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Spin fluctuations sufficient to mediate superconductivity in nickelates
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Infinite-layer nickelates show high-temperature superconductivity, and the experimental phase diagram agrees
well with the one simulated within the dynamical vertex approximation (D�A). Here, we compare the spin-
fluctuation spectrum behind these calculations to resonant inelastic x-ray scattering experiments. The overall
agreement is good. This independent cross validation of the strength of spin fluctuations strongly supports
the scenario, advanced by D�A, that spin fluctuations are the mediator of the superconductivity observed in
nickelates.

DOI: 10.1103/PhysRevB.109.235126

I. INTRODUCTION

Contrasting cuprates [1] to the new nickelate supercon-
ductors [2–9] offers the unique opportunity to understand
high-temperature (Tc) superconductivity more thoroughly: the
two systems are similar enough to expect a common origin
of superconductivity, but at the same time distinct enough to
pose severe restrictions on any theoretical description. Struc-
turally, both nickelate and cuprate superconductors consist
of Ni(Cu)O2 planes that host the superconductivity. These
layers are separated by buffer layers of, e.g., Nd(Ca) atoms in
the infinite-layer compound NdNiO2(CaCuO2). Additionally,
both Ni and Cu exhibit a nominal 3d9 electronic configuration
in the respective parent compound, with a 3dx2−y2 -derived
band that is close to half filling.

Turning to the differences, a major one is that for cuprates
the oxygen 2p bands, which strongly hybridize with the Cu
3dx2−y2 band, are below but close to the Fermi energy. This
makes the parent compound a charge-transfer insulator [10],
and the Emery model [11] the elemental model for cuprates.
For nickelates, on the other hand, these 2p bands are shifted
down relative to the 3dx2−y2 band which is fixed to the Fermi
energy. As a consequence, the oxygen band is now sufficiently
far away from the Fermi energy. While there is still the
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hybridization with the Ni 3dx2−y2 band, the oxygen 2p bands
do not host holes if nickelates are doped. Instead, however, the
rare-earth 5d bands are also shifted down (compared to the Ca
bands that are above the Fermi energy in the cuprate CaCuO2),
now even cross the Fermi energy, and form two electron pock-
ets around the � and A momentum points. This is evidenced
by density functional theory (DFT) calculations [12–24] and,
experimentally, by the negative Hall conductivity [2,4] for
the infinite-layer compound. In all, this situation creates a
seemingly more complicated multiband picture already for the
undoped parent compound.

However, one of the pockets, the � pocket, shifts up and
even above the Fermi energy either when (i) doping into
the superconducting regime or (ii) when replacing Nd by
La in DFT + dynamical mean-field theory (DMFT) calcula-
tions [25,26] (and CaxLa1−xNiO2 shows a very similar phase
diagram to that of SrxNd1−xNiO2). Thus it appears unlikely
that the � pocket is the key for superconductivity in nickelates.
The A pocket, on the other hand, is more stable but it does not
hybridize with the Ni 3dx2−y2 band [27]. Hence, in Ref. [25]
the pockets were justifiably treated as a passive electron reser-
voir, largely decoupled from the Ni 3dx2−y2 band [28]. A
similar picture has also been advocated in Refs. [29–31].

While the pockets are important for the (Hall) conductiv-
ity, we expect superconductivity to primarily emerge from
the Ni 3dx2−y2 band which is strongly correlated. Indeed,
calculations based on this single-band model, with appro-
priately calculated doping (to account for the pockets) [25],
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FIG. 1. Superconducting phase diagram, Tc vs Sr doping x, of
SrxNd1−xNiO2. Following the discovery of nickelate superconduc-
tivity (“a priori,” data taken from Ref. [2]), Tc was calculated (“D�A
theory,” from Ref. [25]). The thus predicted Tc vs doping well agrees
with the one measured “a posteriori” (from Ref. [3]), especially
after “defect free” films have been synthesized (from Ref. [36]).
Pentalayer Nd6Ni5O12 [7] which has a 20% doping of the dx2−y2

orbital [38] also agrees with theory and infinite-layer SrxNd1−xNiO2

at the same doping of the Ni dx2−y2 orbital (upper x axis). The blue
region indicates where only the Ni dx2−y2 orbital and the A pocket
cross the Fermi level in multiorbital DFT + DMFT.

using the dynamical vertex approximation (D�A) [32–35]
were able to compute the superconducting phase diagram, in
good agreement with experiments [36,37]; see Fig. 1. In these
D�A calculations, antiferromagnetic (AFM) spin fluctuations
mediate d-wave superconductivity. Despite the agreement
of Fig. 1, it is imperative to further test this picture of
spin-fluctuation-mediated superconductivity in nickelates. An
important validation of the spin-fluctuation scenario comes
from comparing the spin-wave spectrum predicted by D�A
to that measured in experiment. This is the aim of the present
paper.

Specifically, signatures of AFM fluctuations have been
measured in resonant inelastic x-ray scattering (RIXS) [39],
nuclear magnetic resonance (NMR) [40], and muon spin rota-
tion and relaxation (μSR) [41], where the fluctuation lifetime
can exceed that of the muon [41]. Long-range AFM order
is, however, absent in infinite-layer nickelates [42,43], a no-
table difference from cuprates. One natural explanation is
the self-doping of the Ni 3dx2−y2 orbital induced by the A
and � pockets. At hole-doping levels similar to that of the
nickelate parent compounds, AFM order has also vanished in
cuprates [44,45]. Consequently, electron doping (or changing
a buffer layer to remove the pockets [46,47]) is presumably
needed to stabilize AFM order in nickelates.

In the present paper, we calculate and analytically continue
the magnetic susceptibility behind the D�A calculation of
Fig. 1. The nonlocal scattering amplitude (two-particle vertex)
at the heart of this magnetic susceptibility directly enters the
Cooper (particle-particle) channel as a pairing vertex and thus
mediates superconductivity. For details see Ref. [35]. We also
perform RIXS experiments and compare them to previous
RIXS data by Lu et al. [39]. We find theory and experiment to
be consistent. In particular, the strength of the experimental

AFM coupling is similar to the one extracted from D�A,
advocating that it is sufficient to mediate the Tc observed in
nickelate superconductors.

