISI2 provides a quite accurate descrip-

tion of the H2 dissociation curve, performing significantly
better than genISI near the equilibrium distance, while at large
distances between the H atoms, both genISI2 and genISI are
similar, recovering the UEG-ISI functional. Their behaviors
strongly depend on the quality of the approximations for W∞
and W ′

∞. However, they yield the exact result when the exact
SCE W∞ and W ′

∞ ingredients are used.

4. Molecular systems

First, we show in Table V the total energies (in Eh) for a
test-set of five atoms and 11 small molecules, previously used
in ab initio DFT calculations [112]. Although total energies
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TABLE V. Total energies (Eh) for several ACII functionals computed using OEPx orbitals, with respect to CCSD(T) reference data. The
last two rows report the MAE (in mEh) and MARE errors. For comparison, we also report total energies from MP2 and some conventional
DFT functionals (PBE, r2SCAN and M06, with self-consistent densities). The best results from ACII functionals are boldfaced.

System CCSD(T) MP2 PBE r2SCAN M06 LB SPL ISI revISI genISI genISI2

He −2.9025 −2.8970 −2.8929 −2.9050 −2.9118 −2.9032 −2.9015 −2.9019 −2.9021 −2.9024 −2.9028

Be −14.6623 −14.6424 −14.6299 −14.6502 −14.6638 −14.6767 −14.6728 −14.6710 −14.6702 −14.6745 −14.6655

Ne −128.9000 −128.8924 −128.8659 −128.9606 −128.9559 −128.9465 −128.9363 −128.9273 −128.9231 −128.9287 −128.9083

Mg −199.8282 −199.8157 −199.9539 −200.0831 −200.0648 −199.8690 −199.8657 −199.8656 −199.8656 −199.8637 −199.8663

Ar −527.4575 −527.4336 −527.3451 −527.5971 −527.5363 −527.5440 −527.5309 −527.5148 −527.5071 −527.5089 −527.4882

HF −100.3958 −100.3861 −100.3859 −100.4627 −100.4469 −100.4534 −100.4419 −100.4315 −100.4266 −100.4323 −100.4096

CO −113.2574 −113.2339 −113.2323 −113.3237 −113.2986 −113.3680 −113.3476 −113.3277 −113.3185 −113.3260 −113.2872

H2O −76.3869 −76.3720 −76.3754 −76.4404 −76.4200 −76.4457 −76.4327 −76.4208 −76.4152 −76.4211 −76.3958

H2 −1.1727 −1.1650 −1.1662 −1.1867 −1.1716 −1.1717 −1.1695 −1.1702 −1.1705 −1.1720 −1.1711

He2 −5.8051 −5.7939 −5.7859 −5.8098 −5.8238 −5.8040 −5.8008 −5.8017 −5.8021 −5.8018 −5.8038

Cl2 −919.7703 −919.7222 −920.0431 −920.4839 −920.3740 −919.9427 −919.9302 −919.9241 −919.9211 −919.9300 −919.9098

N2 −109.4763 −109.4562 −109.4507 −109.5365 −109.5040 −109.6093 −109.5861 −109.5611 −109.5497 −109.5548 −109.5134

Ne2 −257.8000 −257.7850 −257.7319 −257.9211 −257.9119 −257.8931 −257.8727 −257.8548 −257.8463 −257.8574 −257.8168

HCl −460.5093 −460.4823 −460.6385 −460.8714 −460.8074 −460.5920 −460.5855 −460.5823 −460.5807 −460.5854 −460.5746

NH3 −56.5233 −56.5016 −56.5072 −56.5670 −56.5407 −56.5715 −56.5588 −56.5486 −56.5439 −56.5516 −56.5253

C2H6 −79.7641 −79.7145 −79.7270 −79.8288 −79.7821 −79.8343 −79.8124 −79.7988 −79.7923 −79.8106 −79.7630

MAE 19.87 58.46 127.52 100.25 63.60 53.16 43.96 39.66 44.86 24.86

MARE 0.086% 0.111% 0.141% 0.082% 0.056% 0.062% 0.048% 0.041% 0.039% 0.022%

are not very important in practical chemical applications, they
are essential observables and are especially useful as indica-
tors of the quality of the ACII interpolation functions.

