
PHYSICAL REVIEW B 109, 235128 (2024)
Editors’ Suggestion
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The search for elusive Nagaoka-type ferromagnetism in the Hubbard model has recently enjoyed renewed at-
tention with the advent of a variety of experimental platforms enabling its realization, including moiré materials,
quantum dots, and ultracold atoms in optical lattices. Here, we demonstrate a universal mechanism for Nagaoka
ferromagnetism (that applies to both bipartite and nonbipartite lattices) based on the formation of ferromagnetic
polarons consisting of a dopant dressed with polarized spins. Using large-scale density-matrix renormalization
group calculations, we present a comprehensive study of the ferromagnetic polaron in an electron-doped Hubbard
model, establishing various polaronic properties such as its size and energetics. Moreover, we systematically
probe the internal structure of the magnetic state—through the use of pinning fields and three-point spin-charge-
spin correlation functions—for both the single-polaron limit and the high-density regime of interacting polarons.
Our results highlight the crucial role of mobile polarons in the birth of global ferromagnetic order from local
ferromagnetism and provide a unified framework to understand the development and demise of the Nagaoka-type
ferromagnetic state across dopings.
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I. INTRODUCTION

The Hubbard model [1–3], a veritable workhorse for much
of our modern understanding of strongly correlated quantum
matter, is believed to underlie the physics of a wide variety
of complex materials [4]. In its simplest form, the model de-
scribes a system of itinerant spin-1/2 electrons hopping on a
lattice of N sites with a tunneling amplitude t while interacting
via a local onsite potential of strength U . The corresponding
fermionic Hamiltonian can be written as

H0 = −t
∑

〈i, j〉,σ
(c†

iσ c jσ + H.c.) + U
∑

i

ni↑ni↓, (1)

where c†
i,σ , ci,σ are the creation and annihilation operators,

respectively, for an electron with spin σ = {| ↑〉, | ↓〉} on site
i, ni,σ ≡ c†

i,σ ci,σ denotes the associated number operator, and
the sum on 〈i, j〉 runs over all pairs of nearest-neighbor (here-
after, NN) sites. In the 60 years since its proposal, the Hubbard
model and its variants have been found to host a fascinat-
ingly diverse set of quantum phases that run the gamut from
magnetic states, such as antiferromagnets and topological spin
liquids, to charge density waves and superconductivity [5].

Given the inherent complexity of the correlated electron
problem, it is perhaps unsurprising that although remark-
able progress has been made with numerical studies of the
Hubbard model [6,7], to date, only a few exact analytical
results are known [8–10]. One such result is the rather strik-
ing Nagaoka theorem [11], which asserts that for U = ∞
and nonnegative t , the ground state of the Hubbard model
on a bipartite lattice with periodic boundary conditions (in
D � 2 spatial dimensions) doped with a single hole away
from half filling is ferromagnetic [12–14], as opposed to the
antiferromagnetic ground state of the half-filled system [15].

Intuitively, this follows from very general kinetic consider-
ations, depicted in Fig. 1. The hopping of dopants, either
holes or doublons, necessarily scrambles an antiferromagnetic
spin texture [16,17], leaving behind energetically unfavorable
“strings” of displaced spins. However, such charge motion
does not disrupt a ferromagnetic configuration, thus allowing
carriers to be less confined, whereupon the kinetic energy gain
from delocalization wins over the competing antiferromag-
netic superexchange.

While mathematically rigorous, the Nagaoka theorem is of
limited practical utility since any realistic system can only
ever be at finite U/t , which introduces its own subtleties
[18–20]. Moreover, the stringent requirement of exactly one
dopant is not generalizable to the thermodynamic limit; the
situation with a finite density of carriers is also far from clear
cut, with arguments both for [21–29] and against [30–38] the
existence of high-spin ground states under certain conditions.

Nonetheless, a few years ago, signatures of this elusive
itinerant ferromagnetism were observed experimentally for
the first time in small (four-site) quantum dot plaquettes [39].
Another especially promising platform for the quantum sim-
ulation of Fermi-Hubbard models is proferred by ultracold
atoms trapped in optical lattices [40–42], with recent exper-
iments on these systems also demonstrating ferromagnetism
[43], albeit in a frustrated triangular-lattice geometry. On
such triangular lattices, magnetism is invariably intertwined
with kinetic frustration [44–46] as follows. As pointed out
by Haerter and Shastry [47], the motion of a single hole
(doublon) in a spin-polarized background leads to destructive
(constructive) quantum interference between different paths
on a nonbipartite lattice. To maximally lower their kinetic
energy, propagating holes therefore prefer to promote anti-
ferromagnetic spin correlations around themselves (thereby

2469-9950/2024/109(23)/235128(13) 235128-1 ©2024 American Physical Society

https://orcid.org/0000-0001-5171-7798
https://ror.org/00hx57361
https://ror.org/00hx57361
https://ror.org/00hx57361
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.109.235128&domain=pdf&date_stamp=2024-06-13
https://doi.org/10.1103/PhysRevB.109.235128


RHINE SAMAJDAR AND R. N. BHATT PHYSICAL REVIEW B 109, 235128 (2024)

= ↓
= ↑

U
x x

(a)

(b)

(c)

= ↑↓

t

FIG. 1. Schematic illustration of how ferromagnetism can be
kinetically favored. (a) In a ferromagnetic state, the hopping of
a down spin (red) in a background of up spins (blue) allows the
doublon (green) to move freely. However, for an antiferromagnetic
configuration (b), the motion of the doublon creates defects in the
underlying spin texture, as sketched in (c) for a doublon moving two
steps to the right. Due to the bipartite nature of the square lattice,
the same argument holds irregardless of whether the relevant charge
carriers are doublons or holes.

releasing the frustration) [48–50] whereas doublons induce a
local ferromagnetic environment [23,51]. This phenomenon
of kinetic ferromagnetism has only recently been observed in
cold-atom experiments [52,53], which demonstrated the de-
velopment of ferromagnetic polarons: bound states consisting
of a dopant dressed with polarized spins. A natural question
to then ask, which we address in our work, is whether this
mechanism of polaron formation holds even without kinetic
frustration.