The outline of the paper is as follows: In Sec. II A, we
describe the theory behind the modeling of spin fluctua-
tions and superconductivity by a one-band Hubbard model,
the ab initio calculated parameters used, and the D�A cal-
culations performed (cf. Appendix). Similarly, in Sec. II B
the experimental methods are discussed, specifically the film
growth and RIXS measurements. Section II C discusses pos-
sible shortcomings and sources of errors when extracting the
paramagnon dispersion in theory and experiment. In Sec. III,
we compare the theoretical and experimental magnetic spec-
trum. An analysis of the results in terms of a spin-wave model
is presented in Sec. IV A. Its interaction dependence is elu-
cidated in Sec. IV B, and two possible effects of disorder are
discussed in Sec. IV C. Finally, Sec. V summarizes our results.

II. METHODS

A. Theory

1. Modeling

Previous work, based on DFT + DMFT [25,29], identified
two bands that cross the Fermi surface in the superconducting
regime of infinite-layer nickelates: one band with Ni 3dx2−y2

character and a pocket around the A momentum composed of
Ni 3d-t2g + Nd 5dxy character (subsequently referred to as the
A pocket; for some dopings and rare-earth cations there is also
an additional � pocket). However, the Ni 3dx2−y2 band and the
A pocket within the same cell do not hybridize by symmetry.
Hence, to a first approximation, they can be regarded as effec-
tively decoupled. In this picture, superconductivity is expected
to emerge from the Ni 3dx2−y2 band, which can be described
by a one-band Hubbard model [48]:

H =
∑
i jσ

ti j ĉ
†
iσ ĉ jσ + U

∑
i

n̂i↑n̂i↓. (1)

Here, ti j denotes the hopping amplitude from site j to site i;
ĉi

† (ĉ j) are fermionic creation (annihilation) operators and σ

marks the spin; n̂iσ = ĉ†
iσ ĉiσ are occupation number operators.

The Coulomb interaction is, because of screening, restricted
to the on-site interaction U . The electrons taken away by
the A pocket are accounted for by properly relating the Sr
doping to the dx2−y2 doping. This translation is displayed in
the difference between lower and upper x axis of Fig. 1, which
is based on multiorbital DFT + DMFT calculations [25].

2. Ab initio determined parameters

This Hubbard model has been used successfully as an
effective low-energy model to calculate the superconducting
dome in NdNiO2 [25]. Here, we employ exactly the same ab
initio–derived parameters for NdNiO2; see Table I, where t is
the nearest, t ′ the next-nearest, and t ′′ the next-next-nearest
neighbor hopping amplitude. The tight-binding parameters
are obtained after full relaxation of the lattice parameters with
VASP [49] using the PBE [50] version of the generalized gra-
dient approximation (GGA). In the presence of a substrate, we
fix the in-plane lattice parameters to that of the substrate. For
this crystal structure, the hopping parameters are subsequently
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TABLE I. Hopping parameters of the effective Ni 3dx2−y2 orbital
for nickelates with different spacer cations, two substrates [STO:
SrTiO3; LSAT: (La,Sr)(Al,Ta)O3], and bulk.

System t (eV) t ′/t t ′′/t

NdNiO2 (bulk) 0.395 −0.24 0.12
NdNiO2/STO 0.377 −0.25 0.13
NdNiO2/LSAT 0.392 −0.25 0.13
LaNiO2 (bulk) 0.389 −0.25 0.12
LaNiO2/STO 0.376 −0.23 0.11
LaNiO2/LSAT 0.390 −0.22 0.11
PrNiO2/STO 0.378 −0.25 0.13

obtained from a DFT calculation using Wien2K [51,52] and
Wien2Wannier [53] to construct maximally localized Wannier
orbitals [54]. As one can see from Table I the variation of these
hopping parameters among different nickelates and substrates
is minimal; cf. the discussion below. Because of this insensi-
tivity to structural details we restrict ourselves in the following
to one D�A calculation resembling the hopping parameters
of NdNiO2 (bulk). Specifically, we use the same hopping
parameters (t = 0.395 eV, t ′/t = −0.25, t ′′/t = 0.12) as in
Ref. [25] for calculating the data in Fig. 1 and use a tempera-
ture T = 60 K if not stated otherwise.

As in Ref. [25] the on-site Coulomb repulsion U is taken
from constrained random phase approximation (cRPA) calcu-
lations. A natural first choice would be to simply use U =
UcRPA(ω = 0), which is about 2.6 eV for the single-band ap-
proximation of LaNiO2 [18]. However, a slightly enhanced
static U is needed to empirically compensate for the ne-
glected frequency dependence and increase of U above the
effective plasma frequency. Further, previous studies [55–57]
showed that cRPA overscreens the interaction. To take the
above into account and in agreement with common practice,
in Ref. [25] a slightly enhanced value of U = 8t (3.11 eV)
was considered as the best approximation. Further, we also
use the same scheme to account for the self-doping effect
of the A pocket as in Ref. [25]. That is, the doping of the
one-band Hubbard model is determined from a 5 Ni-d and 5
Nd(La)-d DFT + DMFT calculation for SrxNd(La)1−xNiO2;
see the Supplemental Material of Ref. [25]. Both here and
in Ref. [25], the contribution of the pockets to superconduc-
tivity or the magnetic response, beyond an effective doping,
has been neglected. This is justified since, due to its strong
correlations, the x2 − y2 orbital dominates the magnetic sus-
ceptibility and (presumably) the pairing. Also note that the
filling of the pockets is low.

3. Magnetic susceptibility

We compute the magnetic susceptibility χm in D�A for
the Hubbard model Eq. (1) using the parameters motivated
in the last section. D�A uses a DMFT solution as a starting
point and introduces nonlocal correlations via the parquet or,
in the simplified version used here, the Bethe-Salpeter equa-
tion [32,33,58]. We outline in the Appendix, for the sake of
completeness, the steps necessary to obtain χm, and refer the
reader to Ref. [34] for a more in-depth discussion of the D�A,

to Ref. [35] for details on how to calculate Tc, and to Ref. [59]
for a first reading.

Let us stress that the λ-corrected D�A susceptibility is
very similar to the DMFT susceptibility. It is only corrected
by a (k-independent) mass enhancement (λ correction), see
Appendix, which physically corresponds to a reduction of the
correlation length. This λ-corrected D�A susceptibility yields
good agreement with other numerical estimates [60] and also
serves as a starting point for the subsequent calculation of the
superconducting susceptibility or the eigenvalue. In contrast
to the susceptibility and the spectrum, which can be very
different in D�A compared to DMFT despite the simple re-
lation of their inverse through a constant λ (see Appendix),
the dispersion (i.e., the maximum of the susceptibility as a
function of k and ω) is the same for λ-corrected D�A and
DMFT. This can change in self-consistent D�A [61],where
spin fluctuations modify the self-energy which feeds back into
the calculation of the susceptibility (instead of the λ-corrected
mass enhancement). However, both approaches yield quite
similar results for the antiferromagnetic susceptibility and the
opening of the pseudogap [61].