The genISI2 (with MAE ≈ 25 mEh and MARE ≈
0.02%) gives the best performance among ACII functionals,
being almost twice better than revISI (MAE ≈ 40 mEh and
MARE ≈ 0.04%), which is slightly more accurate than ISI
and genISI. These results are followed by SPL (MAE ≈ 53
mEh and MARE ≈ 0.06%) and LB functional (MAE ≈ 64
mEh and MARE ≈ 0.06%). The MP2 method yields the best
MAE (20 mEh), but the MARE is quite large due to larger in-
accuracies for the smaller systems. The worst performance is
given by the semilocal r2SCAN (MAE ≈ 127 mEh and MARE
≈ 0.14%), which largely overestimate the total energies, as
also found in Ref. [133]. Results for M06 and PBE are better
than r2SCAN, but they are 3–5 times worse than genISI2.

We note that the total energy test is important from the
theoretical point of view for all functionals based on the MP2
correlation because it can also show if a given functional that
is accurate for atomization energies of molecules relies on an
error cancellation (e.g., most semilocal GGA and meta-GGA
XC functionals).

Next, let us consider the popular AE6 benchmark that is
representative for the atomization energies of a large molec-
ular database [134]. Note that we consider the error versus
CCSD(T) results in the same basis-set and not versus ex-
perimental results. In this way, a more simple and direct
comparison can be performed without considering complete-
basis-set extrapolation issues. In Table VI, we show the AE6
atomization energies (in kcal/mol) from the ACII functionals.
The genISI2 improves over all the other considered function-
als, reducing the MAE from �33 kcal/mol to ≈19 kcal/mol.
This is a quite significant improvement. However, we should
point out that other conventional approaches such as r2SCAN
and M06 give much lower errors. [We recall again that our

reference is CCSD(T) in the same-basis-set and not the experi-
mental results.] In fact, the calculation of atomization energies
with ACII functional based on KS orbitals is still a challenge,
such that the genISI2 functional is an important step in this
direction.

To better visualize the performance of each functional,
we report in Fig. 8 the absolute relative errors (ARE) on
total energies versus the ones on atomization energies for the
six molecules of the AE6 test. As shown, the genISI2 gives
a systematic improvement for all the molecules. Thus, the
maximum error on atomization energies is for the S2 dimer
(ARE = 32.9%), followed by the SiO molecule (ARE =
21%), while all the remaining molecules have ARE below 4%.
On the other hand, the total energies are remarkably accurate,
the worst case being the SiO molecule with ARE = 0.0298%.

FIG. 8. Absolute relative errors (ARE) on the total energies vs
the ARE on atomization energies for the molecules of the AE6 test
(SiH4, SiO, S2, C3H4, C2H2O2, and C4H8). We use the CCSD(T) as
reference data (see also Table VI).
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TABLE VI. Atomization energies (in kcal/mol) of the AE6 test. For ACII functionals OEPx orbitals are used, while for PBE, r2SCAN
and M06 self-consistent densities are employed. The last two rows report the error statistics (MAE and MARE) computed with respect to
CCSD(T) reference data. The best ACII results are highlighted in bold.

CCSD(T) PBE r2SCAN M06 LB SPL ISI revISI genISI genISI2

SiH4 318.8 311.9 320.0 326.0 327.4 325.7 324.5 323.9 327.4 320.9
SiO 182.0 193.5 185.1 189.4 241.7 237.4 231.8 229.1 231.8 220.2
S2 94.3 112.6 109.2 103.5 134.7 132.7 130.6 129.6 133.3 125.3
C3H4 690.8 721.4 704.8 705.1 749.1 737.8 726.4 721.2 724.8 702.2
C2H2O2 618.1 664.4 635.9 637.0 711.4 696.9 678.3 669.8 668.5 644.3
C4H8 1130.5 1168.8 1151.4 1148.1 1192.9 1177.3 1164.1 1158.0 1166.4 1133.6
MAE 25.3 12.0 12.4 53.8 45.6 36.9 32.9 36.3 18.7
MARE 7.2% 4.1% 3.8% 17.9% 16.2% 14.3% 13.4% 14.6% 10.1%