Such magnetic polarons have been extensively documented
for quantum antiferromagnets in which the movement of a
hole distorts the underlying Néel order [17,54–58]. However,
ferromagnetic polarons (henceforth referred to as “Nagaoka
polarons”) have been less well characterized, with nearly
all theoretical studies [59–63] focusing on the so-called t-J
model [Eq. (5) below], which represents an approximation
to the Hubbard model in the limit of large U/t . Here, we
present a comprehensive investigation of the Nagaoka po-
laron problem in a Hubbard model, without simplification to
the aforementioned t-J limit, using large-scale density-matrix
renormalization group (DMRG) calculations [64–67]. In par-
ticular, we will consider an extended version of the doped
Hubbard model [68,69], in which the second electron on any
site of the lattice is much more weakly bound than the first,
and accordingly, the hopping depends on the occupation of

the site. The main advantage afforded by this model is that it
greatly reduces the critical U/t required for ferromagnetism
on the square lattice, which is beneficial for the numerical
stability of variational algorithms like DMRG. Crucially, the
ferromagnetic ground states of both the extended and the
regular Hubbard models belong to the same quantum phase
and can be smoothly connected by varying the microscopic
parameters of the theory; hence, they share the same physics.

To begin, in Sec. III, we first consider square clusters
with open boundary conditions and substantiate the formation
of Nagaoka polarons as a route to itinerant ferromagnetism
at large U/t . Strictly speaking, such ferromagnetism arises
without all the conditions for Nagaoka’s theorem being met
but for the rest of this work, we adopt the nomencla-
ture “Nagaoka ferromagnetism” to label this phenomenon,
even though, more accurately, it is only a Nagaoka-type.
We then systematically establish the properties of individual
polarons—including their energetics, size, and mobility—and
discuss their extension to the higher-density regime of in-
teracting polarons. Motivated by these observations, we turn
thereafter to the study of square-lattice geometries compact-
ified on long cylinders in Sec. IV. With such cylindrical
boundary conditions (open along the cylinder axis and pe-
riodic in the transverse direction), in addition to the fully
saturated Nagaoka state, we find striped configurations com-
prising ferromagnetic domains interrupted by domain walls.
Irrespective of the global or local natures of the ferromagnetic
order, we show the emergence of polaronic quasiparticles
with various techniques, including the judicious application
of pinning fields and examining specially tailored three-point
spin-charge-spin correlation functions. We emphasize how-
ever that our results are obtained for finite-size systems and
not necessarily for the thermodynamic limit since we cannot
rule out phase separation at long length scales [70]. Our main
findings are highlighted in Sec. V and also briefly summarized
in Fig. 2, which depicts the different magnetic ground states
of the system as the doping concentration is varied. Some
additional calculations on the one-dimensional version of this
model and smaller (square) cylinders are detailed in Appen-
dices A and B, respectively.

II. MODELS AND METHODS

The extended Hubbard model that we investigate was
originally introduced to study hydrogenic donors in semi-
conductors [68,69]; see also Refs. [71–73]. In an isolated
hydrogen atom, the one-electron 1s bound state has a binding
energy of 1 Ry, but the two-electron state (H−) is bound by
only 0.055 Ry, i.e., it is much more weakly bound than the
single-electron state. Consequently, H− is much larger in size
than the neutral H atom. A Hubbard-like model for an array
of hydrogenic centers thus naturally needs to be generalized
to one where the hopping parameter is dependent on the
occupation. This is captured by the extended Hubbard model

H = −
∑

〈i, j〉,σ
(t (ni, n j )c

†
iσ c jσ + H.c.) + U

∑
i

ni↑ni↓, (2)
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FIG. 2. As a function of the electron doping concentration away
from half filling, δ > 0, we find four distinct magnetic regimes as
illustrated pictorially here, with blue (red) sites denoting up (down)
spins. For small δ, the dopants form isolated polarons with local
ferromagnetic (FM) ordering around each doublon core and antifer-
romagnetic (AFM) order further away. The radius of this polaronic
cloud, Rpol, grows as U/t is increased. When doped with more
electrons, the system crosses over to a multipolaron regime forming
ferromagnetic domains (due to the kinetic energy gain from elec-
tron delocalization) but with different polarizations across domains
(as favored by the superexchange). This—and the previous—regime
may be viewed as a dilute gas of polarons, which is well described
by an effective noninteracting single-particle picture. As the doping
is increased even further, one transitions to a regime of strongly
interacting polarons at a critical δc ∼ R−2

pol; the individual mobile
polarons now overlap, causing the corresponding magnetic domains
to be polarized homogeneously. The system, which can be regarded
as correlated polaronic fluid in this regime, thus becomes fully ferro-
magnetic. Finally, at very large dopings, this global ferromagnetism
is progressively destroyed due to the reduced availability of singly
occupied sites, which suppresses electron hopping and fragments the
extended domains.

where ni = ∑
σ c†

i,σ ci,σ is the total occupation of site i and
the correlated hopping alluded to above is of the form

t (ni, n j ) =
{

t̃ if ni = 1 and n j = 2
t otherwise

. (3)

Note that the choice of the bare hopping t for the second
case of Eq. (3) is essential to recover the exact asymptotic
spatial dependence [74] of the effective exchange interaction
∼ e−2r/aB (∼ t2/U for t ∼ e−r/aB ), where aB is the effective
Bohr radius of the hydrogenic centers. By construction, this
model is patently electron-hole asymmetric and previously,
high-spin ground states were found to be attained at much
lower U/t for electron doping than hole doping [69]. There-
fore, throughout this work, we will focus exclusively on the

electron-doped case. On setting t̃ = t , H just reduces to the
conventional Hubbard model H0. However, a larger value
of t̃/t expands the regions where the ground state attains
its maximum possible spin [68] (since an enhanced hopping
amplitude increases the kinetic benefit of electron delocaliza-
tion). Accordingly, we will work at a fixed t̃/t = 4 unless
mentioned otherwise, but, as stressed earlier, all our conclu-
sions about the Nagaoka polaron should apply to the case of
t̃/t = 1 as well.