4. Computational details of the D�A calculation

The dynamical mean-field calculations (DMFT), which
are used as the starting point for the dynamical vertex ap-
proximation (D�A), are performed using the continuous-time
quantum Monte Carlo method in its hybridization expansion
(CT-HYB) implemented in W2DYNAMICS [62]. For all quanti-
ties, worm sampling [63] was used.

After DMFT convergence the two-particle Green’s func-
tion of the corresponding Anderson impurity model (AIM)
is obtained and from it the generalized D�A susceptibility,
as outlined in the Appendix. To obtain the physical suscepti-
bility we need to sum the generalized susceptibility over two
momenta and frequencies and perform the analytical continu-
ation described in the next section. To ensure good statistics,
we use order 109 measurements in a high statistic run for both
one- and two-particle objects.

The D�A calculations are performed using the
DGApy [64] framework. A k mesh of at least (120,120,1) grid
points is used, to ensure high-quality momentum resolution.
We use about 60 (100) positive Matsubara frequencies in
the vertex function for T = 361 K (T = 60 K). For the
asymptotic treatment of the irreducible vertex, we use about
200 (500) additional frequencies in the shell region as
described in Ref. [35]. The λ correction was performed both
in the charge and the spin channel [33,65]; see the Appendix.

5. Analytic continuation

In the D�A calculation, all quantities are defined in terms
of imaginary time, or correspondingly, imaginary frequency
(Matsubara frequency); see the Appendix. When compar-
ing to experiments, however, results on the real axis are
required. To obtain them we use the open-source package
ana_cont [66], which employs the maximum entropy (max-
ent) method [67] for bosonic correlation functions like the
physical susceptibility in Eq. (A7). Since the physical suscep-
tibility χ

q=q,ω,λ
m depends on momenta q and frequency ω, one

analytic continuation of the frequency is performed for each
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momentum. We fix all hyperparameters of the maxent routine
by employing the “chi2kink” method [68] as implemented in
ana_cont [66].

B. Experiment

1. Nickelate films

The precursor films of Pr1−xSrxNiO3 (x = 0, 0.2) with
8 nm thickness were grown on (001)-oriented SrTiO3 and
(LaAlO3)0.3(Sr2TaAlO6)0.7 (LSAT) substrates using pulsed
laser deposition (PLD). Soft-chemistry reduction using CaH2

powder was then performed to remove the apical oxygens
of the precursor films. After reduction (300 ◦C, 100 min),
the perovskite phase was transformed into an infinite-layer
phase. The infinite-layer Pr1−xSrxNiO2 (x = 0, 0.2) films
were transferred to the PLD chamber to be deposited on
their surfaces with 14-nm-thick SrTiO3 protective top lay-
ers. The Pr0.8Sr0.2NiO2 films grown on SrTiO3 substrates are
superconducting ones with the onset temperatures of super-
conducting transition ∼12 K.

2. RIXS experiments

Ni L3-edge RIXS measurements were carried out at the I21
beamline at the Diamond Light Source. The energy resolu-
tion (monochromator and spectrometer combined) was set to
39 meV (full width at half maximum) at the Ni L3 resonance
(850.6 eV). Incident x rays with π polarization were used to
enhance the paramagnon excitations. The scattering angle was
fixed at 154◦ to maximize the in-plane momentum transfer.
All RIXS spectra are collected at 16 K and normalized to the
weight of the dd excitations.

C. Caveats

The D�A calculation of the magnetic susceptibility is, as a
matter of course, approximate. The DFT (GGA) starting point
puts, e.g., the oxygen orbitals too close to the Fermi level.
This is a bit less relevant for nickelates than for cuprates,
and, in particular, when not including the oxygen orbitals in
subsequent DMFT calculations (as done here). The next step,
DMFT, is restricted to local correlations. Here, DMFT is used
for translating the Sr doping to the doping of the Ni 3dx2−y2

orbital and for calculating a local vertex of the effective one-
band Hubbard model. From this, we then calculate nonlocal
spin fluctuations in D�A through the Bethe-Salpeter ladder,
and from these, in turn, the superconducting pairing glue is
obtained. This procedure neglects how the superconducting
fluctuations in the particle-particle channel feed back to the
antiferromagnetic spin fluctuations in the particle-hole chan-
nel, and it also presumes that a local frequency-dependent
vertex is a reasonably good starting point. Generally, this
vertex is much more local than other properties such as the
self-energy, even in the superconducting doping regime [34].
The good agreement of D�A and diagrammatic quantum
Monte Carlo simulations has been evidenced in Ref. [60].

Let us, here, mostly focus on two aspects that we believe
are important to keep in mind when comparing the theoretical
spectrum of the magnetic susceptibility to RIXS experiments:
(i) The maxent approach is state-of-the-art to solve a per se ill-
conditioned problem: analytically continuing imaginary-time

data to real frequencies. Its error grows with frequency, since
larger real frequencies only enter exponentially suppressed
into the imaginary-time (or frequency) data. Further, max-
ent tends to broaden spectra [66]. This is especially true at
large frequencies, where the maximum of the susceptibility
becomes shallow. Altogether, this results in a rather large error
bar of the overall dispersion.

(ii) On the experimental side, RIXS measurements do not
probe magnetic excitations exclusively, but rather elemen-
tary excitations in general [69]. To extract the paramagnon
dispersion, one fits several functions to the RIXS raw data.
For example, the authors of Ref. [39] used a Gaussian for
the elastic peak, a damped harmonic oscillator (DHO) for
the magnon, an antisymmetrized Lorentzian for phonons, and
the tail of an antisymmetrized Lorentzian for the high-energy
background; see the supplementary information of Ref. [39].
Similarly, in our fitting function, a DHO convoluted with
the energy resolution function is used to model the single
magnon. The elastic peak is described with a Gaussian. The
smoothly varying background is mimicked by a polynomial
function. An additional Gaussian is included to describe the
phonon mode at ∼70 meV when it becomes visible at a large
in-plane momentum (>0.15 r.l.u.). For some dopings and
momenta, we have a clear peak structure for the magnon and
the error involved in this fitting is mild. In other situations,
e.g., close to the X momentum, there is only a minor hump
or shoulder, and the magnon energy is much more sensitive to
the fitting procedure.