In Table VII, we show the results for the ionization
potentials of the 32 systems (atoms and small molecules)
reported in Ref. [116]. The best result among ACII group

of approximation is found from genISI2 (MARE = 3.5%,
MAE = 0.44 eV), which gives a systematic improvement over
the other functionals, providing the best result for 27 systems

TABLE VII. Ionization potentials (in eV) computed from an energy difference obtained for several ACII expressions. For comparison, we
also report the PBE, r2SCAN, and M06 ionization potentials; PBE, r2SCAN, and M06 are from self-consistent densities. The last two rows
report the error statistics [MAE (eV) and MARE (%)] computed with respect to reference data. The best results from ACII functionals are
boldfaced.

Ref. PBE r2SCAN M06 LB SPL ISI revISI genISI genISI2

Ar −15.63 −15.70 −15.81 −15.81 −16.15 −16.10 −16.01 −15.97 −15.94 −15.89
Be −9.31 −9.00 −8.59 −8.94 −9.72 −9.63 −9.58 −9.55 −9.76 −9.38
C2H2 −11.43 −11.40 −11.21 −11.17 −12.36 −12.21 −12.01 −11.91 −11.88 −11.64
C2H4 −10.63 −10.60 −10.38 −10.35 −11.40 −11.25 −11.07 −10.99 −11.00 −10.72
C2H6 −13.01 −11.93 −12.07 −12.25 −12.70 −12.69 −12.70 −12.70 −12.74 −12.71
CH2CF2 −10.61 −10.30 −10.27 −10.41 −11.00 −10.93 −10.84 −10.79 −10.78 −10.67
CH3CN −10.75 −10.42 −10.45 −10.56 −11.94 −11.80 −11.61 −11.52 −11.47 −11.28
CH4 −14.37 −13.95 −14.16 −14.08 −14.65 −14.58 −14.51 −14.49 −14.52 −14.37
CHF3 −14.59 −13.40 −13.80 −14.20 −15.75 −15.71 −15.67 −15.65 −15.67 −15.60
Cl2 −11.45 −11.21 −11.47 −11.49 −11.05 −11.06 −11.07 −11.08 −11.07 −11.10
CO2 −13.70 −13.61 −13.64 −13.80 −14.93 −14.80 −14.62 −14.54 −14.49 −14.33
CO −13.94 −13.82 −13.91 −13.90 −14.62 −14.54 −14.46 −14.42 −14.42 −14.31
CS −11.27 −11.27 −11.27 −11.22 −14.16 −14.02 −13.82 −13.72 −13.73 −13.45
FCN −13.65 −13.27 −13.28 −13.33 −15.83 −15.68 −15.46 −15.36 −15.29 −15.11
H2CO −10.83 −10.69 −10.60 −10.85 −11.70 −11.58 −11.42 −11.35 −11.32 −11.16
H2CS −9.29 −9.23 −9.16 −9.26 −10.47 −10.39 −10.28 −10.22 −10.22 −10.07
H2O −12.50 −12.60 −12.42 −12.59 −13.19 −13.08 −12.92 −12.85 −12.83 −12.66
HCCF −11.50 −11.13 −11.09 −11.16 −12.08 −11.97 −11.82 −11.75 −11.71 −11.57
HCl −12.59 −12.69 −12.75 −12.70 −13.15 −13.11 −13.07 −13.06 −13.10 −12.98
HCN −13.90 −13.73 −13.57 −13.69 −15.74 −15.54 −15.26 −15.14 −15.06 −14.80
He −24.48 −24.47 −24.62 −24.79 −24.54 −24.50 −24.51 −24.52 −24.51 −24.54
He2 −24.48 −21.50 −21.30 −22.57 −24.62 −24.60 −24.58 −24.56 −25.17 −24.42
HF −15.96 −16.11 −15.97 −16.10 −16.68 −16.58 −16.43 −16.37 −16.35 −16.18
Mg −7.57 −7.61 −7.55 −7.57 −8.03 −8.00 −7.99 −7.98 −8.16 −7.92
N2 −15.51 −15.34 −15.61 −15.62 −13.96 −14.11 −14.52 −14.69 −15.00 −14.95
NCCN −13.51 −13.12 −13.16 −13.18 −13.34 −13.51 −13.94 −14.12 −14.44 −14.43
Ne2 −21.34 −18.55 −18.98 −19.71 −22.03 −21.94 −21.81 −21.75 −21.74 −21.59
Ne −21.47 −21.66 −21.50 −21.72 −22.08 −21.98 −21.86 −21.80 −21.80 −21.64
NH3 −10.78 −10.83 −10.67 −10.74 −11.31 −11.20 −11.08 −11.02 −11.02 −10.84
OCS −11.18 −11.22 −11.31 −11.26 −12.30 −12.22 −12.09 −12.03 −11.99 −11.89
P2 −10.66 −10.49 −10.57 −10.62 −10.38 −10.38 −10.38 −10.38 −10.38 −10.37

