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Topological phases stabilized by crystalline point group symmetry protection are a large class of symmetry-
protected topological phases subjected to considerable experimental scrutiny. Here, we show that the canonical
three-dimensional (3D) crystalline topological insulator protected by time-reversal symmetry T and fourfold
rotation symmetry C4 individually or the product symmetry C4T , generically realizes finite-size crystalline
topological phases in thin film geometry [a quasi-(3-1)-dimensional, or q(3-1)D, geometry]: response signatures
of the 3D bulk topology coexist with topologically protected, quasi-(3-2)D, and quasi-(3-3)D boundary modes
within the energy gap resulting from strong hybridization of the Dirac cone surface states of the underlying
3D crystalline topological phase. Importantly, we find qualitative distinctions between these gapless boundary
modes and those of strictly 2D crystalline topological states with the same symmetry protection and develop a
low-energy, analytical theory of the finite-size topological magnetoelectric response.
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Crystalline topological phases, or those protected in whole
or in part by crystalline point group symmetries, have been
a very active front in efforts to identify and classify topo-
logically nontrivial phases of matter. The large number of
crystalline point group symmetries protect many distinctive
topological insulator and semimetal states [1–22], building
extensively on the foundational work of the tenfold way
classification scheme [23,24]. Recent work reveals, however,
that these canonical D-dimensional states, such as the Chern
insulator [25], or the strong topological insulator [26], can
remain relevant even when the system is only thermodynam-
ically large in δ < D directions [27,28]: for example, taking
δ = 1, even if (D-1)-dimensional gapless boundary modes
associated with a D-dimensional bulk topological invariant are
lost due to strong hybridization, D-dimensional topological
response signatures can coexist with quasi-(D-2)-dimensional
[q(D-2)D] gapless boundary modes in the form of finite-
size topological phases (FSTs) [27]. A degree of freedom
taking N different values, corresponding to an N-fold de-
gree of freedom, with 1 < N < 10, can then potentially serve
as a synthetic dimension, greatly enriching physics of band
topology.

Finite-size topological phases are one of three recently
identified sets of phases of matter consistent with general-
ization of the framework of the quantum Hall effect—and
associated classification schemes—to that of the quantum
skyrmion Hall effect (QSkHE) [29], which requires incor-
porating compactified p-brane charged excitations—or fuzzy
(pseudo)psin skyrmions—into classification. How to suitably
generalize classification methods, even one of the most robust,
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such as K theory [30], to capture the QSKHE is currently
unknown. This motivates introduction of canonical examples
of FST phases first as part of eventually developing system-
atic classification tools. In this work, we demonstrate FSTs
are also stabilized by crystalline point group symmetries,
studying the FST counterpart of the canonical crystalline
topological phase [1]. The present work therefore indicates the
vast family of crystalline topological phases may yield FSTs
and provides a blueprint for their study.

We focus on the canonical Hamiltonian for the first
formally identified crystalline topological phase [1], a 3D
topological insulator protected by fourfold rotational symme-
try and time-reversal symmetry. That is, we confirm that a
system realizing the canonical crystalline topological state in
the 3D bulk, but which is thermodynamically large in only two
spatial dimensions, realizes quasi-(3-3)D gapless boundary
corner states or quasi-(3-2)D gapless boundary edge states
when 2D gapless boundary modes of the 3D phase strongly
hybridize, while still possessing the topological response
signature of the 3D bulk invariant. The system geometries
and procedures for confirming these two defining properties
of finite-size topological phases are shown schematically in
Fig. 1. Our work therefore lays the foundation for far broader
study of topological phases protected in whole or in part
by crystalline point group symmetries, with the foundational
results presented here particularly important in understanding
of van der Waals thin films and heterostructures [31–39] iden-
tified as hosting 2D or quasi-1D topological states, which may
actually be partially identified finite-size topological phases
instead descending from underlying higher-dimensional bulk
topology.

I. HAMILTONIAN

We consider a Hamiltonian previously introduced by Fu [1]
realizing the crystalline topological insulator phase. The
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FIG. 1. Demonstrating crystalline finite-size topology. (a) 3D
crystalline topological insulator with Dirac cone surface states. Pan-
els (b) and (c) depict bulk-boundary correspondence of system in
thin-film geometry either with time-reversal symmetry (TRS) and
fourfold rotation symmetry (C4) individually present or without, re-
spectively, corresponding to a finite-size topological phase. (d) 3D
system with magnetic surface perturbations to probe quantized sur-
face Hall conductivity associated with the 3D topological state; (e)
a system in thin film geometry realizing bulk-boundary correspon-
dences of (b) and (c), with magnetic surface perturbations to confirm
topological magnetoelectric response of the finite-size topological
phase.

