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Bang-bang preparation of quantum many-body ground states in two dimensions: Optimization
of the algorithm with a two-dimensional tensor network
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A bang-bang (BB) algorithm prepares the ground state of a two-dimensional (2D) quantum many-body
Hamiltonian H = H1 + H2 by evolving an initial product state alternating between H1 and H2. We use the
neighborhood tensor update to simulate the BB evolution with an infinite pair-entangled projected state (iPEPS).
The alternating sequence is optimized with the final energy as a cost function. The energy is calculated with a
tangent space power method for the sake of its stability. The method is benchmarked in the 2D transverse field
quantum Ising model near its quantum critical point against a ground state obtained with variational optimization
of the iPEPS. The optimal BB sequence differs nonperturbatively from a sequence simulating quantum annealing
or adiabatic preparation (AP) of the ground state. The optimal BB energy converges with the number of bangs
much faster than the optimal AP energy.
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I. INTRODUCTION

Understanding the properties of strongly correlated quan-
tum many-body systems is one of the long-standing prob-
lems in the theoretical and computational condensed matter
physics, especially in two spatial dimensions, where correla-
tion effects are strong but, unlike in one-dimensional systems,
integrability or numerically exact tractability is often miss-
ing. Exact diagonalization is limited to small system sizes
by the exponential growth of the Hilbert space with the size
of the system. Powerful Monte Carlo approaches are plagued
by the notorious sign problem that can be circumvented by
tensor networks for weakly entangled states. The entangle-
ment is not a barrier for quantum simulators and computers,
but present-day quantum hardware—noisy intermediate-scale
quantum (NISQ) devices [1]—can operate reliably only for
shallow circuits.

In this work we employ a genuinely two-dimensional ten-
sor product ansatz, also known as the pair-entangled projected
state (PEPS) [2–18], to design the quantum approximate opti-
mization algorithm (QAOA) [19]. The QAOA splits the target
Hamiltonian into two noncommuting terms, H = H1 + H2,
and after initialization in a product state performs a sequence
of unitary evolutions alternating between H1 and H2. This
bang-bang (BB) [20,21] sequence of time steps (or rotation
angles) is optimized to minimize the final energy in the target
Hamiltonian H to obtain the best approximation to its ground
state. It is preferable to minimize the number of BB steps that
are equal to the depth of the quantum circuit. The shallowness
of the allowed QAOA makes it ideally suited for classical
simulation with tensor networks, as already demonstrated
in one dimension with matrix product states [22] (MPSs).
With the classical simulation, one can design an optimal BB

protocol to prepare the ground state on quantum hardware
before it is subject to further quantum processing that goes
beyond any classical simulation. In this work, we demonstrate
that a similar tensor network method can be successfully em-
ployed on an infinite lattice in a two-dimensional system. This
is not quite straightforward given the lack of tractable canon-
ical structure (but see Ref. [23]), which necessitates resorting
to local updates in time evolution, like the neighborhood ten-
sor update (NTU) [24] used here, and to evaluate expectation
values in controlled-approximation schemes. We calculate the
final energy with a tangent space power method [25,26] to
guarantee its stability for exotic BB sequences explored by
the optimization algorithm (see Appendix A).

The rest of this paper is organized as follows. In Sec. II we
outline the tensor network algorithm that we use to simulate
the unitary evolution. The tangent space power method for
expectation values is presented in some detail in Appendixes
A and B. In Sec. III we define the BB gate sequence as
well as an alternative adiabatic preparation (AP) sequence
that simulates quantum annealing [27] with a digital quantum
device. Numerical results for optimal sequences (both AP and
BB) are presented in Sec. IV. We conclude in Sec. V.

II. TWO-DIMENSIONAL TENSOR
NETWORK ALGORITHM

Typical ground states of quantum many-body systems can
be represented efficiently by tensor networks [28–30], in-
cluding the matrix product states in one dimension [31], the
PEPS in two dimensions [4,32] and three dimensions [33], and
the multiscale entanglement renormalization ansatz [34–37].
Recently an infinite PEPS (iPEPS) ansatz was employed to
simulate unitary time evolution after a sudden Hamiltonian
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quench on infinite lattices [24,38–48]. In this work, we use
the NTU algorithm [24] that was previously used to simu-
late the many-body localization [44], the Kibble-Zurek ramp
in the Ising and Bose-Hubbard models [47,48], and thermal
states obtained by imaginary-time evolution in the fermionic
Hubbard model [49].