SiH4 −12.78 −12.40 −12.38 −12.61 −13.02 −12.99 −12.97 −12.96 −13.01 −12.91
MAE 0.00 0.40 0.40 0.29 0.80 0.71 0.61 0.57 0.59 0.44
MARE 0.00% 2.54% 2.58% 1.87% 6.45% 5.75% 4.95% 4.59% 4.74% 3.52%
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FIG. 9. Bar plot of the normalized MARE for the seven tests and
the six ACII functionals considered in this paper. The last section re-
ports the normalized MARE averaged over all tests.

out of 32. After that, ISI, revISI, and genISI give almost simi-
lar performances (with 4.6% � MARE � 5% and 0.57 eV �
MAE � 0.61 eV), while SPL and LB have the worst perfor-
mances, with MAE � 0.7 eV. We note that genISI2 gives very
similar performance to other conventional approximations
such as PBE (MAE = 0.4 eV; MARE = 2.54%) or r2SCAN
(MAE = 0.4 eV; MARE = 2.58%) being only slightly worse
than M06 functional (MAE = 0.29 eV; MARE = 1.87%).

V. SUMMARY AND CONCLUSIONS

We have developed an ACII approach, denoted as genISI2,
that satisfies the negativity constraint of the correlation energy
and the exact conditions for the weak- and strong-interaction
limits. When the GL2 correlation diverges, the genISI2 ap-
proach recovers the UEG-ISI functional, which is correct for
the 3D uniform electron gas. On the other limit, i.e., when the
GL2 correlation vanishes, the genISI2 correlation energy also
correctly goes to zero, see Eq. (17).

The genISI2 functional is based on two parameters that
have been fixed from the correlation energies of small
systems, where the ingredients used for the weak- and strong-
interaction limits (W0, W ′

0 , W SCE
∞ , and W ′SCE

∞ ) are known
(almost) exactly. Such a simple optimization procedure seems
powerful and practical because the AC correlation integrand
of the genISI2 functional Wα,c achieved good accuracy for
both the harmonium and Ne atoms, as reported in Fig. 2.
Moreover, improved results are obtained for other very dif-
ferent systems, ranging from two-dimensional systems to
atomization energies of molecules.

We compared genISI2 with all the currently available ACII
functionals. In Fig. 9, we report the normalized MARE,

η
j
i = MARE j

i
1
6

∑
j MARE j

i

, (29)

where MARE j
i is the MARE of the ith test for functional j.

The index j runs over the six ACII functionals considered,
and the index i runs over the seven tests considered, namely:
3D UEG (see Table II), 2D UEG (see Table II), harmo-
nium (see Sec. IV C 2), the strongly correlated hydrogen (see
Table IV), total energies of atoms and molecules (see Ta-
ble V), atomization energies (see Table VI), and ionization
potential (see Table VII).

