
PHYSICAL REVIEW B 109, 235121 (2024)

Three-dimensional Z2-gauge N-vector models

Claudio Bonati,1 Andrea Pelissetto ,2 and Ettore Vicari 3

1Dipartimento di Fisica dell’Università di Pisa and INFN Sezione di Pisa, Largo Pontecorvo 3, I-56127 Pisa, Italy
2Dipartimento di Fisica dell’Università di Roma Sapienza and INFN Sezione di Roma I, I-00185 Roma, Italy

3Dipartimento di Fisica dell’Università di Pisa, Largo Pontecorvo 3, I-56127 Pisa, Italy

(Received 16 April 2024; revised 27 May 2024; accepted 29 May 2024; published 10 June 2024)

We study the phase diagram and critical behaviors of three-dimensional lattice Z2-gauge N-vector models, in
which an N-component real field is minimally coupled with Z2-gauge link variables. These models are invariant
under global O(N) and local Z2 transformations. They present three phases characterized by the spontaneous
breaking of the global O(N) symmetry and by the different topological properties of the Z2-gauge correlations.
We address the nature of the three transition lines separating the three phases. The theoretical predictions
are supported by numerical finite-size scaling analyses of Monte Carlo data for the N = 2 model. In this case,
continuous transitions can be observed along both transition lines where the N-component spins order, in the
regimes of small and large inverse gauge coupling K . Even though these continuous transitions belong to the
same XY universality class, their critical modes turn out to be different. When the gauge variables are disordered
(small K), the relevant order-parameter field is a gauge-invariant bilinear combination of the vector field. On the
other hand, when the gauge variables are ordered (large K), the order-parameter field is the gauge-dependent
N-vector field, whose critical behavior can only be probed by using a stochastic gauge fixing that reduces the
gauge freedom.
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I. INTRODUCTION

Gauge symmetries and Higgs phenomena are key features
of theories describing high-energy particle physics [1] and
collective phenomena in condensed-matter physics [2–5]. In
both contexts, it is crucial to have a solid understanding of
the interplay between global and gauge symmetries, and, in
particular, the role that local gauge symmetries play in deter-
mining the phase structure of a model, as well as the nature of
its different phases and of its quantum and thermal transitions.
Several lattice Abelian and non-Abelian gauge models have
been considered, with the purpose of identifying the possible
universality classes of the continuous transitions; see, e.g.,
Refs. [5–86] for a partial selection of references. They provide
examples of topological transitions, which are driven by ex-
tended charged excitations with no local order parameter or by
a nontrivial interplay between long-range scalar fluctuations
and nonlocal topological gauge modes.

In this paper, we discuss the phase diagram and critical
behavior of three-dimensional (3D) lattice Z2-gauge N-
vector models, obtained by minimally coupling N-component
real variables with Z2-gauge variables. They are interesting
paradigmatic models with different phases characterized by
the spontaneous breaking of the global O(N) symmetry and
by the different topological properties of the Z2-gauge corre-
lations (see, e.g., Refs. [5,9]). Moreover, they are relevant for
transitions in nematic liquid crystal (see, e.g., Refs. [19,56])
and for systems with fractionalized quantum numbers (see,
e.g., Refs. [25,26]).

The phase diagram of the 3D Z2-gauge N-vector model
presents three phases distinguished by the order/disorder of
the spin correlations and the order/disorder of the Z2-gauge

correlations. A sketch of the phase diagram for N � 2
is shown in Fig. 1. There are two spin-disordered phases
separated by a topological Z2-gauge transition, and one spin-
ordered phase with topologically trivial gauge correlations.
These phases are separated by three transition lines, whose na-
ture crucially depends on N , with the exception of the purely
topological transition between the spin-disordered phases,
which belongs to the Z2-gauge universality class [5,6,9] for
any N (obviously, the presence of first-order transitions cannot
be excluded by universality arguments). For N � 3, the DD-O
transitions (see caption of Fig. 1 for acronym definitions) are
expected to be of first order, while along the DO-O transition
line, the system undergoes continuous transitions belonging to
the O(N) vector universality class. Note, however, that along
the DO-O transition line, there are apparently no critical
vector correlations because of the Z2-gauge invariance. To
identify a vector critical field, it is necessary to reduce the
gauge freedom by performing an appropriate gauge fixing.
For this purpose, we use a stochastic gauge fixing [87].