III. MAGNETIC RESPONSE IN NICKELATE
SUPERCONDUCTORS

With the good agreement of the theoretical [35] and ex-
perimental phase diagrams [3,36] in Fig. 1, we here aim at
analyzing whether the underlying magnetic fluctuations that
mediate d-wave superconductivity in theory also agree with
experiment. The magnetic spectrum and paramagnon disper-
sion for the two parent compounds NdNiO2 and PrNiO2 are
shown in Figs. 2(b) and 2(c), respectively. Here, Fig. 2(a)
displays the imaginary part of the magnetic susceptibility
χ ′′

m(ω, q) as computed in D�A using a filling n = 0.95 of the
Ni 3dx2−y2 orbital, originating from the self-doping due to the
rare-earth pockets in NdNiO2. For PrNiO2 this self-doping
is minimally smaller (3%). For the hopping parameters and
Coulomb interaction, see Sec. II A 2. The dispersion is shown
along the high-symmetry path in the Brillouin zone (BZ) from
� to X to M/2 to � that is shown in the inset of Fig. 2(b).
Let us emphasize once again that the D�A dispersion, but
not the spectrum, is the same as that of DMFT; see the Ap-
pendix. As for experiment, the data of Fig. 2(c) is our own
measurement, and that of Fig. 2(b) was extracted from the
RIXS measurements of Ref. [39] [70]. Given that we did not
adjust any parameters [71], the agreement between theory and
the magnon dispersion extracted from RIXS is quite good.
This indicates that experimental spin fluctuations are similar
to those leading to d-wave superconductivity in the D�A
calculations.

Looking more into the details, we see that the overall para-
magnon bandwidth is systematically a bit larger in D�A. For
example, the peak of χm(q = X, ω) is at ωpeak ∼ 260 meV in
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FIG. 2. Nickelate magnetic susceptibility (color map; arbitrary units) and paramagnon dispersion (symbols). (a) D�A for NdNiO2 at
T = 60 K and n = 0.95 because of self-doping. (b) RIXS measurements for NdNiO2 on STO at T = 15 K from Ref. [39]. (c) Our RIXS
measurements for PrNiO2 on STO at T = 16 K. Red, orange, and blue symbols mark the peak maximum. Inset in (b): Chosen k path through
the Brillouin zone, where � = (0, 0, 0), X = (π, 0, 0), and M/2 = (π/2, π/2, 0).

D�A, while the measured one is close to ∼190 meV. While
the tendency of the maximum entropy method to broaden
spectra might also slightly affect the position of the maximum
and the spectrum around the X point is more blurred in theory
and experiment, overall the difference is beyond the maxent
error. In agreement with the overall width, the slope of the
linear dispersion around � deviates somewhat and hence we
conclude: the overall width of the paramagnon dispersion in
theory is noticeably larger than in experiment. This difference
corresponds to a larger effective spin coupling J in D�A, as
we discuss in more detail in Sec. IV A.

Furthermore, the “dip” observed in the dispersion around
the M/2 momentum, which corresponds to a next-next-nearest
neighbor exchange J ′′ in a spin-wave picture, is more pro-
nounced in theory than in experiment. In Sec. IV B, we show
that using a larger U = 9t (instead of U = 8t) results in a
better agreement of the spin wave dispersion and also of the
phase diagram of SrxNd1−xNiO2 on STO, which has consider-
ably lower Tc’s than SrxNd1−xNiO2 on LSAT. Please note that
the origin for this experimental difference is not the minute
change in lattice constant, but that growing SrxNd1−xNiO2

on LSAT results in cleaner films without stacking faults [36].
These “defect-free” films have a much lower resistivity and
higher Tc’s, and agree better with our best estimate U = 8t .

Let us now turn toward the doped compounds. D�A re-
sults for Sr0.2Nd0.8NiO2 with x = 0.125 (effective filling n =
0.875) and x = 0.225 (n = 0.80) are displayed in Figs. 3(a)
and 3(b), respectively, and compared to the experimental dis-
persion (orange pentagons). Consistent with experiment, we
observe a shift toward lower energies around the M/2 momen-
tum. Furthermore, the amplitude of χm decreases as q → X ,
which was also observed in Ref. [39] [72].

Similarly to the parent compound (Fig. 2), the bandwidth
in D�A is larger also at finite doping. Particularly the peak
position at the X momentum shows a substantial deviation
compared to the one extracted from RIXS. This may be par-
tially (but not fully) attributed to the bias introduced both on
the theoretical and experimental sides. On the one hand, we
expect a worse performance of the numerical analytic contin-
uation for large frequencies. A spectrum already relatively flat
at the X momentum might be additionally broadened because
of the maximum entropy analytic continuation. On the other
hand, the intensity of the paramagnon peak is also reduced in
RIXS [39], making the experimental fitting procedure more
difficult. Notwithstanding, there is a larger theoretical disper-

sion (or J) than in experiment. Qualitatively similar, D�A and
RIXS show that the minimum at the M/2 momentum of the
parent compounds turns into a flat dispersion or even a local
maximum with doping.

IV. DISCUSSION

A. Effective spin-wave picture

In the limit of a large Hubbard interaction U , the Hubbard
model [Eq. (1)] reduces to an effective Heisenberg Hamilto-
nian. We refer the reader to Ref. [73] and references therein
for an extensive discussion for the one-orbital Hubbard model.
While this mapping provides a direct relation between t , U ,
and the effective spin couplings J , the temperature does not
enter, nor does the doping. Indeed, strictly speaking, the map-
ping onto the spin model is possible only for an insulator (at
half filling). Yet, the parent compound Nd(Pr,La)NiO2 is—in
contrast to cuprates—neither half filled nor Mott insulating
because of the finite pockets. Furthermore, the mapping onto a
spin model becomes rather tedious in the presence of hoppings
t ′ and t ′′ beyond nearest neighbors [73]. Nevertheless, the
spin model and the spin-wave dispersion provide a somewhat

FIG. 3. Magnetic susceptibility of SrxNd1−xNiO2 for (a) x =
0.125 (n = 0.875) and (b) x � 0.225 (n = 0.8) in D�A. The red dots
mark the maximum of the D�A dispersion at each k point, while the
orange pentagons are the corresponding RIXS peak locations from
Ref. [39].
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FIG. 4. Paramagnon dispersion obtained in D�A for LaNiO2 as
a function of temperature. (a) D�A dispersion (dots) and spin-wave
fit (lines) using Eq. (2). (b) Magnetic D�A susceptibility χm(ωpeak)
at the peak frequency ωpeak of panel (a). Red: 361 K; blue: 60 K. Note
that the D�A dispersion but not the susceptibility is the same as that
of DMFT.

intuitive picture for understanding the characteristics of spin
fluctuations also in the present case of nickelates.