Like in other schemes, in NTU the evolution operator
is subject to the Suzuki-Trotter decomposition [50–52] into
a product of one-site and nearest-neighbor (NN) two-site
Trotter gates. As each NN Trotter gate increases the bond
dimension along its NN bond r times, from D to rD, the
bond dimension has to be truncated back to a predefined D
to prevent its exponential growth with the number of gates.
It has to be done in a way that minimizes an error afflicted
on the quantum state. There are several error measures, each
of them implying a different algorithm: the simple update
[40,42], the full update [10,38], the neighborhood tensor up-
date [24,44,47], and the gradient tensor update [53]. The NTU
error measure is explained in Fig. 1. For each NN gate, the
Frobenius norm of the difference between the left (L) and right
(R) hand sides of Fig. 1(b) is minimized. The NTU error δi

of the ith gate is defined as the minimal norm ||L − R||. δi

is a rough estimate for an error inflicted on local observables
by the bond dimension truncation. Accumulating truncation
errors can eventually derail the time evolution. In the worst-
case scenario, the errors are additive. This motivates a total
NTU error [49]:

εNTU =
∑

i

δi, (1)

where the sum is over all performed NN Trotter gates.
There are three main differences between this work and

previous time evolution studies. The first is that, although the
gate sequence has the same structure as in the Suzuki-Trotter
decomposition, the gates are allowed arbitrary rotation angles
instead of being restricted to small time steps. The second is
that evaluation of expectation values is done with an iPEPS
boundary obtained by a tangent space power method [25]
(see Appendix A). It proved to be stable for exotic rotation
sequences explored by the optimization algorithm. There is
no reason to exclude sequences that seem too exotic because
this is where we hope to find unexpected shortcuts to the target
ground state. Finally, the third difference stems from a differ-
ent motivation of the present study. Our aim is not just to find
a tensor network state with minimal energy but also to design
a gate sequence for a digital quantum computer. If we were
just to find the state, then we could accept significant NTU
truncation errors as an inherent part of the algorithm targeting
the minimal energy network and, in particular, accept that the
optimal gate sequence depends on the bond dimension. How-
ever, if we want the optimal gate sequence to reproduce the
same state or energy when implemented on a digital quantum
computer, then we must suppress the gate truncation errors
down to what can be safely considered numerical zero.

III. GATE SEQUENCES

In this work, we consider the two-dimensional (2D) trans-
verse field quantum Ising Hamiltonian on an infinite square

FIG. 1. NTU. (a) Infinite PEPS with tensors A (purple) and B
(pink) on the two sublattices of an infinite checkerboard lattice. The
red lines are physical spin indices, and the black lines are bond
indices, with bond dimension D, contracting NN site tensors. In one
of the Suzuki-Trotter steps a Trotter gate is applied to every NN pair
of A-B tensors along every horizontal row (but not to horizontal B-A
pairs). The gate can be represented by a contraction of two tensors,
GA and GB, by an index with dimension r. When the two tensors
are absorbed into tensors A and B the bond dimension between them
increases from D to rD. (b) The A-B pair, with a Trotter gate applied
to it, is approximated by a pair of new tensors, A′ (deep purple) and
B′ (dark blue), connected by an index with the original dimension D.
The new tensors are optimized to minimize the difference between
the two networks in (b). (c) After A′ and B′ are converged, they
replace all tensors A and B in a new iPEPS. Now the next Trotter
gate can be applied.

lattice:

H = gH1 + JH2, (2)

where

H1 = −
∑

i

Xi, (3)

H2 = −
∑
〈i, j〉

ZiZ j . (4)

Here each NN pair appears in the sum only once. Xi and Zi

stand for Pauli matrices σ i
x and σ z

i , respectively. In the fol-
lowing we set the ferromagnetic coupling J = 1. The model
has a quantum phase transition at finite gc separating the
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ferromagnetic phase from the paramagnetic one. Its quantum
Monte Carlo estimate is gc = 3.04438(2) [54].