Bloch Hamiltonian is taken to be

H (k) =
(

M + t
∑

i∈{x,y,z}
cos ki

)
τzσ0 + �1τxσ · sin k

+ (cos kx − cos ky)(�2τyσ0 + �3τ0σz ). (1)

At �2 = �3 = 0, the Hamiltonian respects both time-reversal
symmetry T = σyK and fourfold rotation symmetry

C4 = ei(σz/2+xky−ykx )π/2, (2)

which acts as

C†
4 (kx, ky, kz )C4 = (ky,−kx, kz ),

C†
4 (σx, σy, σz )C4 = (σy,−σx, σz ). (3)

The terms proportional to �2,�3 are the simplest such terms
(i.e., containing only nearest-neighbor hoppings) that break
both T and C4 symmetries, while preserving their product
C4T .

II. PHASE DIAGRAM

We are interested in characterizing the phase diagram of
this model, in particular in a finite-thickness slab geometry,

and its properties that generalize to arbitrary systems in the
class of C4T -symmetric crystalline topological insulators. To
do so, we first briefly review standard characterization for the
system thermodynamically large in three space dimensions. In
three dimensions, the model is characterized by a Z2 invariant,
which distinguishes phases with and without gapless Dirac
cones at the C4T -invariant surfaces (i.e., z = const).

We can demonstrate this bulk-boundary correspondence
by calculating the surface states of our toy model. We know
that the Dirac point will be located at a C4T -invariant sur-
face momentum (kx, ky) = q ∈ {(0, 0), (π, π )} and, due to
the presence of an additional artificial particle-hole symme-
try C = τyσyK, the surface-gap closing will occur at energy
E = 0 and the zero mode will be an eigenstate of chiral
symmetry operator T C = τy: τyψ = χψ , χ = ±1. The gap
closing condition then reads

(mq + t cos kz + iχ�1σz sin kz )ψ = 0, (4)

where m0,0 = M + 2t and mπ,π = M − 2t . Solving for kz, we
find

eikz =
−mq ±

√
m2

q + �2
1 − t2

t + sχ�1
, (5)

with s = ±1 and σzψ = sψ .
For a state with given χ, s to be decaying at z → ∞, there

must be two solutions for kz, satisfying |eikz | < 1. This is true
if and only if χs = sgn(�1/t ) and |mq| < |t |.

If cones are present at both q = (0, 0) and q = (π, π )
simultaneously, they are no longer protected, which results
in a trivial phase. This leads to a nontrivial bulk-topological
phase for −3|t | < M < −|t | and 2|t | < M < 3|t |.

III. QUASI-(3−1)D THIN-FILM GEOMETRY

Now, we will turn our attention to a slab of thickness L
finite in the z direction. Here, we discuss the example of
L = 4 in detail and include information on other values of
L in the Supplemental Material (SM) [40]. In particular, we
demonstrate the effect of L odd or even on the topological
phase diagram. In a topological region of the 3D bulk phase
diagram, the overlap between the surface states on the two
surfaces will produce a surface hybridization gap, which may
oscillate with the slab thickness and the parameters of the
model.

We can capture this phenomenology with a low-energy
model of the surface states. Assuming that the slab spans
0 < z � L, we know that the surface states at z = 0 will
have χs = sgn(�1/t ), whereas those at z = L will have χs =
− sgn(�1/t ). For a surface momentum close to the Dirac
point (kx, ky) = q + δq, we can project the Hamiltonian onto
the subspace spanned by the surface states. Taking for con-
creteness t = 1, �1 > 0, we then get the low energy effective
Hamiltonian (additional details of derivation provided in the
SM [40])

h = �1ν0(σxδqx + σyδqy) + νyσzδ

+ sq
(
δq2

x − δq2
y

)
(�2νzσz + �3ν0σz ), (6)
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FIG. 2. Bulk-boundary correspondence of finite-size crystalline
topological phase: (a) energy spectrum vs mass term M of a system
in thin film geometry with OBC in the ẑ direction (black) and OBC
in each spatial direction (red). Panels (b), (c), and (d) depict charge
density distribution vs x and y for states highlighted by black circles
in (a) corresponding to M = 0.5, 1.6, and 2.3, respectively. The
values of the remaining parameters used were t = −1, �1 = 0.6,
�2 = 0.37, and �3 = 0.4.

where να is a set of Pauli matrices acting in the surface-index
degree of freedom, δ is the hybridization gap, and s0,0 = −1,
sπ,π = 1.