For these reasons, we employ here the same state-of-the-art
approach as in experiment also for the D�A data: that is, we
fit the spin-wave dispersion of the Heisenberg model to our
D�A results in order to extract information about effective
spin couplings J and J ′. Including only the nearest neighbor
(J) and next-nearest neighbor spin exchange J ′, the effective
classical spin-wave dispersion for a spin-1/2 system is given
by [73–75]

ωk = ZC

√
A2

k − B2
k, (2)

where ZC is the spin-wave renormalization factor that ac-
counts for the effects of quantum fluctuations and

Ak = 2J + 2J ′[cos(kx ) cos(ky) − 1],

Bk = J[cos(kx ) + cos(ky)]. (3)

To better compare with the values obtained in experiment,
we fix ZC = 1.18 as in Ref. [39]. Note that using ZC is akin to
rescaling (slightly reducing) the J and J ′ values. This way, the
J and J ′ values extracted from the classical spin-wave theory
are (slightly) better estimates for a spin-1/2 model (though
one should mention that there is also some uncertainty in
the numerical determination of ZC). Figure 4 shows the thus
obtained paramagnon dispersion and the corresponding value
of the magnetic susceptibility χm(ωpeak).

To a first approximation (if J ′ 	 J), the width of the spin
wave dispersion is 2J in Eq. (2), with ωpeak k = ωpeak M/2 =
2J . A finite J ′ adds a skewness to this as ωpeak X = 2J − 4J ′,
whereas ωpeak M/2 = 2J − 2J ′. The fact that the maximum of
the dispersion is at k = X thus implies a ferromagnetic (neg-
ative) J ′. This is qualitatively similar to cuprates which have,
however, a considerably larger J (e.g., J = 112 meV and J ′ =
−15 meV for La2CuO4 [74]). It is, on the other hand, different
from other nickelates such as La2NiO4 [76] that show an

TABLE II. Effective spin coupling J and J ′ for NdNiO2 and
PrNiO2 obtained with D�A (or DMFT) and measured in RIXS [39]
given in units of meV. We list results for fits to D�A dispersions
at different interaction values U = {8, 9, 10} in units of the hopping
t = 0.389 eV and two different temperatures T = {300 K, 60 K} for
U = 8t , which is our best estimate on the basis of cRPA.

U (t) 8 8 9 10 RIXS PrNiO2 RIXS NdNiO2 [39]

T (K) 361 60 60 60 16 20
J (meV) 76 62 64 44 70.0 ± 5.5 63.6 ± 3.3
J ′ (meV) −13 −23 −12 −12 −8.0 ± 3.8 −10.3 ± 2.3

antiferromagnetic (positive) J ′ and opposite skewness. This
is because the latter require a multiband description with Ni
3dx2−y2 and Ni 3dz2 orbital, resulting in a larger effective
U [76].

The D�A skewness is well described by the spin-wave fit,
but there is a pronounced minimum at the M/2 point (for the
parent compound) which is not well captured by the (J-J ′)
spin-wave fit. We presume higher-order couplings, which are
difficult to fit to the numerical D�A data, are needed to ac-
count for such a minimum. Specifically, a next-next neighbor
exchange J ′′ adds a term

Ak → Ak − 2J ′′(1 − [cos(2kx ) + cos(2ky)]/2) (4)

in Eq. (2) [74]. For positive (antiferromagnetic) J ′′ this results
in the observed local minimum at M/2 = (π/2, π/2). The
change of this minimum to a maximum, as observed with
doping, then implies a change of sign of J ′′.

Similar to the cuprate superconductor La2CuO4 [74], we
observe that the dispersion along the antiferromagnetic zone
boundary becomes more pronounced as temperature is low-
ered. This mode hardening is mimicked by a ferromagnetic
next-nearest spin coupling whose strength increases from J ′ =
−13 meV at 361 K to J ′ = −23 meV at 60 K. For J the trend
is opposite and its value gets reduced from 76 meV at 361 K
to 62 meV at 60 K. Experimentally, J = 63.6 ± 3.3 meV and
J ′ = −10.3 ± 2.3 meV at 20 K were reported in Ref. [39]
for NdNiO2. Similarly, we obtain J = 70.0 ± 5.5 meV and
J ′ = −8.0 ± 3.8 meV at 16 K from RIXS for PrNiO2; see
Table II.

B. Interaction dependence

Table II suggests that the D�A-fitted J value agrees bet-
ter with experiment if a larger U = 9t value is considered,
instead of the cRPA estimate U = 8t [77]. Figure 5 shows
the magnetic susceptibility calculated in the same way as in
Figs. 2 and 3, but now for U = 9t . The color maps in panels
(a), (b), and (c) show χ

q,ω
m along the same high-symmetry

path as shown in the inset of Fig. 2(b). The red dots mark
the maximum at each momentum, while the blue diamonds
correspond to the peak maxima reported in RIXS [39].

Finally, Fig. 5(d) compares the peak location of the param-
agnon dispersion for several interaction values. The overall
width of the dispersion is reduced for larger U , as ex-
pected from the spin-wave picture discussed in the previous
subsection. Subsequently, the agreement with experimental
measurements is improved compared to the results of U = 8t
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FIG. 5. Paramagnon spectrum of SrxNd1−xNiO2 using a larger interaction U = 9t � 3.5 eV. (a) Parent compound x = 0.0 (n = 0.95) at
T � 60 K; (b) x = 0.125 (n = 0.875); (c) x = 0.225 (n = 0.8). The red dots mark the maximum of the dispersion at each k point, while the
blue dots are the corresponding peak locations measured in RIXS (taken from Ref. [39]). (d) Paramagnon dispersion of the parent compound
for different values of the interaction U .

in Figs. 2 and 3. Also, the superconducting phase diagram
in Fig. 6 shows a better agreement between D�A at U = 9t
(dark red) and SrxNd1−xNiO2 on STO. SrxNd1−xNiO2 on
LSAT, on the other hand, better agrees with D�A at the
estimated U = 8t . This seemingly suggests that U = 9t is
more appropriate for nickelate films on STO. We think, how-
ever, that this agreement is by coincidence and that the larger
U = 9t value only mimics (in an imperfect way) the effect of
disorder as discussed in the following.