We want to prepare the ground state of the model at a
given g starting from an easy-to-prepare product state fully
polarized along X and then perform a finite number of steps
N . We employ two strategies. One is the real-time adiabatic
quantum state preparation, where the Hamiltonian is smoothly
ramped from H1 to the final H with the desired transverse field
g. With N steps allowed, the ramp is performed as a Suzuki-
Trotter decomposition with a fixed time step �t . The step
is a variational parameter, not necessarily small, optimized
to minimize the energy at the end of the ramp. The other
strategy is a bang-bang protocol in which all rotation angles
of the Suzuki-Trotter gates are free variational parameters.
The bang-bang protocol does not need to approximate the
adiabatic quantum state preparation, but it is allowed, and
expected, to use the extra freedom to find its own shortcut
to the desired ground state. In this work, we target the ground
state for g = 3.1, which is close enough to the critical point
to be challenging but still tractable by an iPEPS with limited
bond dimension.

The real-time adiabatic quantum state preparation per-
forms a smooth ramp of Hamiltonian parameters described
by the function

f (u) = 1
2 {1 + sin[π (u − 1/2)]}, (5)

parameterized by a timelike u ∈ [0, 1]. The evolution operator
is the second-order Suzuki-Trotter decomposition into N time
steps:

UAP(�t ) = e− 1
2 i�tgH1

× e−i�t f [(2N−1)/(2N )]H2

× e−i�tgH1

. . .

× e−i�tgH1

× e−i�t f [1/(2N )]H2

× e− 1
2 i�tgH1 , (6)

with the time step �t being its only variational parameter
that is not assumed to be small. As we initialize the system
with an eigenstate of H1 throughout this paper, the first step
exp(−i�tgH1/2) does nothing but introduces a phase factor
and thus can be dropped. In contrast, the bang-bang evolution
operator,

UBB(β1, . . . , αN ) = e−i 1
2 αN gH1

× e−iβN H2

× e−iαN−1gH1

. . .

× e−iα1gH1

× e−iβ1H2 , (7)

allows us to optimize all 2N rotation angles β j and α j as
free parameters. For comparison, the AP angles in (6) are
constrained to be parameterized with a single time step �t

TABLE I. Summary of the results. N is the depth of the quantum
circuit, i.e., the number of layers of NN gates applied to the ini-
tial product state. The second column lists corresponding maximal
total NTU errors (1) encountered for the optimal AP or BB gate
sequences. As the singular-value decomposition rank of the NN gate
is r = 2, for D = 23 there is no error up to N = 3. The third and
fourth columns list the optimal energies per bond for the transverse
field g = 3.1. The ground state energy obtained by variational opti-
mization [11] with D = 6 is shown as a benchmark.

N εNTU EAP EBB

2 0 −1.575331 −1.637082
3 0 −1.611126 −1.639453
4 5.1×10−7 −1.626484 −1.64071
5 1.6×10−6 −1.630946 −1.64085
6 1.9×10−6 −1.633067 −1.64091
7 1.2×10−8 −1.635215
8 2.0×10−8 −1.636623
9 3.2×10−8 −1.637411
10 5.6×10−7 −1.637896
Variational −1.6422386 −1.6422386

as

β
(AP)
j = �t f [(2 j − 1)/(2N )],

α
(AP)
j = �t . (8)

The optimal BB angles may end up being close to their AP
values, with perturbative differences meant to approximate the
counteradiabatic term [55] by the Suzuki-Trotter errors [56] or
to follow a qualitatively different path along a nonperturbative
shortcut to the desired ground state.

IV. RESULTS

Our aim is to achieve as good an approximation of the
ground state of H as possible in a limited number of steps N
that define the depth of the quantum circuit. For the relatively
shallow circuits that we consider it was enough to use iPEPS
bond dimension D = 8. The largest total NTU errors (1) that
we encountered for different N are listed in Table I. They are
small enough for the obtained BB patterns to be transferred to
a quantum computer without any modification to mitigate the
NTU errors. The calculation of expectation values required
another bond dimension, χ , that is a refinement parameter for
approximate contraction of an infinite squared norm of the
iPEPS state (see Appendix B). In this study, χ = 40 proved
to be sufficient.