Unlike models with N � 3, the model with N = 2 can
undergo continuous transitions along all three transition lines.
In particular, the DD-O and DO-O continuous transitions
(see Fig. 1) between the spin-disordered phases and the spin-
ordered one are both expected to belong to the XY universality
class. However, this does not imply that the relevant critical
modes are the same. Indeed, as we shall see, the correlations
of the gauge-invariant operators have a different critical be-
havior along the DD-O and DO-O transition lines.

To numerically check the theoretical predictions, we report
Monte Carlo (MC) simulations of the N = 2 model in differ-
ent regions of the phase diagram. A finite-size scaling (FSS)
analysis of the numerical data confirms the general picture.
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FIG. 1. Sketch of the phase diagram of the 3D Z2-gauge N-
vector model with N � 2 in the space of the Hamiltonian parameters
K and J [cf. Eq. (2)], where K is the inverse gauge coupling and J is
the spin hopping parameter. There are two spin-disordered phases for
small J: a small-K phase, in which both spin and Z2-gauge variables
are disordered (indicated by DD), and a large-K phase, in which the
Z2-gauge variables order (indicated by DO). For large J , there is a
single phase in which both spins and gauge variables are ordered
(indicated by O).

The system undergoes continuous transitions along all three
transition lines, except possibly sufficiently close to the meet-
ing point of the transition lines where the transitions may turn
into first-order ones. Along the DD-O and DO-O transition
lines, continuous transitions belong to the XY universality
class. However, while the order parameter for the DD-O
transitions is a gauge-invariant variable, the order parameter
along the DO-O transition line is the non-gauge-invariant spin
variable, after an appropriate gauge fixing procedure (without
fixing the gauge, the correlation functions of the vector vari-
ables trivially vanish).

The paper is organized as follows. In Sec. II, we introduce
the 3D Z2-gauge N-vector models. The phase diagram and na-
ture of the transition lines for N � 2 are discussed in Sec. III.
In Sec. IV, we present our numerical results for N = 2. In
Sec. V, we focus on the transitions at the meeting point of
the three transition lines separating the different phases. In
Sec. VI, we present results using a stochastic gauge fixing,
which allows us to observe critical vector correlations along
the DO-O line. Finally, in Sec. VII, we summarize and draw
our conclusions.

II. THE Z2-GAUGE N-VECTOR MODELS

We consider lattice N-vector models with local Z2-gauge
invariance, defined on a 3D cubic lattice of linear size L with
periodic boundary conditions. The system variables are unit-
length N-component real vectors sx (i.e., sx ∈ RN and sx · sx =
1) defined on the lattice sites, and Z2 spins σx,μ = ±1 defined
on the bonds (σx,μ is associated with the bond starting from
site x in the positive μ direction, μ = 1, 2, 3). The partition
function reads

Z =
∑
{s,σ }

e−H (J,K )/T , (1)

where H (J, K ) is the lattice Hamiltonian defined by

H (J, K ) = Hs(J ) + Hσ (K ), (2)

where

Hs(J ) = −JN
∑
x,μ

σx,μ sx · sx+μ̂, (3)

Hσ (K ) = −K
∑

x,μ>ν

σx,μ σx+μ̂,ν σx+ν̂,μ σx,ν . (4)

By measuring energies in units of the temperature T , we
can formally set T = 1 in Eq. (1). The Hamiltonian (2) is
invariant under global O(N) transformations acting on the spin
variables sx, and under local Z2-gauge transformations, sx →
wxsx and σx,ν → wxσx,νwx+ν̂ with wx = ±1. For N = 1, the
spin variables take the integer values sx = ±1, and the model
corresponds to the so-called Z2-gauge Higgs model [6,9,10].