In the regime of large U/t 	 1 and at above half-filling,
one can construct a low-energy theory of the extended Hub-
bard model (2) by projecting out the unoccupied state. In
this reduced Hilbert space, defined by retaining the states
{| ↑〉, | ↓〉, | ↑↓〉} on each site, the effective Hamiltonian is

H̃ = −t̃
∑

〈i, j〉,σ
(c̄†

iσ c̄ jσ+ H.c.) + 4t2

U

∑
〈i, j〉

(
Si · S j − 1

4
nin j

)
,

Sα
i ≡

∑
μ,ν

c†
iμτα

μνciν ; α = x, y, z, (4)

where c̄iσ ≡ ciσ niσ̄ is the projected electron operator (σ̄ =↓
for σ =↑ and vice versa), and τα is a Pauli matrix in spin
space. Importantly, the spin exchange is independent of t̃ and
equals 4t2/U (on the square lattice), which is the same as that
for the regular Hubbard model (1). Defining the conventional
t-J model [75,76] as

HtJ = −t
∑

〈i, j〉,σ
(c̄†

iσ c̄ jσ + H.c.)+J
∑
〈i, j〉

(
Si · S j − 1

4
nin j

)
, (5)

it easy to observe that the effective Hamiltonian (4) derived
above is simply a rescaled version of Eq. (5), i.e., H̃ ≡
(t̃/t )HtJ with J = 4 t3/(t̃ U ). Although we do not directly
study the t-J model in our numerical investigations, we will
see that it serves as a useful descriptor of polaronic properties
in certain limits.

We analyze the extended Hubbard model (2) using DMRG,
which provides an optimized matrix product state representa-
tion of a target wave function. Throughout our calculations,
we maintain a truncation error of <10−6 by adaptively in-
creasing the bond dimension as required, up to χ = 6000.
Employing both open and cylindrical (unidirectionally peri-
odic) boundary conditions, we explore the possible ground
states for a broad range of U/t and dopings. In particular, we
find a variety of magnetically ordered states (including fully
polarized high-spin ones) at moderate to large U/t .

III. SQUARE CLUSTERS

Most numerical studies of Nagaoka ferromagnetism in the
square-lattice Hubbard model have focused on the infinite-U
limit, which has been investigated for small clusters [77–79],
with Lanczos techniques, as well as extended domains, us-
ing dynamical mean-field theory [80,81], variational quantum
Monte Carlo (QMC) [26,38], or DMRG [82,83]. However,
in order to understand the magnetic interactions in the spin
sector, it is important to consider the (more generalizable)
Hubbard model at finite U . The question of ferromagnetism
in this case poses a much more challenging problem, and
the system sizes probed thus far have been rather limited,
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FIG. 3. Ground states, with open boundary conditions, on 5 × 5 (top panel) and 6 × 6 (bottom panel) square arrays doped with one to
four electrons, for t̃/t = 4, U = 10 t̃ . The diameter of each circle is proportional to the local excess electron density 〈ni〉 − 1. The length of
the arrows on each site indicates the magnitude of 〈S0 · Si〉, with the central (white, unmarked) site chosen as the reference spin S0. The color
of the circles as well as the orientation of the arrows conveys the sign of the spin correlations, with blue (red) denoting positive (negative)
correlations.

ranging from plaquettes of ∼5–16 sites (amenable to exact
diagonalization) [68,69,84] to ∼20 sites in more recent works
on full configuration interaction QMC [85,86].

Here, we start by studying the full extended Hubbard
model (2) on L × L square arrays for L = 5, 6; our results are
tabulated for clusters with open boundary conditions in Fig. 3.
The corresponding results with cylindrical boundaries will
be discussed in Appendix B, Fig. 13. While some ground-state
properties can depend on the microscopics for these finite
system sizes, let us highlight the salient features observable
in Fig. 3 that underscore a few general trends. First, on doping
the system with a single electron, we can visually identify the
formation of a ferromagnetic bubble residing near the center
of the lattice (owing to the boundary conditions) for both
L = 5 and 6. While the spins are polarized within this bubble,
far away from it, the spin-spin correlations turn antiferromag-
netic [25]. By virtue of the reasoning presented in Fig. 1,
the doublon can move around freely only inside this bubble
whereas its longer-range motion would necessarily disrupt the
antiferromagnetic background. We refer to this combination
of the doublon and the polarization cloud in its vicinity as
a polaron. Now, if we add an extra electron, the two clouds
of polarized spins surrounding each doublon can either be
of the same polarization (L = 5) or the opposite (L = 6).
Which situation prevails is decided by the delicate interplay
between the gain in kinetic energy from delocalization, which
is aided by enlarging ferromagnetic domains, and the antifer-
romagnetic exchange energy that prefers to maximize domain
walls, thereby favoring smaller domains. However, away from
the bipolaron, the correlations still continue to be antiferro-
magnetic. Increasing the doping further, to three electrons,

leads to the onset of long-range global ferromagnetic order
that extends across the entire system (in distinction to the
local ferromagnetism observed in the previous two cases) as
the polaronic wave functions start to overlap. For both the
doped 5 × 5 and 6 × 6 arrays, we find that the spins are
now all fully polarized in the quantum ground state, forming a
saturated Nagaoka ferromagnet. Lastly, we observe that pro-
ceeding to even higher dopant concentrations (four electrons)
actually impedes ferromagnetism and the system transitions
to a paramagnetic phase [26], which can be understood as fol-
lows. Recall, per Fig. 1, that the very origin of ferromagnetism
is due to the enhancement in the kinetic energy gained by a
delocalized electron in a spin-aligned background relative to
the case of the background spins being in an antiferromagnetic
(or random) configuration. However, such favorable hopping
processes are hindered at large doublon concentrations be-
cause electrons cannot move between two sites which are both
doubly occupied. In fact, at high densities and large U/t , the
doublons should have correlations resembling those of free
hard-core bosons [79,87] and the collective charge motion is
governed by a reduced hopping probability that depends on
the spin part of the wave function.