We consider the adiabatic preparation first. When �t is
small enough, the Suzuki-Trotter (ST) errors become neg-
ligible, and all that matters is the overall ramp time N�t .
Figure 2(a) shows the energy at the end of the ramp as a
function of the total rotation angle 2N�t for several val-
ues of N . For small �t the plots with different N collapse,
demonstrating the accuracy of the ST approximation in this
regime. This collapse fails when �t is too long for the ST
decomposition because g�t � 1 or J�t � 1. For the consid-
ered g = 3.1 and J = 1 the former condition is stronger and
fails first. Increasing �t further makes the ST errors larger
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FIG. 2. Adiabatic preparation (AP). (a) Final energy at the end of
the AP gate sequence as a function of the total rotation angle 2N�t
for the transverse field g = 3.1 and different quantum circuit depths
N . The red dashed line is a benchmark ground state energy obtained
with variational optimization [11] of an iPEPS with D = 6. (b) The
minimal final AP and BB energies as a function of N .

and, consequently, makes the final energy grow with �t . For
each N there is an optimal �t ∝ 1/g when the final energy is
minimal.

The energy gap at g = 3.1 between the ground state and
the first excited state is � = 0.15 (see the Appendix in [47]),
which means that the minimal time required to make the
straightforward AP adiabatic is N�t ≈ 2π/� ≈ 40. In this
situation, the final energy begins to decay exponentially with
the total time. With g�t � 1 being necessary to tame the ST
errors, the minimal N corresponding to the minimal time is
N ≈ 120. This is the condition for the final AP energy to begin
to decay exponentially with the total annealing time N�t .

In Fig. 2(b) we compare the optimal AP energies with the
optimal BB ones. In the BB protocol the gate angles α and β

were optimized with two built-in algorithms of MATLAB: one
is the local minimum searching algorithm fmincon; the other
is the global minimum searching algorithm patternsearch
[57,58]. Instead of using the global optimizer directly, we
first feed fmincon initially with the bang-bang pattern of the
best AP approach and then use fmincon. It returns a local
minimum which can serve as a benchmark for the global
minimum. Then, we use this local minimum as the initial input
to patternsearch. In this way, patternsearch can return a global
minimum that is smaller than the local one. Thanks to the
extra freedom in the choice of rotation angles, the convergence
of the optimized energy with N is much faster for the BB than
the AP sequence. The optimal AP and BB gate sequences
for N = 2–6 are shown in Fig. 3. We can see that for each
N the BB sequence is nonperturbatively different from the
AP one. The optimal BB sequence for N = 2–4 comes out

FIG. 3. Optimal gate sequences. The parameters β j and α j for
the optimal bang-bang (BB) sequence in (7) and the adiabatic quan-
tum state preparation (AP) in (7) and (8) for the optimal time step
�t . In both protocols, the unitary evolution switches between the
two-qubit Hamiltonian H2 and the one-qubit H1 with lengths of
corresponding segments equal to β j and α j , respectively. The optimal
AP and BB sequences with the same number of steps N differ
nonperturbatively.

the same regardless of whether the optimization is initialized
with the optimal AP sequence or a random one. For N = 5, 6
we were forced to change the strategy and initialize the BB
sequence with the optimal BB sequence for N − 1. This ex-
plains the similarity between the BB patterns for N = 4 and
N = 5: the N = 5 pattern differs from N = 4 by an extra final
H2 gate. The BB patterns for N = 5, 6 are even closer: N = 6
has an extra spike of H2. Nevertheless, the energy continues
to decrease with N .

In both AP and BB we use the final energy as a convenient
cost function. The local observable is relatively easy to com-
pute, but it cannot stand for full characterization of the ground
state near the quantum critical point with long ferromagnetic
correlations. Figure 4 shows ferromagnetic correlators after
several AP and BB sequences together with the one obtained
by a variational optimization [11] that serves here as a bench-
mark. All AP and BB correlators have a shorter range than
the variational one. This is understandable as they have higher
energy but also because the range of any nonzero correlator
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FIG. 4. Ferromagnetic correlator. The connected part of the
ferromagnetic correlation function is shown for the two types of pro-
tocols and for the ground state obtained variationally which serves as
a benchmark. The ground state correlation length is ξ = 2.38. Both
the adiabatic preparation (AP) and the bang-bang (BB) sequence
improve towards the benchmark with increasing N . A finite circuit
depth N limits the maximal range of any nonzero correlations to 2N .

is limited to at most 2N by construction. A BB correlator is
closer to the benchmark than its AP counterpart with the same
N as the BB state has lower energy. At N = 6 BB becomes
comparable to AP with N = 10 at a medium range though its
far tail remains lower, as may be explained by the limitation
imposed by the finite N . The BB procedure does a better
job than the AP in the sense of achieving lower energy and
stronger short-range correlations for a smaller N even though
the same small N limits its correlation range.