The critical behavior at the phase transitions can be de-
termined by analyzing the FSS behavior of gauge-invariant
correlation functions. For this purpose, for N � 2, we con-
sider the spin-two bilinear operator,

Qab
x = sa

xsb
x − 1

N
δab, (5)

and its correlation function,

G(x, y) = 〈Tr QxQy〉. (6)

The corresponding susceptibility χ and second-moment cor-
relation length ξ are defined as

χ ≡ G̃(0), ξ 2 ≡ 1

4 sin2(π/L)

G̃(0) − G̃(pm)

G̃(pm)
, (7)

where G̃(p) = ∑
x eip·xG(x) and pm = (2π/L, 0, 0). We also

consider renormalization-group (RG) invariant quantities,
whose scaling behavior does not depend on any nonuniversal
normalization, such as the ratio

R ≡ ξ/L, (8)

and the Binder parameter defined as

U =
〈
m2

2

〉
〈m2〉2

, m2 = 1

Ld

∑
x,y

Tr QxQy. (9)

III. THE PHASE DIAGRAM

The phase diagram of the Z2 Higgs model, corresponding
to the model (2) with N = 1, has already been thoroughly
investigated (see, e.g., Refs. [46,74,76]). Its phase diagram is
reported in Fig. 2. In the following, we focus on the multicom-
ponent cases, N � 2. To understand their phase diagram, we
first consider some limiting cases corresponding to simpler
models whose thermodynamic behavior is already known.
Their transition points are then expected to be the starting
points of transition lines, which separate the different phases
of the model with Hamiltonian (2).

A. The transition line starting from J = 0

For J = 0, the model reduces to the Z2-gauge model [6]
for any N . Therefore, there is a continuous topological phase
transition along the line J = 0, which is that of the Z2-gauge
model, at [91,92] KZ2 = 0.761 413 292(11), separating a con-
fined phase at small K from a deconfined phase at large
K . This critical point is expected to be the starting point of
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FIG. 2. Sketch of the phase diagram of the 3D Z2-gauge Higgs
model; see, e.g., Refs. [46,74,76]. The dashed line is the self-dual
line; the thick line is a finite stretch of the self-dual line cor-
responding to first-order transitions. The two lines labeled “Z2”
are related by duality and correspond to Ising continuous transi-
tions. They end at [J = JIs ≈ 0.221 655, K = ∞] and at [J = 0, K =
KZ2 ≈ 0.761 413]. The three lines meet at a multicritical point
[46,74,76,88,89] at [K� = 0.7525(1), J� ≈ 0.225 78(5)]. The corre-
sponding multicritical behavior is controlled by the multicritical XY
fixed point [76,89,90]. The second endpoint (CEP) of the first-order
transition line, at [K ≈ 0.688, J ≈ 0.258], is expected to be an Ising
critical endpoint.

a transition line, which separates two phases with different
topological Z2-gauge properties [9]: the gauge modes are
disordered for small K and ordered in the opposite case (see,
e.g., Ref. [5]). Both phases are disordered with respect to the
spin variables.

Since the spin variables are not critical for sufficiently
small values of J , they can be integrated out. At leading order
in J , one again obtains the Z2-gauge model [6,9,10,19], with a
renormalized gauge coupling K , i.e., K → K (J ) = K + NJ4.
This result indicates that the transition line starting from (J =
0, K = KZ2 ) bends toward small values of K , as

Kc(J ) = KZ2 − NJ4 + O(J6). (10)

The existence of such topological transition line should be
limited to the region where the spin variables sx are disor-
dered, therefore, for sufficiently small values of J .