The ground states with cylindrical boundary conditions,
shown in Fig. 13, are qualitatively similar, with the key dif-
ference being the development of stripes, for certain dopings,
which compete with extended ferromagnetic ordering. In this
section, however, we focus on arrays with open boundary
conditions, deferring a detailed discussion of clusters with
cylindrical boundaries to Appendix B. We note that smaller
(3 × 3 and 4 × 4) clusters with fully periodic boundary con-
ditions have been studied by Refs. [68,69], and the results
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FIG. 4. Energy of an isolated Nagaoka polaron as a function
of U/t at t̃/t = 4, as determined from Eq. (6) for a 5 × 5 (green
circles) or 6 × 6 (blue triangles) square lattice doped with one elec-
tron above half filling. The dashed and dash-dotted lines mark the
rescaled (by t̃/t) predictions from the t-J [Eq. (7)] and t-Jz [Eq. (8)]
models, respectively.

therein are in complete consistency with the polaronic mech-
anism that we develop below.

A. Properties of the Nagaoka polaron

Having identified the formation of magnetic polarons, we
now characterize their size and energetics. To specifically
study the properties of individual noninteracting polarons, we
consider the case of a single electron doped into a 5 × 5 or
6 × 6 square cluster.

First, we compute the polaron’s energy, defined as

Epol = E1 − (E0 + U ), (6)

where E1 is the energy of the system doped with one excess
electron and E0 is that of the undoped system. Epol therefore
represents the energy gained by ferromagnetically polarizing
some subset of the spins (i.e., by the creation of the polaron)
relative to the Néel-ordered antiferromagnetic ground state
of the doublon-free undoped system. Note that in the def-
inition of Epol in Eq. (6), we have subtracted out a trivial
shift of the energy due to the interaction U so as to isolate
the magnetic contribution to the polaron’s energy. For the
L = 5, 6 clusters, Fig. 4 displays that Epol is lowered—and
correspondingly, polaron formation is favored—with growing
U/t . This behavior is in accordance with the intuition that
the antiferromagnetic exchange interaction, which competes
against ferromagnetism, is diminished as U/t is increased.

In the t-J model, a straightforward analysis balancing the
kinetic energy of a doublon propagating freely within a fer-
romagnetic droplet against the magnetic energy of the bubble
(vis-à-vis the Néel state) shows that the energy of the polaron
should scale as

√
J [61]. Subsequent work [62] has since

shown that a better numerical fit of the polaronic energy in
the t-J model is given by (in units where t = 1)

EtJ = −4 + 4.6 J 0.42. (7)

This curve is plotted in Fig. 4 for comparison to our data,
and the reasonable agreement of the numerically determined

Epol with this theoretical scaling further confirms our picture
of polaron formation. Furthermore, in the small-J limit, the
motion of a doublon is confined to its associated ferromag-
netic polaron cloud, so spin-flip (S+

i S−
j + S−

i S+
j ) processes are

strongly suppressed. This motivates the consideration of an
Ising version of the t-J model [88,89]

1HtJz
= −t

∑
〈i, j〉,σ

(c̄†
iσ c̄ jσ+ H.c.) + Jz

∑
〈i, j〉

(
Sz

i Sz
j − 1

4
nin j

)
,

which drops the spin-flip part of the Heisenberg interaction in
(5), thereby lifting the SU(2) spin-rotation symmetry inherent
to the regular Hubbard and t-J models. In this case, the energy
of the polaron is roughly given by [61]

EtJz
= −4 + 6.03

√
Jz, (8)

which is also compared against our data in Fig. 4. For suffi-
ciently low U/t , however, there are important corrections to
the polaronic picture as described by Brinkman and Rice [16]
and Shraiman and Siggia [17]: in such a regime, the doublon
can also make excursions outside the ferromagnetic bubble in
the form of self-retracing walks or “strings”, and the energy
scales as J2/3 [61].

While the values of Epol obtained for the extended Hubbard
model are broadly consistent with the predictions for both
EtJ and EtJz (after rescaling by the factor of t̃/t), Fig. 4 does
exhibit noticeable deviations even for large U/t , where the
t-J models are supposed to be good approximations. This
difference between the Hubbard and t-J behaviors can be un-
derstood by examining the higher-order magnetic interactions,
which arise in a perturbative expansion of the Hubbard model.
The leading correction is a biquadratic ring exchange [90,91]
described by

H� = J�
∑

〈i, j,k,l〉
[(Si · S j )(Sk · Sl ) + (Si · Sl )(S j · Sk )

− (Si · Sk )(S j · Sl )], (9)

where i, j, k, l label the four spins located around a square
plaquette and J� ∼ O(t4/U 3) > 0 can be as large as 20%
of J [92] depending on the bandwidth. In a ferromagnetic
background, as occurring for large U/t , this term thus has a
positive contribution, wherefore the energies of the t-J and
t-Jz models underestimate the Hubbard Epol.

As the energy Epol decreases with increasing U/t , the po-
laron also grows in size (as J−1/4 for the t-J model [61]),
eventually expanding to fill the whole system below some
threshold J ∼ O(1/N2). This theoretically expected growth
of the polaron can be observed in Fig. 5, where we plot the
exchange energy 〈Si · S j − nin j/4〉 for nearest-neighboring
i, j on the square lattice [61]. From Eq. (5), one can infer that
this expectation value is a direct measure of the disturbance of
an antiferromagnetic spin texture by a ferromagnetic polaron.
Note that although 〈Si · S j − nin j/4〉 is indeed seen to be
enhanced around a doublon in Fig. 5, it never exactly attains
its maximal value of zero due to a combination of finite-size
effects and the fact that we calculate this quantity for a Hub-
bard, rather than a t-J , model.