Let us now consider a slab finite in x, y directions
(with size W � L). The vacuum can be modeled by taking
δ → ∞. If time-reversal symmetry is preserved (�2=�3=0)
and δ < 0 in the interior of the slab, we expect the edge
states propagating along the edges. We shall find them ana-
lytically. For an edge along n‖ = (cos α, sin α), with vacuum
at r · n⊥ < 0, n⊥ = n‖ × ẑ = (sin α,− cos α) is a unit vector
pointing towards the bulk of the slab; the boundary condition
is νy(n‖ · σ)ψ = −ψ . The edge-state solutions are then

ψ± ∝ e−(δ/�1 )r·n⊥eiδq‖r·n‖

(
1

±i

)
ν

(
1

∓eiα

)
σ

, (7)

with corresponding energies

E±(q‖) = ∓�1δq‖, (8)

where δq‖ is the momentum along the edge. Projecting
the low-energy slab Hamiltonian onto the edge-state Hilbert
space—this time allowing for nonzero �2,�3—we get a low-
energy edge Hamiltonian

h′ = −�1q‖νy + sq
�2δ

2

�2
1

cos(2α)νz. (9)

The mass term proportional to νz changes sign at the points
where edge orientation is α ∈ {π/4, 3π/4, 5π/4, 7π/4}, at
which points there will be corner zero-energy bound states.
These corner states will be eigenstates of νx, so their charge
distribution will be equally split between the top and the
bottom surface.

We support the above analytical calculations with nu-
merical results for the quasi-(3-1)D slab shown in Fig. 2,

FIG. 3. Left panel: probability density distribution over real-
space for the corner mode shown in Fig. 2 at M = 1.6, with four
unit cells in the stacking (z) direction. Right panel: charge density
per corner vs layer index in the stacking (z) direction.

with open-boundary conditions in first the z direction (black)
and then also in the x and y directions (red). We charac-
terize the quasi-(3-1)D bulk topology with the topological
invariant ν [41]

ν = 1

π

[∫
IBZ

TrF dk2 + 2i log d̃etW�→M

]
mod 4, (10)

defined over the irreducible Brillouin zone (IBZ), where F
is the non-Abelian Berry curvature and d̃etWC is the dressed
Wilson line determinant.

In the case when �2 = 0, this invariant can be calculated
explicitly for the effective low energy Hamiltonian [40]:

ν = 1 − sgn(δ0,0δπ,π ) − sgn(2�3 + δ0,π )

+ sgn(2�3 − δ0,π ) mod 4. (11)

When T and C4 are present (�2 = �3 = 0), ν is Z2 classified
and Z4 when these symmetries are broken while preserving
C4T . As shown in Fig. 2, nontrivial ν corresponds to quasi-
(3-2)D gapless edge states (ν = 1, 3) or quasi-(3-3)D corner
modes (ν = 2) for this geometry.

It is important to explicitly distinguish between corner
states of a strictly 2D topological phase and the corner states
of the finite-size topological phase presented here. The proba-
bility density distribution of boundary states in the finite-size
topological phase are noticeably z dependent as shown in
Fig. 3, with charge density concentrated at the corners of
the top and bottom layers specifically, rather than evenly dis-
tributed along the hinges. This bulk-boundary correspondence
distinguishes the finite-size topological phase from a strictly
2D crystalline topological state. While uneven distribution
of corner charge in the stacking direction for a strictly 2D
crystalline topological state is possible, in principle, the topo-
logical state does not protect it. In the case of the quasi-(3-1)D
crystalline FST phase, it is protected, as the corner states
originate specifically from the gapped surface states of the top
and bottom surfaces.
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IV. TOPOLOGICAL RESPONSE SIGNATURES
OF FINITE-SIZE TOPOLOGY

We may also examine the topological response of the
system normally associated with a 3D bulk, the topologi-
cal magnetoelectric polarizability [42], for the system in the
quasi-(3-1)D geometry, to further investigate the nature of the
topological nontrivial state. To do so, we introduce magnetic
perturbations at the top and bottom surfaces of the quasi-
(3-1)D system as illustrated in Fig. 1(e).