We also mention that no phase transitions are expected in
the opposite limit J → ∞, where the spin and gauge variables
order. In this limit, modulo gauge transformations, we can set
sx = e and σx,μ = 1, where e is a unit vector.

B. The transition line starting from K = 0

For K = 0, the Z2-gauge variables can be easily integrated
out, obtaining a lattice formulation of the so-called RPN−1

model, whose Hamiltonian is

HK=0 = −
∑
x,μ

ln
[
2 cosh

(
JN sx · sx+μ̂

)]

= −
∑
x,μ

[
ln 2 + J2N2

2
|sx · sx+μ̂|2 + O(J4)

]
. (11)

Like the standard RPN−1 model with Hamiltonian HRP =
−J ′ ∑

x,μ |sx · sx+μ̂|2, the variant model with Hamiltonian
(11) is expected to undergo a phase transition for any N � 2

[no phase transitions occur at K = 0 for N = 1 (see Fig. 2)
because the Hamiltonian HRP is trivial in this case].

Since the gauge modes are not critical, the nature of the
phase transitions in RPN−1 models can be inferred by means
of a standard Landau-Ginzburg-Wilson (LGW) argument. We
consider a field 	ab, which is a symmetric traceless matrix
obtained by coarse-graining the order parameter (5), and the
LGW Hamiltonian (see, e.g., Refs. [62,63]),

LLGW = Tr(∂μ	)2 + r Tr 	2

+ w tr 	3 + u (Tr 	2)2 + v Tr 	4. (12)

For N = 2, the Lagrangian (12) is equivalent to that of the
XY vector model (in particular, the 	3 term cancels). Thus,
continuous transitions should belong to the XY universality
class [93]. For larger values of N , the LGW approach predicts
all transitions to be of first order because of the presence of
the 	3 term (see, e.g., Ref. [94]).

A natural hypothesis is that a transition line starts from
the transition point at K = 0, with the same critical behavior
as for K = 0. Therefore, for small values of K , we expect
a continuous XY transition line for N = 2 and a first-order
transition line for any N � 3.

C. The transition line starting from K = ∞
For K → ∞, the plaquettes must take their maximum

value, i.e.,

�x,μν = σx,μ σx+μ̂,ν σx+ν̂,μ σx,ν = 1. (13)

Therefore, in infinite volume, modulo gauge transformations,
we can set σx,μ = 1. The Hamiltonian (2) coincides, there-
fore, with that of the standard lattice N-vector model without
gauge variables. It follows that for K → ∞, the system
undergoes a continuous transition at Jc(K = ∞) = Jc,O(N ),
belonging to the O(N) vector universality class. Estimates of
the critical point Jc,O(N ) in N-vector models can be found in
Refs. [95–102]. In particular, we mention the accurate esti-
mates Jc,O(2) = 0.227 082 34(9) and Jc,O(2) = 0.227 082 38(6)
for N = 2, obtained in Refs. [95] and [96], respectively, and
Jc,O(N ) = 0.252 731 . . . for N → ∞ [102].

It is again natural to conjecture the existence of a transi-
tion line that starts from the O(N) transition point for K →
∞. Along this line, for sufficiently large values of K , we
expect transitions to belong to the O(N) universality class
as for K = ∞. Indeed, if the probability that �x,μν = −1
is sufficiently small (as expected in the large-K and low-J
phase), the nature of the transition should be the same as
for K = ∞. The stability of the K → ∞ O(N)-vector fixed
point against gauge fluctuations is essentially related to the
discrete nature of the gauge variables, whose fluctuations are
suppressed in the topologically ordered phase. Note that in
the presence of continuous Abelian and non-Abelian gauge
symmetries, gauge interactions destabilize the N-vector crit-
ical behavior observed for K = ∞. In this case, even for
large values of K , transitions along the line that ends in the
N-vector critical point for K = ∞ do not belong to the N-
vector universality class and have a different nature (see, e.g.,
Refs. [66,76,80,83,84]).