The measurements for the same nickelate NdNiO2 on dif-
ferent substrates, one on STO [3] (light blue) and one on
LSAT [36] (dark blue), show about a factor of 2 difference in
the superconducting Tc. The higher Tc for the LSAT substrate
is, by the authors of Ref. [36], attributed to the difference in
film cleanliness, with fewer lattice defects observed for the
LSAT substrate. This conclusion is supported by scanning
tunneling microscopy that shows fewer Ruddlesden-Popper

FIG. 6. Superconducting phase diagram Tc as a function of Sr
doping for SrxNd1−xNiO2, comparing D�A with U = 8t (U = 9t )
from Ref. [25] to experiment on a LSAT (STO) substrate from
Ref. [36] (Ref. [3]). The increase of Tc in D�A when using LSAT
instead of STO in-plane lattice parameters is much weaker; the
difference between the two substrates hence most likely reflects
the improvement thanks to cleaner, defect-free films for the LSAT
substrate.

stacking faults. Further support comes from a strongly re-
duced resistivity (by up to a factor of 3) for the samples grown
on LSAT. Such a large difference cannot be explained by the
minor differences of substrate strain [78].

On the theoretical side, we observe a similar difference
in transition temperature between calculations using U = 8t
and U = 9t , respectively. However, the respective Wannier
tight-binding parameters for LaNiO2 [79] with in-plane lattice
constants fixed to those of STO and LSAT are quite similar;
see Sec. II A 2. That is, we find that the nearest neighbor
hopping t increases by about ∼4% from STO to LSAT, while
the ratios of t ′/t and t ′′/t remain essentially the same. An
increase of t is not surprising as the smaller in-plane lattice
constant of LSAT increases the orbital overlap. On the other
hand, the Hubbard interaction (UcRPA = 2.6 eV) essentially
does not change when performing constrained random phase
approximation calculations for LaNiO2 with the a-b lattice
parameters fixed to either that corresponding to LSAT or that
of STO, respectively.

Considering these changes of the effective single-band
Hamiltonian, we expect samples grown on LSAT to have
an intrinsically larger Tc, since t sets the energy scale and
a smaller U/t is also beneficial [25]. That being said, the
expected difference in Tc, as a result of the slightly differ-
ent intrinsic models, is closer to 10%–15% [80], but almost
certainly not a factor of 2 [81]. For this reason we conclude
that changes in our effective single-band Hubbard model do
not explain differences in the measured Tc’s for different
substrates. The difference has to lie somewhere else, and the
reduced number of defects when growing nickelates on LSAT
is the most likely explanation for the enhanced Tc and reduced
resistivity, as also originally suggested in Ref. [36].

Following this argument, the appropriate Hubbard interac-
tion for the effective single-band description of infinite-layer
nickelates should be close to our best estimate U = 8t with
an intrinsic T max

c � 30 K, comparable to that measured on
LSAT [82]. Consequently, we would expect the Tc of sam-
ples grown on STO to be similar (within 4%) once samples
of comparable quality are synthesized. What remains to be
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FIG. 7. Magnetic susceptibility of SrxNd1−xNiO2 for x ∼ 0.225 (n = 0.8) within the effective single-orbital Hubbard model scenario.
Color map of χ q,ω

m calculated by (a) D�A and (c) DMFT. (b) Comparison of the maximum of the dispersion corresponding to the lines on top
of the color maps in (a) and (c), respectively. (d) Peak value of the magnetic susceptibility; inset: k path in the BZ. The difference between
DMFT and D�A is the reduced correlation length; the dispersion in (b) is the same up to the numerical accuracy; see the Appendix. Parameters:
t = 0.389 eV, t ′/t = −0.25, t ′′/t = 0.12, U = 8t , T = 60 K.

understood is how defects and lattice disorder influence the
paramagnon dispersion and Tc.

C. Effect of disorder and stacking faults
on the paramagnon dispersions

To fully address the influence of impurities and lattice
defects on the paramagnon dispersion, large-scale calculations
for supercells that include these defects would be required.
Such calculations are not feasible at the moment, at least
not for D�A calculations or similar many-body methods that
include nonlocal fluctuations. For this reason, we will restrict
ourselves here instead to qualitative considerations.

One possibility is that defects reduce the effective antifer-
romagnetic coupling strength J and, with reduced antiferro-
magnetic fluctuations, also Tc. While estimating the absolute
influence of such local defects in RIXS is very difficult,
if not impossible, samples that show a different Tc can be
compared. Such a study would include measurements of sev-
eral samples of the same “species,” e.g., Sr0.2Nd0.8NiO2 on
STO, which show a sample-to-sample variation in Tc. Along
the same lines, comparing the paramagnon dispersions for
samples grown on different substrates (e.g., STO and LSAT)
would yield valuable information about the connection be-
tween the paramagnon dispersion and Tc. A study similar to
the latter has already been performed for the related PrNiO2

compound [83]. The measurements suggest that the param-
agnon dispersion and J are similar for samples grown on
LSAT and STO. However, those measurements were done on
the nonsuperconducting parent compound. Hence, it would be
interesting to check whether the reported results remain un-
changed if samples with different Tc’s are measured directly.
Let us, in this context, mention that for cuprates it was pos-
sible to correlate the increase of Tc with the increase of J for
different cuprates [84]. Along this line of thinking, the better
agreement of Tc and the RIXS spectrum of NdNiO2 on STO
for the larger U = 9t might just mimic the suppression of J
induced by disorder which is not included in our calculations.

It does not mean that U = 9t is the appropriate choice of
interaction for these defect-full samples, but only that it gives
(for the wrong reasons) similar effects as disorder for RIXS
and Tc.

Let us also point out another way that lattice defects might
influence Tc: decreasing the magnetic correlation length ξ .
Particularly, if stacking faults and similar defects introduce
artificial “grain boundaries” [85], ξ might be restricted to stay
below the typical grain-boundary distance, without directly
changing the effective antiferromagnetic coupling strength J .
Though conceptually somewhat different, the λ correction in
D�A [33] has a similar effect in the sense that λ causes a
decrease in the magnetic correlation length. Such a reduced
correlation length (added mass), however, essentially does
not change the paramagnon dispersion; see Fig. 7 and the
discussion in the next paragraphs. Furthermore, the intensity
primarily changes around the M = (π, π ) momentum, where
the susceptibility and ξ are the largest.