A similar mechanism also applies for doping with more
than one electron. For a fixed U/t , the fraction of sites in
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FIG. 5. The antiferromagnetic exchange energy 〈Si · S j−nin j/4〉
for nearest-neighboring i, j on a 6 × 6 lattice doped with one excess
electron at (a) U = 5 t̃ , and (b) U = 10 t̃ (t̃/t = 4 in both cases).
The color of each bond as well as its thickness is scaled according to
the value of 〈Si · S j−nin j/4〉. The vanishing correlations at the center
of the lattice delineate the extent of the ferromagnetic polaron.

the ferromagnetic bubble grows with the doping fraction as
Rpol/N ∝ δ [62]. This consequently lowers the critical U/t
required for Nagaoka ferromagnetism compared to the case
with a single electron dopant (as seen in Fig. 3 above).

B. Role of polaronic mobility

Our previous calculations pertain to the limit where the
density of doublons is low enough such that the system
is well-described by a dilute gas of isolated polarons cou-
pled to a spin background via the kinetic term. However, as
the doping concentration is increased, interactions between
these polaronic quasiparticles become more important. In this
regime (see, e.g., the three- and four-electron-doped cases in
Fig. 3), extended ferromagnetic order can arise from the spa-
tial overlap between the wavefunctions of different (mobile)
polarons, which prompts the spins around their respective
doublons to be polarized similarly. This is because if two like
polarons are positioned adjacent to each other, the doublon
cores of each can now collusively delocalize over twice as
large a ferromagnetic region [5].

Central to this mechanism therefore is the mobility of the
Nagaoka polaron. To corroborate this hypothesis, we engineer
its contrapositive by explicitly pinning the doublons to certain
sites of the lattice using an attractive local potential [93,94],
which disfavors their delocalization. Specifically, we consider
a 6 × 6 array doped with Nd = 4 electrons and apply a pin-
ning potential, −V ns, on four sites s chosen so as to respect the
rotational and reflection symmetries of the underlying square
lattice.

Treating the Nd doublons as spinless noninteracting
fermions that fill a quadratic band, the total energy of such
a multipolaron system can be easily approximated in the t-J
model, along the same lines as the single-polaron calculation.
For the optimal polaron size, this evaluates to [62]

EtJ (Nd ) = 2Nd (
√

2πJ − 2), (10)

FIG. 6. Charge densities and spin correlations of the ground
states of a 6 × 6 square lattice with open boundaries, doped with
four excess electrons, for t̃/t = 4, U = 10 t̃ , and pinning fields of
strength (a) V = U/4, and (b) V = 3U/8 applied on the four sites
at the center of each 3 × 3 corner of the array (marked by green
dots).

in units where t = 1. Equation (10) yields an initial estimate
for the threshold value of the pinning potential per polaron,
Vth = (t̃/t )|EtJ (Nd )|/Nd , that must be applied in order for the
energy gain from the pinning to disrupt the ferromagnetic
state.

The spin correlations of the 6 × 6 cluster (doped with four
electrons) at large U/t in the absence of any on-site pinning
field (V = 0) are plotted at the bottom right in Fig. 3. These
are to be contrasted with the situation for nonzero V shown in
Fig. 6. First, upon the application of a pinning field of strength
V = U/2 < Vth [Fig. 6(a)], we see that the system forms four
ferromagnetic patches, one centered around each doublon.
Hence, local ferromagnetic order still persists but the domains
thus formed are of smaller size than in the field-free case due
to the reduced doublon mobility. On the other hand, for a
potential V = 3U/8 > Vth [Fig. 6(b)], this phase becomes
unstable to the creation of a predominantly antiferromagnetic
state but with weak ferromagnetic correlations on only the NN
bonds next to the tightly pinned polarons.

IV. POLARON FORMATION IN EXTENDED SYSTEMS

Having demonstrated the origin of Nagaoka ferromag-
netism via polaron formation in relatively small square arrays,
we now proceed to investigate this mechanism in extended
systems. To this end, we study long cylinders of width four
and length up to 30 sites; these dimensions are close to the
current limit of state-of-the-art ground-state DMRG numerics
[95,96]. For this four-leg ladder, all our results are found
to be independent of the length for cylinders that are 12-
, 18-, 24-, or 30-site long, indicating that we are not limited
by finite-size effects in the axial direction. We will further
focus on the optimal doping fraction (for ferromagnetism) of
δ ≡ Nd/N = 1/12 suggested by the results of Fig. 3.

The distinctive new feature that emerges on such cylin-
drical geometries, as identified by Ref. [46], is the exis-
tence of competing magnetically ordered ground states with
stripes, i.e., unidirectional charge- and spin-density modula-
tions [97–99]. Such an inhomogeneous striped ground state
(Fig. 13), which breaks both rotational and translational sym-
metries, arises due to the competition between the domain
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FIG. 7. Ground states of the extended Hubbard model (2) on a 30 × 4 cylinder at δ = 1/12 electron doping with t̃/t = 4, U = 10 t̃ , and
local pinning potentials (a) V = 0, (b) V = U/4, and (c) V = U/2 applied to the ten lattice sites marked by the green dots in (b) and (c).
The effect of the pinning can be visually discerned from the growth of the charge density (the diameter of the circle) on these sites as V is
increased. The spin-spin correlations are plotted using the same conventions as in Fig. 3.

walls favored by the antiferromagnetic exchange and the lack
thereof preferred for kinetic delocalization. However, increas-
ing U/t weakens the spin exchange and eventually, the system
undergoes a first-order quantum phase transition to a fully
saturated ferromagnetic state at U/t ∼ 30 [46].

The polaronic nature of this ferromagnetism can be demon-
strated once again by using local pinning potentials, which
we now apply in a staggered fashion along the length of
the cylinder. The number of pinned sites is chosen to be the
same as the number of excess electrons. When the pinning
fields are absent, as mentioned above, the system exhibits
long-range ferromagnetic order that spreads across the entire
lattice without any domain walls [Fig. 7(a)]. On applying a
potential of strength V = U/4 [Fig. 7(b)], this global order
fractures into smaller stripes, each of a width such that it
accommodates exactly one doublon on average. The natural
interpretation here is that while polarons still continue to form,
their extent is limited. As before, this effect of the pinning can
be attributed to the reduced mobility of the doublons which, in
turn, lowers the kinetic energy gain driving ferromagnetism.
Upon increasing V even further, to U/2, we observe that the
polaron’s radius shrinks to now encompass only the NN sites
of a doublon [Fig. 7(c)] and the correlations in the ground state
are mostly antiferromagnetic.