We remark that the prediction that the large-K transitions
belong to the N-vector universality class is apparently in
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contradiction with what one would obtain from a naive appli-
cation of the LGW approach. Indeed, in N-vector transitions,
the order parameter is the magnetization, i.e., the spin sx.
But, the spin is not gauge invariant and, indeed, the vector
correlation function 〈sx · sy〉 vanishes for x 
= y. Only gauge-
invariant operators are critical, with the simplest one being the
spin-two operator introduced in Eq. (5). Thus, in a naive
application of the LGW approach, one would reason as in
Sec. III B, obtaining the LGW Lagrangian (12) and there-
fore predicting the DD-O and DO-O transition lines to have
the same nature. These conclusions contradict the arguments
given above for the large-K transition line.

In the following, we will provide robust evidence that the
large-K transitions belong to the O(N) vector universality
class. This implies that the naive LGW argument is incorrect
when applied to the DO-O transitions. Indeed, along this line,
the order parameter turns out to be a vector field, as in the
standard N-vector model, which, however, cannot be directly
identified because of gauge invariance. It only emerges once
an appropriate gauge fixing is introduced [87]. Note that an
appropriate gauge fixing is needed not only for finite values
of K , but also for K = ∞. Indeed, we obtain the N-vector
Hamiltonian only if we fix the gauge so that σx,μ = 1 on
all links.

It is worth noting that for N = 2, the effective LGW
field theory with Lagrangian (12) predicts an XY critical
behavior, as the O(2)-symmetric LGW 	4 field theory with
a two-component vector field. However, in the model with
Lagrangian (12), thus along the DD-O transition line, the
operator Qab

x behaves as a two-component vector field, while
along the DO-O line, it behaves as a composite spin-two oper-
ator. Thus, the critical behavior of Qab

x allows us to distinguish
which is the appropriate LGW description of the transition.
For N � 3, the LGW predictions are different. In particular,
the theory with Lagrangian (12) predicts first-order transitions
because of the cubic term. Even admitting the possibility that
the cubic term somehow vanishes, as for antiferromagnetic
RPN−1 models, the critical behavior would be different from
the O(N)-vector one (see Ref. [63] for a RG analysis of the
theory with Lagrangian (12) and w = 0).

D. The J-K phase diagram

To draw the phase diagram in the J-K parameter space of
the N-component model, we make the natural hypothesis that
the transitions identified along the lines K = 0, K = ∞, and
J = 0 are the starting points of three transition lines that meet
in a single point, as sketched in Fig. 1. These transition lines
are the boundaries of three different phases. For small values
of J , we expect two phases in which the spin variables are
disordered. For small K also, the gauge degrees of freedom are
disordered—we name this phase the disordered-disordered
(DD) phase. For large K , instead, gauge variables are topo-
logically ordered—this is the disordered-ordered (DO) phase.
For large J , there is instead a single phase, in which both
spin and gauge variables are ordered—we name it the ordered
(O) phase. In this phase, the bilinear spin-two operator Qab

x
condenses.

As already discussed, for sufficiently small K , the DD-O
transitions should have the same nature as the RPN−1

transition along the K = 0 line. The corresponding critical
behavior is therefore controlled by the LGW theory (12).
Instead, for sufficiently large values of K along the DO-O
transition line, we expect transitions to belong to the
O(N)-vector universality class. Spin variables should not
play any role along the DD-DO transition, which should
have the same topological nature as the transition in the pure
Z2-gauge theory.

E. Meeting point of the transition lines

The three transition lines are expected to eventually meet
at one point [K�, J�] of the phase diagram. Equation (10)
suggests that K� � KZ2 ≈ 0.761, at least for small N . Indeed,
if we assume that the DD-O line J = Jc(K ) is weakly depen-
dent on K , as it occurs in the Z2 Higgs model, whose phase
diagram in shown in Fig. 2, the correction term in Eq. (10)
is small (of the order of NJ4

c,O(N ), with Jc,O(N ) ≈ 0.2). This is
consistent with the results reported in Sec. V, where we argue
that K� ≈ 0.75 for N = 2.