Such an effective paramagnon-mass enhancement or re-
duced ξ is difficult to extract from RIXS, which cannot access
the M point in nickelates. Yet, it is precisely the strength of
the susceptibility around the M momentum, which, from a
spin-fluctuation or D�A perspective, is most important for
Tc. The M point and a prospective difference in correlation
length ξ for different substrates might be accessible in neutron
scattering. If measurements of the magnetic correlation length
ξ for superconducting samples grown on different substrates
show a suppressed ξ at the M point for samples grown on
STO compared to those grown on LSAT, this would support
this second disorder scenario.

To investigate the influence of a suppressed correlation
length, we compare χm between DMFT and D�A in Fig. 7
along a high-symmetry path through the BZ now including
the M momentum [see inset in panel (d) for the Brillouin
zone]. We choose the overdoped compound (x = 0.225) since
DMFT shows no antiferromagnetic order for this doping.
Hence, we can directly compare χm between DMFT (no λ

correction) and D�A (with the λ correction determined to be
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λ = 0.105); cf. Ref. [34] and the Appendix for the close re-
lation of both susceptibilities. The DMFT susceptibility with
a large correlation length ξ , especially around q = (π, π ), is
shown in panel (c), while D�A with a correlation length ξ

reduced by λ (see Appendix) is displayed in panel (a).
We draw the location of the peak in χm at each momen-

tum in Fig. 7(b). It remains essentially unchanged in the
presence of a D�A λ correction, i.e., with a reduced ξ . The
magnitude of the respective susceptibility at the peak is, how-
ever, drastically different around the M momentum, as can
be seen in Fig. 7(d). A suppression of χm is strongest when
the DMFT susceptibility is large, which is no surprise since
χm → 1/(1/χm + λ) in D�A. Hence, a reduction of the cor-
relation length for antiferromagnetic fluctuations is expected
to be virtually invisible in RIXS measurements, which do not
access the M point. At the same time, the reduction of Tc can
be dramatic.

Let us further note that we observe incommensurate an-
tiferromagnetic fluctuations, evidenced by the shift of the
maximum amplitude slightly away from M in Fig. 7(d). This
is typical for overdoped cuprates [86,87] [88]. For nick-
elates, measurements that could distinguish commensurate
from incommensurate spin fluctuations have, to the best of
our knowledge, not been performed yet.

V. CONCLUSION

The pairing symmetry obtained in D�A for nickelates is
d wave, reminiscent of that in cuprates [45]. On the ex-
perimental side, the pairing symmetry of nickelates remains
an open question as results are still inconclusive [89–91].
Also the mechanism for superconductivity remains highly
controversial, not only for nickelates but also for cuprates.
Many different mechanisms have been proposed [45,92–94].
In D�A spin fluctuations mediate superconductivity [95].

Further, in the case of nickelates, even the minimal model
is hotly debated. Among others, the relevance of multiorbital
physics [21,96,97], Kondo physics [98], or even phonons [99]
has been suggested. The single-band Hubbard model with
an appropriately calculated doping of the Ni 3dx2−y2 orbital,
which was used in the present paper, is arguably the simplest
possible model for spin fluctuations and superconductivity in
nickelates. It correctly reproduces the doping range of super-
conductivity, the absolute value of Tc, and also the skewness
of the phase diagram. Here, the skewness is a consequence of
the largely decoupled ligand pockets which accommodate part
of the holes from the Sr doping in a nonlinear fashion. This
skewness of the superconducting dome is a notable difference
to cuprates.

Given the good agreement of the superconducting phase
diagram and antiferromagnetic fluctuations at its origin, a
critical check of whether or not spin fluctuations with similar
characteristics are observed in experiment is imperative. To
achieve this validation, we compared the paramagnon disper-
sion calculated in D�A with the one extracted from RIXS,
both from our measurements and those from Ref. [39]. Note
that the λ-corrected D�A susceptibility only differs from the
DMFT one around the (incommensurate) antiferromagnetic
wave vector (see Fig. 7).

We find the spin spectrum is overall similar, especially
when considering biases expected both from theory and exper-
iment. This means that the experimental spin fluctuations are
consistent with the observed Tc in nickelates within the spin-
fluctuation scenario of superconductivity. Then, the weaker
spin fluctuations (or J) in nickelates, compared to cuprates,
might also explain their lower Tc.

The agreement is however not perfect. The total width
of the paramagnon dispersion (or J) is somewhat smaller
in experiment than in theory. Using an enhanced Coulomb
interaction U = 9t in D�A (instead of U = 8t estimated
from cRPA) matches better the RIXS spectrum and also
the superconducting phase diagram of SrxPr1−xNiO2 and
SrxNd1−xNiO2 on an STO substrate. However, these films are
defect-full, and in our view the larger U = 9t is not physically
correct but rather an imperfect way to mimic the effect of
defects. This is supported by the fact that substantially larger
Tc’s are observed for defect-free SrxNd1−xNiO2 on a LSAT
substrate in excellent agreement with the D�A using the
proper U = 8t estimate. [Note that the difference of LSAT and
STO in-plane lattice constants and thus also the D�A hopping
parameters are way too small to explain the (by a factor of 2)
higher Tc and (by a factor of 3) lower resistivity.]

As discussed in Sec. IV C local disorder can reduce J .
From this perspective, SrxNd1−xNiO2 on STO with more dis-
order should indeed show a larger J and a smaller dispersion
in RIXS, imperfectly mimicked by a larger U . If the dis-
order is rather cutting off the spin correlation length—and
Ruddlesden-Popper stacking faults might do that—we show
that the effect on the RIXS dispersion can be negligible. In this
scenario, disorder only affects the peak height at M = (π, π ),
which is not accessible in RIXS but in neutron scattering ex-
periments. In this “cutting off the correlation length” scenario,
the difference between RIXS and theory at the proper U = 8t
must be of another origin.

In all, we believe that our joint theoretical and experimental
investigation strengthens the case for spin-fluctuation medi-
ated superconductivity in nickelates.

Let us close by comparing nickelates to cuprates, both of
which are commonly modeled through a Hubbard model. The
main difference is that in the nickelates there are additional
electron pockets; in the cuprates holes from doping go pre-
dominately into the oxygen p orbitals instead of the Cu 3dx2−y2

orbital. These in turn hybridize with the Cu 3dx2−y2 orbital and
form a single band that crosses the Fermi energy, which, with
some caveats [100], can be described by a Hubbard model.
This common physics reflects in similar magnetic excitations
as measured by RIXS. The main difference is a quantitatively
smaller width of the magnetic RIXS dispersion, concomitant
with a smaller exchange J and a lower Tc for nickelates.