To gain further insights into the ferromagnetic polarons
that we have seen develop, it is useful to probe the spin
environment around the doublons at a microscopic level. The
polarization of the spins in the vicinity of a dopant electron
can be quantified by a three-point function

G(r0; r1, r2) = 〈(nr0
− 1)Sr1

· Sr2
〉, (11)

which measures the correlations between two spins positioned
at lattice sites r1 and r2 given some excess charge density at
site r0. G(r0; r1, r2) can equivalently be expressed in terms
of the displacement between the spins, d = r2 − r1, and the

vector to the location of the doublon, r = (r1 + r2)/2 − r0, as

G(r0; r, d ) = 〈(nr0
− 1)Sr0+r−d/2 · Sr0+r+d/2〉. (12)

We define G(r, d ) as this three-point correlator spatially aver-
aged over r0 as well as radially averaged over r and d (with
r ≡ |r|, d ≡ |d|). Working in units where the lattice spacing
a is set to unity, we analyze G(r, 1), G(r,

√
2), and G(r, 2)—

which correspond to first- (NN), second- (2NN), and third-
nearest-neighboring (3NN) pairs of spins, respectively—for
the ferromagnetic state sketched in Fig. 7(a). To avoid edge
effects due to the open boundaries at the ends of the cylin-
der, we restrict r1 and r2 to the ten central columns of the
30 × 4 lattice. Since the discrete nature of the lattice results
in a set of often closely spaced distances r, we coarse grain
the data in (nonoverlapping) windows [r̄ − 	r, r̄ + 	r] to
separate out the features of the Nagaoka state, which has a
long correlation length, from nonuniversal short-wavelength
(lattice-scale) fluctuations. Figure 8 plots G(r, d ) as a func-
tion of the distance to the doublon r for three bond lengths
d = 1,

√
2, 2. The decrease in G(r, d ) with increasing r con-

veyed by Fig. 8 indicates that spins are more likely to be
aligned closer to a doublon—in consistency with our pola-
ronic picture—while the slow nature of the decay points to
the presence of long-range ferromagnetic order.

While G(r, d ) characterizes the local distortion and re-
organization of magnetic correlations in the proximity of a
doublon, it also includes contributions from virtual doublon-
hole quantum fluctuations. Holes contribute with an opposite
sign to (nr0 − 1) than doublons, and their effects may thus be
difficult to disentangle in an averaged correlator à la Eq. (12).
To circumvent this complication, we sample the ground-state
DMRG wave function in the ẑ basis, {|0〉, | ↑〉, | ↓〉, | ↑↓〉},
and generate 100 000 snapshots; this is analogous to per-
forming projective measurements in experiments. Using these
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FIG. 8. Decay of the (normalized) three-point correlator
G(r̄, d )/p [Eq. (11)] in the Nagaoka ferromagnetic state of Fig. 7(a),
as a function of the coarse-grained distance r̄ (with 	r = 0.75) of a
NN (d = 1), 2NN (d = √

2), or 3NN (d = 2) pair of spins from the
excess charge. The error bars on the y-axis represent the standard
deviation of G(r, d )/p ∀r ∈ [r̄ − 	r, r̄ + 	r]. The small dynamic
range of the variation in G as a function of r̄ is indicative of the
presence of long-range ferromagnetic order.

samples, we then compute the modified three-point correlator

G(r0; r, d ) = 〈
Sz

r0+r−d/2 · Sz
r0+r+d/2

〉∣∣ ••r0
, (13)

which tracks the correlations between two spins separated
by d conditioned on the presence of a doublon at r0 [94].
Note that the quantum expectation value indicated by the
angular brackets now reduces to an average over the individ-
ual sampled configurations. To differentiate between actual
dopants and naturally occurring doublon-hole fluctuations,
we exclude any doubly occupied site that has a hole as its
nearest neighbor. For each of the three states depicted in Fig. 7
(ferromagnetic, striped, and antiferromagnetic), we evaluate
G(r, d )—defined as G(r0; r, d ) averaged over all doublon po-
sitions r0—for vectors d corresponding to the NN and 2NN
bonds. This spin-charge-spin correlator allows us to directly
examine the internal structure of the Nagaoka polaron. For
instance, in the ferromagnet [Fig. 9(a)], we observe, on both
NN and 2NN bonds, that the spin-spin correlations, while
all positive, are strongest closest to the doublon and decay
with increasing distance therefrom. Likewise, in the striped
phase [Fig. 9(b)], the spins immediately next to the doublon
remain positively correlated. On the contrary, we find that
the NN bonds situated at rx = ±1.5 are antiferromagnetic,
implying that the stripes are of width three in the x̂ direction.
The anticorrelations visible in the 2NN (|d| = √

2) links also
owe their origin to the same effect. We emphasize here that
the spatial resolution of the vector r into rx and ry components
proves essential for distinguishing between the ferromagnetic
and striped states as the distinction between global and local
ferromagnetic order can be washed out upon radially averag-
ing r. Finally, in the antiferromagnet [Fig. 9(c)], we see that
the NN spin-spin correlations are negative while the 2NN ones
are positive. However, these (anti)correlations weaken for dis-
tances |rx| > 2, reflecting the influence of another doublon
further away from the one at the origin.

FIG. 9. NN (d = 1, left) and 2NN (d = √
2, right) conditional

spin correlations G(r, d ), plotted as a function of r = (rx, ry ), for
the (a) ferromagnetic, (b) striped, and (c) antiferromagnetic states of
Fig. 7. The correlations are represented by the bonds connecting two
lattice sites (white dots) and are sorted according to their distance
from a doublon (black circle at center). The thickness of each bond
is scaled in proportion to |G(r, d )|.