At the meeting point, the system may develop a multicrit-
ical behavior if some of the transition lines are continuous at
the meeting point, as happens in the Z2-gauge Higgs model
(see Fig. 2). Alternatively, if all transition lines are of first
order, the meeting point corresponds to a first-order transition.
We shall return to this point in Sec. V.

F. Phase behavior for N = 2

We now focus on the two-component model, which is
particularly interesting because it is the only case in which
continuous transitions may occur along all three transition
lines. In particular, on the basis of the above discussion, the
continuous transitions along the DD-O and DO-O lines are
both expected to belong to the XY universality class. How-
ever, as discussed in Sec. III C, the nature of the transitions
along the two lines is not the same, as indicated by the dif-
ferent critical behavior of the operator Qab

x defined in Eq. (5).
In particular, along the DO-O line, there is no gauge-invariant
order parameter, as it only emerges when using an appropriate
gauge-fixing procedure. XY transitions characterized by the
absence of a vector order parameter, such as those along
the DO-O line, are often referred to as XY ∗ transitions in
the literature (see, e.g., Refs. [49,57,81]).

To characterize continuous transitions along the DD-O and
DO-O lines, we fix K and vary the parameter J . Close to the
transition, the correlation function G(x, y) defined in Eq. (6)
is expected to show the asymptotic FSS behavior (we assume
that the boundary conditions preserve translation invariance),

G(x1, x2, J, L) ≈ L−2YQ [G(X ,W ) + O(L−ω )], (14)

X = (x1 − x2)/L, W = (J − Jc)L1/ν, (15)

where YQ is the RG dimension of the operator Qab
x . Since

both DD-O and DO-O transitions belong to the XY univer-
sality class, we have ν = νXY = 0.6717(1) and ω = ωXY =
0.789(4) [95,103–106]. However, the RG dimension YQ dif-
fers along the DD-O and DO-O transition lines.

Along the DD-O line, an effective description is provided
by the LGW model with Lagrangian (12). In this case, the
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coarse-grained field 	ab is equivalent to an O(2)-vector field.
This implies that the RG dimension YQ of Qab

x coincides with
the RG dimension YV,XY of the vector field in the standard XY
model. Thus, at continuous transitions along the DD-O line,
we have

YQ = YV,XY = d − 2 + ηXY

2
= 0.519 088(22), (16)

where we used the precise estimate [106] ηXY =
0.038 176(44).

On the other hand, the continuous transitions along the
DO-O transition line are expected to belong to the N-vector
universality class. Therefore, the bilinear operator Q corre-
sponds to the tensor spin-two operator in the XY model,
whose RG dimension YT,XY has been computed by various
methods (see Refs. [106–109]). Therefore, we expect

YQ = YT,XY = 1.236 29(11) (17)

at the continuous transitions along the DO-O line.
As a consequence of the above results, the susceptibility

defined in Eq. (7) has a substantially different dependence on
the size of the system at critical points along the two lines, a
difference that can be easily detected in FSS analyses. Since
χ behaves as

χ ≈ Ld−2YQA(W ) (18)

in the FSS limit, we obtain

χ ∼ Lκv , κv = 3 − 2YV,XY = 1.961 82(2), (19)

along the DD-O transition line, and

χ ∼ Lκt , κt = 3 − 2YT,XY = 0.5274(2), (20)

along the DO-O transition line. Also, scaling corrections are
expected to be different in the two cases. Along the DD-O
transition line, corrections are expected to scale as L−ωXY ,
where [95] ωXY = 0.789(4) is associated with the leading
irrelevant operator. On the other hand, along the DO-O line,
the dominant scaling corrections to Eq. (20) are due to the
background analytic term [93]. Thus, corrections scale as
L−κt , with κt ≈ 0.527 < ωXY ≈ 0.789. As we have discussed
in Sec. III C, along the DO-O line, vector critical modes are
also emerging, which show up only if a proper gauge fixing is
introduced. They are discussed in Sec. VI.