Note added. Most recent angular-resolved photoemission
spectroscopy (ARPES) experiments [101,102] strongly sup-
port the one 3dx2−y2 -orbital plus A-pocket scenario employed
in our calculations on the basis of DFT + DMFT: There
is no � pocket for superconducting Sr0.2La0.8NiO2, nor are
there additional 3dz2 bands at the Fermi level as advocated in
other scenarios [21,96,97,103]. Also, the mass renormaliza-
tion factor of about 3 agrees with our theoretical description
at the cRPA estimated U = 8t (see Supplemental Fig. 3 of
Ref. [25]).
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FIG. 8. Parquet decomposition of the full vertex function F into its components based on the two-particle reducibility. 	 is the fully
irreducible vertex, and φr with r = {ph, ph, pp} is the reducible part of F in the particle-hole (ph), particle-hole transversal (ph), and particle-
particle (pp) channel.
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APPENDIX: MAGNETIC SUSCEPTIBILITY IN D�A

As a first step to calculate the magnetic susceptibility χm,
we solve the Hubbard model Eq. (1) within DMFT and subse-
quently sample the local two-particle Green’s function (G(2))
for the corresponding Anderson impurity model (AIM):

G(2)ν1ν2ν3ν4 =
∫ β

0

∫ β

0

∫ β

0

∫ β

0
dτ1dτ2dτ3dτ4G(2)(τ1, τ2, τ3, τ4)eiν1τ1 e−iν2τ2 eiν3τ3 e−iν4τ4 , (A1)

where the two-particle Green’s function in terms of imaginary
time (τ ) is defined as

G(2)
1234(τ1, τ2, τ3, τ4) ≡ 〈T [ĉ1(τ1)ĉ†

2(τ2)ĉ3(τ3)ĉ†
4(τ4)]〉. (A2)

Since our Hamiltonian Eq. (1) does not explicitly depend
on time, one frequency can be removed by using energy con-
servation. If not stated otherwise we will use the particle-hole
(ph) notation:

ph-notation: pp-notation:

ν1 = ν ν1 = ν

ν2 = ν − ω ν2 = ω − ν ′

ν3 = ν ′ − ω ν3 = ω − ν

ν4 = ν ′ ν4 = ν ′

The two-particle Green’s function in Eq. (A1) can thus be
written in terms of three instead of four frequencies. Further,
it can be expressed in terms of disconnected (free) and con-
nected (vertex) parts:

G(2),ωνν ′
σσ ′ = δω0Gν

σ Gν ′
σ ′ − δνν ′δσσ ′Gν

σ Gν−ω
σ ′

+ 1

β
Gν

σ Gν−ω
σ Fωνν ′

σσ ′ Gν ′−ω
σ ′ Gν ′

σ ′ , (A3)

where F is the so-called vertex function which encodes
all scattering events on the two-particle level and Gν =

− ∫ β

0

∫ β

0 dτ1dτ2 〈T c1(τ1)c†(τ2)〉eiν(τ1−τ2 ) is the one-particle
Green’s function. All diagrams contained in the vertex func-
tion F can be classified unambiguously by the parquet
decomposition,

Fωνν ′
σσ ′ = 	ωνν ′ + �ωνν ′

pp,σσ ′ + �ωνν ′
ph,σσ ′ + �ωνν ′

ph,σσ ′ , (A4)

based on their two-particle reducibility, i.e., whether or not
a diagram decomposes if one “cuts” two one-particle Green’s
function lines. For a diagrammatic depiction and the definition
of 	 and �r see Fig. 8.

We now also define the irreducible vertices �r = F − �r ,
where r = {ph, ph, pp} is either one of the three scatter-
ing channels. Furthermore, we assume SU(2) symmetry, i.e.,
restrict ourselves to the paramagnetic phase. This spin sym-
metry leads to only two independent spin combinations Fm =
F↑↑ − F↑↓ (magnetic) and Fd = F↑↑ + F↑↓ (density) [34]. The
vertex F can also be expressed directly in terms of any
irreducible vertex via the respective Bethe-Salpeter equa-
tion (BSE):

Fωνν ′
d/m = �ωνν ′

d/m,ph + 1

β

∑
ν1

�ωνν ′
d/m,phGν1 Gν1−ωFωνν ′

d/m . (A5)

Here, we have written the BSE only for �ph, and we use
the inverse of Eq. (A5) to extract the local �ph. To obtain a
q-dependent susceptibility we use a BSE-like equation for the
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generalized, now momentum-k dependent susceptibility:

χ
qkk′
d/m = χ

qkk′
0 − χ

qkk
0

1

β2

∑
k1

�
qkk1

d/m χ
qk1k′
d/m . (A6)

Here k = (k, ν) and q = (q, ω) are fermionic and bosonic
four-point vectors in generalization of local, frequency-only-
dependent quantities of the AIM. Further, we approximate
�

qkk1

d/m = �ωνν ′
d/m , i.e., the respective irreducible DMFT vertex.

The physical susceptibility is finally obtained by summing
over kk′, i.e., χphys,d/m = 1

β2

∑
kk′ χ

qkk′
d/m . However, a suscep-

tibility constructed this way contains divergences stemming
from the mean-field phase transitions in DMFT, which largely
overestimates critical temperatures [104]. This is even more

true in two dimensions where the Mermin-Wagner theorem
holds [105]. We remedy this artifact by employing a regu-
larization parameter λ [33,34] (instead of doing fully fledged
parquet [58] or self-consistent D�A [61]). Here, λ is fixed by
enforcing the sum rule

1

2β

∑
q

(
χq,λm

m + χ
q,λd

d

) = n

2

(
1 − n

2

)
, (A7)

and χ
q,λ

d/m = [(χq
d/m)

−1 + λd/m]
−1

is the λ-corrected suscepti-
bility. Physically, λd/m acts like an enhancement of the mass
of the charge/spin fluctuations (or a reduction of the corre-
lation length). The λ correction can dramatically change the
susceptibility and suppress antiferromagnetic fluctuations. It
does not, however, change the maximum of χ

q
d/m. Hence, the

spin dispersion in λ-corrected D�A is the same as in DMFT.
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