Going beyond the properties of the individual polarons
established above, we can additionally probe their interplay
in a multiple-dopant system by studying the interactions be-
tween doublons. To do so, we define the doublon-doublon
correlation function [94]

Cd (r1, r2) =
〈
nd

r1
nd

r2

〉〈
nd

r1

〉〈
nd

r2

〉 − 1, (14)

where nd
r = 1 if there is a doublon on site r and 0

otherwise. Figure 10 shows that the doublons appear anti-
correlated at short distances (with an exchange-correlation
hole approximately three lattice spacings in size) and uncor-
related beyond this length scale, as expected for fermionic
particles.
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FIG. 10. The radially averaged doublon-doublon correlation
function of the δ = 1/12 electron-doped extended Hubbard model
on a 30 × 4 cylinder at t̃/t = 4, for U = 6 t̃ (blue circles) and
U = 10 t̃ (red triangles), corresponding to striped and ferromagnetic
ground states, respectively. The dashed line marks the average dis-
tance between doublons � 3.20, as computed from the statistics of
100 000 projective samples of the wave functions.

V. DISCUSSION AND OUTLOOK

To summarize, in this work, we have presented exten-
sive numerical evidence coupled with theoretical analysis to
demonstrate that the formation of magnetic polarons lies at the
heart of Nagaoka ferromagnetism in the Hubbard model. Our
analysis illustrates that Nagaoka ferromagnetism is funda-
mentally a cooperative phenomenon in that the interaction of
individual polarons, each possessing only local ferromagnetic
correlations around a dopant, can engender global ferromag-
netism in a macroscopic system. This also implies that the
ferromagnetism can be tuned by modifying the properties
of the underlying polarons. For instance, we have seen that
starting from a predominantly antiferromagnetic state, one can
induce—or increase the extent of—ferromagnetic correlations
by increasing U/t ; at the microscopic level, this corresponds
to enlarging the Nagaoka polaron. Conversely, given a state
that is ferromagnetic to begin with, one can destroy the
long-range magnetic order by preventing the delocalization
of doublons, such as via pinning potentials. This under-
scores the vital importance of the mobility of the polarons,
which coalesce to form an extended ferromagnetic state. All
these considerations taken together lead to the schematic
phase diagram of Fig. 2, which outlines the correspondence
between the magnetic phases of the Hubbard model and
their associated polaronic interpretations developed in our
study.

Within the broader theoretical landscape, our results shed
new light on the possibility and origin of itinerant ferromag-
netism in the Hubbard model, a long-standing problem that
has been tackled with diverse approaches over the years. Per-
haps the simplest starting point in this regard is Hartree-Fock
theory, which yields ferromagnetic ground states whenever
the Stoner criterion is satisfied, i.e., D(EF )U > 1, where
D(EF ) is the density of states at the Fermi energy. Such a
theory does predict ferromagnetism in extended regions of
the Hubbard model’s phase diagram, but the validity of this

purely static mean-field picture expectedly breaks down in the
intermediate- to strong-coupling regime where one anticipates
ferromagnetism [100]. A proper treatment of the Hubbard
model, accounting for correlation effects, shows that the be-
havior of the Nagaoka ferromagnet is highly lattice dependent
[101]. In particular, certain routes to ferromagnetism are often
specific to nonbipartite lattices: these include the Haerter-
Shastry mechanism [47], which results from frustration due
to three-site loops, as well as the so-called “low-density” or
Müller-Hartmann ferromagnetism [102] that arises due to a
large and asymmetric density of states at the band edge. At
first glance, this suggests that the microscopic details of the
system cannot be neglected when it comes to understanding
ferromagnetism, which would preclude a universal descrip-
tion of the physics. However, by studying the simple bipartite
square lattice here, we establish that the polaronic mechanism
driving ferromagnetism is a universal and robust property of
the Nagaoka state which does not rely on kinetic frustration
or other lattice-specific considerations. Hence, our general
conclusions regarding polaron formation should also apply
to triangular lattices, which have been recently investigated
in ultracold-atom experiments [43,52,53] and semiconduc-
tor moiré superlattice systems such as WSe2/WS2 bilayers
[44,103,104].

Looking ahead, other interesting directions in which our
calculations can be extended include exploring the influence
of disorder, finite temperatures, and long-ranged Coulomb
interactions on ferromagnetism. Incorporation of these effects
would be both useful and important for describing arrays of
gate-defined semiconductor quantum dots [39], which have
recently emerged as another promising platform for quantum
simulation of the Hubbard model [105,106] and potentially,
Nagaoka ferromagnetism.
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APPENDIX A: ONE-DIMENSIONAL MODEL

While the primary focus of our work has been on two
spatial dimensions, the problem of ferromagnetism in the one-
dimensional Hubbard model [108] also has a long and rich
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history. Here, we briefly note some salient results and direct
the reader to Refs. [109,110] for more detailed reviews.

For one dimension, Lieb and Mattis [111] rigorously
proved that the ground state of the single-band Hubbard
model—with only nearest-neighbor hoppings and on-site
density-density interactions—is a singlet. Therefore, obtain-
ing ferromagnetic ground states requires circumvention of
the assumptions underlying the Lieb-Mattis theorem. Broadly
speaking, four different routes towards this end have been
investigated. One such way is to introduce orbital degeneracy
by considering a multiband extension of the Hubbard model.
Then, the local exchange interactions between electrons in
different orbitals on the same site (which align unpaired
electrons on each atom by Hund’s rule) may lead to ferro-
magnetism, i.e., the hopping of holes or electrons can yield a
bulk ordering of preformed atomic moments [100,112–114].
Another option is to add in interactions such as the nearest-
neighbour Coulomb repulsion terms [19,20,115], which are
always present in the underlying electronic system but are ab-
stracted away in the Hubbard model. Similarly, the inclusion
of longer-range hopping terms such as −t2

∑
i(c

†
i,σ ci+2,σ +

h.c.) has also been tied to the emergence of ferromagnetism
both analytically (in certain limits) [102,116,117] as well as
numerically [118–122]. This is because the proof of the Lieb-
Mattis theorem relies on a definite ordering of the particles,
which is no longer enforced when t2 �= 0. Lastly, it is possible
to assemble several (identical) copies of such long-range mod-
els to obtain models with only short-range hoppings that still
exhibit ferromagnetism [109]. This opens up the direction of
inducing “flat band” ferromagnetism [123–128] by modifying
the Hubbard model such that the lowest bands (in the single-
particle spectrum) are altered to be either exactly or nearly
dispersionless.