As a final remark, in Appendix C we attempt to prepare a
ground state on the ferromagnetic side of the quantum phase
transition with the same minimal set of gates, X and ZZ ,
starting from the same X -polarized initial state.

V. CONCLUSION

We provided a proof of principle that the iPEPS time evo-
lution combined with tangent space methods can be used to
design optimal shallow bang-bang quantum gate sequences
preparing the ground state of a 2D quantum lattice Hamilto-
nian. The BB sequences converge with the number of gates
faster than sequences simulating the adiabatic quantum state
preparation thanks to a far bigger number of variational pa-
rameters allowing for a nonperturbative shortcut to the target
state.

The infinite system considered here is a convenient bench-
mark, as it requires only two sublattice tensors, but finite
systems can also be treated by PEPS with different tensors
on different lattice sites [59,60]. Moreover, the translationally
invariant sequence optimized on an infinite lattice is also a
good starting point for a finite system as it is already optimal
in its bulk, i.e., farther away from the lattice’s edges than the
correlation length in the final state. The rest can be readily
improved by optimizing only the gates on the edge. As the
iPEPS is correlated, this optimization would improve the final
state not only on the edge itself but also up to the correlation
length distance from it.

The figure data can be downloaded from RODBUK [61].
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APPENDIX A: IPEPS BOUNDARIES

We calculate observables with a variational tangent space
MPS technique [25]. Here we summarize the algorithm that
we used for the considered checkerboard lattice.

In Fig. 5(a) we define the double iPEPS tensors that occur
in the squared norm of the iPEPS 〈ψ |ψ〉, where the bra and the
ket are, respectively, the conjugate iPEPS and the iPEPS itself.
Approximate row-by-row contraction of the squared norm
from top to bottom results in an upper boundary represented
by an infinite matrix product state (iMPS) with “physical”
indices with dimension D2 and bond indices with dimension
χ [see Fig. 5(b)]. χ is a refinement parameter controlling
the accuracy of approximations made during the row-by-row
contraction. The contraction is done by repeated application
of a row transfer matrix to the boundary iMPS until its con-
vergence [see Fig. 5(b)]. After every application, the bond
dimension of the boundary iMPS increases from χ to χD2

and has to be compressed back to the original χ to avoid its
divergence. The compression is done by approximating the
iMPS with a new iMPS with bond dimension χ . The χ iMPS
is optimized by maximizing its overlap with the χD2 iMPS
with the help of the tangent space methods [25,26].

They represent the boundary iMPS in its mixed canonical
forms in Figs. 6(a) and 6(b). The tensors to the left (right)
of the canonical center are left (right) isometries. With QR
decomposition in Figs. 6(c) and 6(d) the mixed canonical
iMPS can be brought to an equivalent form with a central bond
matrix CAB or CBA. Furthermore, the equations in Figs. 6(c)
and 6(d) allow one to move the orthogonality center along
the chain without changing the state represented by the iMPS.
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FIG. 5. Boundary MPS ansatz. (a) Double PEPS tensor AA (BB)
consists of iPEPS tensor A (B) contracted through the physical index
with its complex conjugate A (B). (b) The top boundary MPS consists
of tensors TA and T B. A row of tensors AA and BB makes a row
transfer matrix. After the boundary is applied with the row transfer
matrix, it becomes a new boundary MPS made of new tensors T̃A and
T̃ B with bond dimension χD2 > χ . The dimension is compressed
back by approximating the new MPS with an MPS made of new
tensors TA and T B with bond dimension χ .

They guarantee that the mixed canonical MPS has a hidden
translational symmetry.

The overlap between the new χD2 iMPS boundary and
the new compressed χ iMPS boundary is shown in Fig. 7(a).
The orthogonality center at site A divides the diagram into

FIG. 6. Canonical forms. (a) and (b) The mixed canonical bound-
ary MPS with TAC and T BC as the canonical centers. Here TAL

(TAR) and T BL (T BR) are left (right) canonical tensors. The forms
in (a) and (b) are equivalent thanks to the relations in (c) and (d). The
canonical centers and CAB/CBA are normalized to 1.