We model the magnetic perturbation by adding a term
κ̃νzσz to the effective surface Hamiltonian (6):

h = �1ν0(σxδqx + σyδqy) + νyσzδ + κ̃νzσz. (12)

The Hall conductivity of the top/bottom surfaces is given by
the formula [42]

C± = i

2π

∫
dk Tr[Pεi j (∂iP)ν±(∂ jP)], (13)

where P is the ground-state projector and ν± = 1
2 (ν0 ± νz )

is the projector onto the top/bottom surface. We can find the
spectrum of the Hamiltonian by squaring it,

H2 = ε2, ε =
√

v2k2
x + v2k2

y + δ2 + κ̃2, (14)

and thus the ground-state projector is simply

P = ε − H

2ε
. (15)

We then get

Tr[Pεi j (∂iP)ν±(∂ jP)] = ∓ iκ̃

2ε3
, (16)

which yields

C± = ± κ̃

2
√

δ2 + κ̃2
. (17)

In the case when the magnetization-induced gap dominates
over the hybridization gap, this tends to the expected value
1/2. These results may provide additional understanding of
past work on the magnetoelectric polarizability of axion insu-
lators in thin film systems, where deviations from 1/2 are also
observed as part of the topological response signature [39].

Numerical results on the response signatures associated
with the topological magnetoelectric polarizability are shown
in Fig. 4. Surface Hall conductance for the top layer is shown
over the same interval in mass parameter M as in Fig. 2 as
a function of magnetization strength κ . We see that, with
increasing κ , the surface Hall conductance increasingly ap-
proaches a saturation value of 0.5 in units of e2/h, the value
associated with nontrivial magnetoelectric polarizability [42],
over the region of the underlying bulk 3D topological state.
For very small κ , finite surface Hall conductance first nucle-
ates about the transition points between topological bubbles
corresponding to different finite-size topological states, com-
peting with the hybridization gap. This demonstrates that,
even if the gapless surface states associated with the 3D bulk
topological phase strongly hybridize and are lost, in this sense,
due to finite-size effects, the 3D bulk topological invariant
remains very relevant in characterizing the topological state
and the quasi-(3-1)D system is not adequately characterized

FIG. 4. Topological magnetoelectric response of a finite-size
crystalline topological phase: (a) surface Hall conductance vs mass
term M and surface magnetization strength κ . Panel (b) depicts cuts
through (a) for different fixed magnetization strengths κ .

by topological invariants of strictly 2D, 1D, and/or 0D bulk.
This may help explain recent experiments in thin-film systems
investigating states with nontrivial magnetoelectric polariz-
ability [39,43–45]. For this purpose, we show the dependence
of the topological magnetoelectric response on system size L
in the Supplemental Material [40].

V. DISCUSSION AND CONCLUSION

We introduce crystalline finite-size topological phases of
matter in this work. We examine the Hamiltonian of the
canonical crystalline topological insulator state protected by
fourfold rotational symmetry and time-reversal symmetry
or invariance of the system under the product operation of
fourfold rotation and time reversal [1]. For open bound-
ary conditions in the z direction, with corresponding system
size in this direction, L, on the scale of a few unit cells
(e.g., L<10), we find the gapless surface states occurring
for thermodynamically large L generically strongly hybridize
to open a gap, with gapless regions reduced to gapless,
fine-tuned transition points between topologically distinct
gapped regions of the phase diagram. These gapped regions
may be topologically characterized to determine an addi-
tional bulk-boundary correspondence distinct from that of
strictly 2D topological states, with nontrivial invariant indi-
cating gapless edge or corner states concentrated at the top
and bottom surfaces upon opening boundary conditions in
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the x and y directions such that the protecting symmetries
of the bulk state are preserved at the boundary. As required
for a finite-size topological phase, however, we also confirm
the layer-dependent Hall conductance signature of nontrivial
magnetoelectric polarizability persists for L < 10 even when
the surface states of the underlying 3D state are absent due to
strong hybridization.

Our work therefore serves as a foundation in studying
finite-size topology of the large class of topological states
protected in whole or in part by crystalline point group sym-
metries and studied heavily in experiments. Our work may

furthermore provide understanding of topological response
signatures of intrinsically three-dimensional topological states
previously-observed in thin film systems [39,43–45].
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