Given this backdrop, it is thus only natural to ask about
the physics of the extended Hubbard model in one dimension.
Rewriting the Hamiltonian (2) as

H = − (t̃ − t )
∑

〈i, j〉,σ
(c†

iσ c jσ ni (n j − 1) + c†
jσ ciσ n j (ni − 1))

− t
∑

〈i, j〉,σ
(c†

iσ c jσ + c†
jσ ciσ ) + U

∑
i

ni↑ni↓, (A1)

we observe that the hopping in the first line gets dressed
by the occupation factors resulting in a four-operator term,
which describes a correlated hopping process [129] with no
counterpart in the conventional Hubbard model (1). Conse-
quently, determining the ground state of this model and its
spin properties is a nontrivial task that is not immediately
addressed by the Lieb-Mattis theorem.

Here, we study the one-dimensional (1D) system numeri-
cally on long chains of up to 96 sites using DMRG. The first
quantity that we examine is the connected two-point correla-
tion function,

Ci j = 〈Si · S j〉 − 〈Si〉 · 〈S j〉, (A2)

which is plotted in Fig. 11 for a chain of length L = 24 doped
away from half filling with electrons at two different doping
concentrations. We observe that the dominant NN correlations
are actually antiferromagnetic and upon increasing the doping
fraction, the 2NN correlations also become antiferromagnetic.

FIG. 11. Two-point correlation function Ci j of a 24-site chain at
t̃/t = 4, U = 10 t̃ , doped away from half filling with (a) two elec-
trons and (b) six electrons, corresponding to dopant concentrations
of 1/12 and 1/4, respectively.

This antiferromagnetic character is found to hold for a wide
variety of chain lengths (L = 12
, 
 = 2, 3, . . . , 8), dop-
ing concentrations (1/12, 1/6, 1/4), and model parameters
(U/t̃ ∈ [5, 50]), and is numerically robust in that it persists
even when the system is explicitly initialized with a ferromag-
netic configuration. This is in stark contrast to the behavior
in two dimensions. The difference between the two cases
can be understood per the intuition outlined in Fig. 1: the
hopping of a dopant does not scramble an antiferromagnetic
background in one dimension since the associated domain
wall is a point-like (as opposed to line-like in two dimensions)
object.

To microscopically probe the origin of the antiferromag-
netic correlations seen in Fig. 11, it is also useful to quantify
the polarization of the spins in the vicinity of a dopant elec-
tron. This is achieved by the 1D version of the three-point
function in Eq. (11),

Gi(r) = 〈(ni − 1)Si−r · Si+r〉, (A3)

which should show the development of a ferromagnetic po-
laron, if any. In Fig. 12, we plot the correlation function Gi(r)
averaged over i, denoted as G(r), for several different lattice
sizes and doping concentrations in the regime of large U/t
where one might expect ferromagnetism. In order to avoid
trivial boundary effects, we exclude L/4 sites from each end of
the chain, so that the computed three-point function accurately
reflects the bulk behavior. We find that for moderately large
U (� 5 t̃ ), G(r) is always negative for r = 1, independent
of system size, and never becomes appreciably positive for
distances of up to r = 8. This reveals that the spins tend to
be partially antialigned near an excess electron, and the mag-
nitude of this anticorrelation increases with doping. Hence, a
ferromagnetic polaron never forms.

Since the site-averaged correlation function G(r) could po-
tentially suffer from cancellations between contributions from
electron-rich and hole-rich spatial regions, due to the factor of
(ni − 1) in Eq. (12), we also compute the modified three-point
function

G̃i(r) = 〈(ni − 1)2Si−r · Si+r〉. (A4)
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FIG. 12. Absence of polaron formation in the 1D extended
Hubbard model (2). Here, we plot the three-point correlator Gi(r)
[Eq. (12)], averaged over the central L/2 lattice sites i, as a function
of r for five system sizes and electron doping concentrations (a) 1/12,
(b) 1/6, and (c) 1/4, at t̃/t = 4, U = 10 t̃ .

While not explicitly shown in Fig. 12, the site-averaged Gi(r)
and G̃i(r) are found to be virtually identical, indicating that for
the doped system, the dominant contribution to G(r) is from
the majority carriers.

APPENDIX B: SQUARE ARRAYS ON CYLINDERS

The ground states of the extended Hubbard model on
square clusters with cylindrical boundary conditions are ar-
rayed in Fig. 13. While these states exhibit some similarities
to the ones with open boundaries, displayed in Fig. 3, a new
feature, for certain dopings, is the development of stripe or-
dering [46]. Such stripes are well exemplified, for instance,
by the two-electron-doped systems, which convey that it can
sometimes be energetically favorable to form two smaller fer-
romagnetic domains (thus optimizing the antiferromagnetic
exchange contribution along the long domain wall) at the
expense of a single larger one. This is because the periodic
boundaries along the circumference of the cylinder increase
the kinetic energy gain from delocalization over a given area,
relative to a system with open boundaries, and together with
the superexchange, this can offset the energetic cost of con-
fining the doublon to a smaller spatial region. Under certain
circumstances, such as for the 6 × 6 system doped with four
electrons, the spin texture can also form square domains, as
opposed to elongated stripes. However, rather than a simple
checkerboard arrangement, we observe that each 3 × 3 do-
main is slightly displaced from the one adjacent to it so as
to allow the doublons to delocalize over a larger ferromagnet-
ically ordered region.

FIG. 13. DMRG ground states on 5 × 5 (top) and 6 × 6 (bottom) square clusters with cylindrical boundary conditions, doped with one to
four electrons, for t̃/t = 4, U = 10 t̃ . All the plots follow the same conventions as used in Fig. 3.
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