FIG. 7. Overlap. The overlap between the new χD2-iMPS
boundary and the compressed χ -iMPS boundary in Fig. 5(b) is
shown here in (a). Its left part is a semi-infinite product of two trans-
fer matrices, T̃A − TAL and T̃ B − T BL , where the overline means
complex conjugation. Therefore, the left part can be replaced by the
left leading eigenvector of their product defined in (b). Similarly, the
right part can be replaced by the leading right eigenvector in (c).

two semi-infinite parts. The left one can be interpreted as
a semi-infinite alternating product of two transfer matrices:
T̃A − TAL and T̃ B − T BL. The right one is a product of
the other two transfer matrices: T̃A − TAR and T̃ B − T BR.
Therefore, the left (right) part can be replaced by leading
left (right) eigenvectors of the left (right) transfer matrices
defined in Figs. 7(b) and 7(c). After convergence of the max-
imized overlap, the leading eigenvalues should become the
same, λ

(L)
AB = λ

(L)
BA = λ

(R)
AB = λ

(R)
BA , and their common magni-

tude should achieve its maximal value.
Using the left and right leading eigenvectors, new canon-

ical centers TA′
C and T B′

C as well as new C′
AB and C′

BA are
calculated, as shown in Fig. 8. New left and right isometries,
TA′

L,R and T B′
L,R, should be updated in such a way that they

satisfy the relations in Figs. 6(c) and 6(d) as closely as pos-
sible, and therefore, we require them to minimize four cost
functions:

||TA′
C − C′

BA · TA′
R||2, (A1)

||TA′
C − TA′

L · C′
AB||2, (A2)

||T B′
C − T B′

L · C′
BA||2, (A3)

||T B′
C − C′

AB · T B′
R||2. (A4)

Here all tensors were reshaped into matrix forms,
and the center dot (·) indicates matrix multiplication.
Following Vanderstraeten et al. [25], we make polar
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FIG. 8. Canonical center update. New canonical centers TA′
C and

T B′
C as well as C′

AB and C′
BA are updated with the left and right leading

eigenvectors defined in Figs. 7(b) and 7(c).

decompositions:

TA′
C = U L

AC · PL
AC = PR

AC · U R
AC, (A5)

T B′
C = U L

BC · PL
BC = PR

BC · U R
BC, (A6)

C′
AB = U L

AB · PL
AB = PR

AB · U R
AB, (A7)

C′
BA = U L

BA · PL
BA = PR

BA · U R
BA. (A8)

The isometries, U L/R
AC/BC and U L/R

AB/BA, are used to update the left
and right isometric tensors as

TA′
L = U L

AC · U L†
AB , T B′

L = U L
BC · U L†

BA , (A9)

TA′
R = U R†

BA · U R
AC, T B′

R = U R†
AB · U R

BC . (A10)

The whole procedure in Fig. 8 followed by (A1) to (A10) is
repeated until convergence.

After the convergence of the overlap the next row transfer
matrix is applied, and again, an overlap between the resulting
χD2 iMPS and a new compressed χ iMPS is maximized
iteratively. The row transfer matrices are applied repeatedly
until convergence of the upper iMPS boundary. The lower
boundary and, if necessary, left and right boundaries are ob-
tained similarly.

APPENDIX B: EXPECTATION VALUES

With the top and bottom iPEPS boundaries, we can calcu-
late expectation values as shown in Figs. 9 and 10. To begin,
we place the row transfer matrix between the two boundaries
and obtain an infinite product of the transfer matrices. The
infinite product can be replaced by the leading left and right
eigenvectors shown in Fig. 9. These fixed points are employed
in Fig. 10 to obtain an expectation value of an operator OAB

supported on two nearest-neighbor sites. Expectation values
for operators with support along the vertical direction can be
calculated in a similar fashion.

FIG. 9. Fixed points. The top and bottom iPEPS boundaries with
a row transfer matrix in between are an infinite product of transfer
matrices. Here we introduce their leading left and right eigenvectors:
L̃AB and R̃AB, which will be used in Fig. 10.

FIG. 10. Expectation value calculation. (a) A two-site operator
OAB is placed between the iPEPS and its conjugate. (b) The left
and right fixed points from Fig. 9 together with the top and bottom
iPEPS boundary tensors are combined to obtain the expectation value
of OAB.
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TABLE II. Summary of results: paramagnetism to ferromag-
netism. N is the depth of the quantum circuit. The second column
lists the corresponding maximal total NTU errors (1) encountered for
the optimal AP or BB gate sequences. The third and fourth columns
list the optimal energies per bond for the transverse field g = 0. The
exact ground state energy is −1.