The first section of Fig. 9 shows that for the 3D UEG, as
also discussed in Ref. [50], SPL and LB are very inaccurate,
while revISI and ISI improve significantly. Instead, by con-
struction, genISI and genISI2 are almost exact.

For the quasi-2D IBM, which is one of the most severe
tests for XC density functionals [69], we have shown that
the genISI2 performs remarkably well in the whole quasi-2D
regime, see Sec. IV A. For the true 2D UEG (see the second
section of Fig. 9), the genISI2 is the best functional. Such
high accuracy for 3D, quasi-2D and 2D uniform electron gases
should make it attractive for various electronic calculations of
solid-state and condensed-matter physics.

In the case of finite systems, we have shown that great
care is required for the calculation of the GL2 correlation
energy, being the most important ingredient to obtain the
correct correlation energy, which depends strongly on the
chosen ground-state orbital. While fully self-consistent calcu-
lations are, in principle, possible [48], a more computationally
cheaper yet accurate approach is required to investigate large
systems. We have shown in Table III that Kohn-Sham OEPx
orbitals can be a reliable choice to obtain accurate ingredients
for the weak- and strong-interaction limits (W0, W ′

0 , W∞, and

FIG. 10. (Upper panel) The correlation energy Ec (a.u.) vs W ′
0

(a.u.) for harmonium (κ = 1/4), for three ACII functionals. Other
ingredients are from Table I. For the harmonium (κ = 1/4), W ′

0 =
−0.101. (Lower panel) The adiabatic connection correlation inte-
grand Wc,α vs α (in log scale), for the point B of the first panel
(indicated with an arrow), where W ′

0 = −0.04 Ha.
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W ′
∞). Thus, all finite-system calculations in this paper have

been performed using OEPx orbitals.
For the harmonium (see third section of Fig. 9), genISI2

improves with respect to all ACII functional, except LB,
which is almost exact. LB (and also SPL) is almost exact for
the H2 dissociation (see the fourth section of Fig. 9), whereas
all the other ACII approaches give similar errors. However, as
discussed in Sec. IV C 3, for these strongly correlated electron
systems, the accuracy of the results also strongly depends on
the accuracy of W∞, and W ′

∞ (in this paper approximated with
hPC) and not only on the ACII interpolation formula. Using
the exact SCE for W∞, and W ′

∞, all the ACII functionals will
be exact.

For atoms and molecular systems, we have observed
a systematic improvement of the genISI2 functional with
respect to the other ACII approximations for total ener-
gies, atomization energies, and ionization potential, see last
three sections of Fig. 9. Those are hard tests, despite the
fact that the final results are not yet competitive with the
most accurate quantum-chemistry methods. Note, in addi-
tion, that the genISI2 functional has been parametrized on
exact values, whereas for the calculations of real atoms and
molecules, approximated quantities are used (i.e., OEPx or-
bitals instead of exact ones, hPC model data instead of SCE).
Thus, further improvement of the results can be expected if
this ACII functional is parametrized on those approximated
ingredients.

Averaging over all tests, the genISI2 has η = 0.63, a
relevant improvement concerning ISI, revISI, and genISI,
which are all above 0.85. We thus expect that genISI2

can have broader applicability and find applications in
different areas, ranging from real metal clusters to solid-state
systems.
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APPENDIX: THE NEGATIVITY CONDITION
OF THE CORRELATION ENERGY

To visualize the negativity condition of the correlation en-
ergy, let us fix W0, W∞, and W ′

∞ with the harmonium values
(see Table I) and we vary W ′

0 (note that for the harmonium
W ′

0 = −0.101). The results are reported in the upper panel
of Fig. 10, where we observe that genISI correlation energy
becomes positive when W ′

0 → 0, and genISI2 solves this fail-
ure. Moreover, as shown in the lower panel of Fig. 10, the
correlation integrand Wc,α of genISI2 remains smooth, with
the correct slope at α → 0, even for the difficult case when W ′

0
is small (W ′

0 = −0.04), where genISI curve becomes wrongly
positive and nonmonotonic.
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