N εNTU EAP EBB

2 0 −0.28202 −0.48065
3 0 −0.32152 −0.52906
4 2.1×10−4 −0.35180 −0.6015(8)
5 5.1×10−4 −0.42315 −0.616(48)
Exact −1 −1

APPENDIX C: BB TO THE FERROMAGNETIC PHASE

In this Appendix we start with the same initial product
state fully polarized along X , but this time we target the
ground state on the ferromagnetic side of the quantum phase
transition. In order to isolate problems arising from crossing
the critical point from those due to representing correlations
in the state, here we consider zero final transverse field with
the fully polarized product ferromagnetic ground state.

AP employs a ramp of Hamiltonian parameters described
by the function

f (u) = 1
2 (1 + u|u|), (C1)

parameterized by a timelike u ∈ [−1, 1]. The Hamiltonian

H (u) = f (u)H2 + f̃ (u)gcH1, (C2)

where f̃ = 1 − f , interpolates between the transverse-field H1

and the ferromagnetic H2. Its time dependence slows near
the critical point at u = 0 to reduce quantum Kibble-Zurek
(KZ) excitations [62–68]. At the beginning and the end it
has discontinuous time derivatives that add some excitations,
but they are negligible when compared to the leading KZ
excitations because they crossing the critical point. Given that
the function is bound to be discretized with a limited number
of time steps N , it may not be flexible enough to attempt to
nullify the initial and final derivatives together with slowing
at the critical point.

The N-step Suzuki-Trotter decomposition of the AP evolu-
tion operator is

UAP(�t ) = e− 1
2 i�t f̃ [1]gcH1

× e−i�t f [(2N−1)/(2N )]H2

× e−i�t f̃ [(2N−2)/(2N )]gcH1

. . .

× e−i�t f̃ [2/(2N )]gcH1

× e−i�t f [1/(2N )]H2

× e− 1
2 i�t f̃ [0]gcH1 , (C3)

with the time step �t being its only variational parameter. The
action of the first gate on the initial state is trivial and can be

FIG. 11. Optimal gate sequences of BB to the ferromagnetic
phase. Sets of parameters β j and α j for the optimal bang-bang (BB)
sequence in (7) that tune the system from the paramagnetic phase
to the ferromagnetic phase. The energy of optimized BB2 is already
lower than the energy of the adiabatic approach (AP) with N = 5
(see Table II). Notice that for BB3, BB4, and BB5, we have one
bang that corresponds to a gate of the form exp[−iβ j (−H2)] in which
β j > 0. This “time-reversing” gate is significantly different from the
gates in the adiabatic preparation approaches [see (C1) and (C3)],
manifesting the nonadiabatic nature of the bang-bang approach.

ignored. The BB evolution operator is

UBB(β1, . . . , αN ) = −i 1
2 αN gcH1

× e−iβN H2

× e−iαN−1gcH1

. . .

× e−iα1gcH1

× e−iβ1H2 . (C4)

All of its 2N rotation angles β j and α j are free parameters.
Table II contains the optimal AP and BB energies together
with the corresponding NTU errors.

It turns out that, with the same minimal set of X and ZZ
gates, it is much harder to cross to the ferromagnetic phase
than to prepare a paramagnetic ground state. These two gates
respect the Z2 symmetry that is spontaneously broken at the
phase transition. They cannot generate a symmetry breaking
bias, like the simple one in Refs. [69,70], to make the passage
through the critical point more adiabatic. Nevertheless, the
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extra freedom of the BB ansatz gives it a clear advantage over
AP. Including an extra Z gate, which breaks the Z2 symmetry,
could generate a symmetry breaking bias, the same as or more
general than that in Ref. [69], to open a spectral gap when
passing across the critical point. Alternatively, by including

an extra Y gate, which also breaks the Z2 symmetry, an initial
rotation around Y could transform the initial X -polarized state
into a Z-polarized one, and then via the Kramers-Wannier du-
ality, a dual version of the optimal sequence in Fig. 11 would
prepare a ferromagnetic ground state dual to the paramagnetic
one prepared in the main text.
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