IV. NUMERICAL RESULTS FOR THE Z2-GAUGE
N = 2 VECTOR MODEL

To investigate the nature of the transition lines of the Z2-
gauge model for N = 2, we have performed MC simulations
close to the transition lines DD-O and DO-O, on lattices of
size L � 40. Simulations have been performed by using a
standard Metropolis update for the gauge variables σx,μ, and
a combination of Metropolis and microcanonical updates (in
the ratio 1:5) for the variables sx. In all cases, we performed
MC runs of about 5 × 106 sweeps (a sweep corresponds to a
complete update of all lattice gauge and spin variables). Simu-
lations took a total CPU time of roughly 1.5 × 105 core-hours.

We have studied the critical behavior fixing K and vary-
ing J . In Table I, we report the values of K considered, the

TABLE I. Results obtained for N = 2, varying J across the DD-
O and DO-O transition lines for fixed values of K . We report the
critical point Jc(K ) (for K → ∞, we quote the estimate of the XY
critical point reported in Ref. [95]), the transition type, and, if the
transition is continuous, the value of the RG dimension YQ of the
gauge-invariant operator Qab

x defined in Eq. (5).

K Jc(K ) Type YQ

0 0.79305(7) XY YV,XY

0.5 0.37118(2) XY YV,XY

0.7 0.2520(3) first order
0.8 0.229(1) XY YT,XY

1 0.22729(3) XY YT,XY

∞ 0.22708234(9) XY YT,XY

transition points Jc(K ), and some information on the critical
behavior.

A. The small-K DD-O transition line

We now report the results of the FSS analyses of the data
obtained by varying J across the DD-O transition line, keep-
ing K fixed. We considered three values of K , i.e., K = 0, K =
0.5, and K = 0.7, which are smaller than the value K� ≈ 0.75
of the meeting point of the three transition lines(see Secs. III E
and V). We anticipate that the FSS analyses show that the
system undergoes continuous XY transitions for K = 0 and
K = 0.5, and a first-order transition for K = 0.7. Thus, the
continuous XY transition line starting at K = 0 turns into a
first-order line at K = Kfo with 0.5 < Kfo < 0.7, before reach-
ing the point where the transition lines meet (see Sec. V).

We first report results along the line K = 0.5. To determine
the critical point and the order of the transition, we consider
the RG invariant quantities R and U defined in Eqs. (8) and
(9). At continuous transitions, they are expected to scale as

R(J, L) = R(W ) + O(L−ω ), W = (J − Jc)L1/ν, (21)

U (J, L) = U (W ) + O(L−ω ). (22)

In particular, the curves obtained for different lattice sizes
should cross at the critical point, apart from scaling correc-
tions. In Fig. 3, we plot R as a function of J . The data
show a crossing point, indicating the presence of a continuous
transition at Jc ≈ 0.37. Analogous results are obtained for
the Binder parameter. The slopes of the data at the crossing
point are fully consistent with the length-scale exponent [95]
νXY = 0.6717(1) of the XY universality class. To obtain a
precise estimate of Jc, we fit the data to Eq. (22) setting
ν = νXY = 0.6717 and taking into account the leading scaling
corrections. We obtain Jc = 0.371 18(2), where the error takes
into account how the estimate changes when varying the fit
range and systematically discarding the smallest lattices. A
scaling plot is shown in the inset of Fig. 3. We observe a
very nice collapse of the data, confirming that the transition
belongs to the XY universality class.

The RG dimension YQ of the operator Qab
x can be estimated

by fitting the susceptibility to Eq. (18). However, from a
numerical point of view, it is more convenient to consider
the FSS behavior of χ in terms of R ≡ ξ/L. Indeed, since
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FIG. 3. Data of the ratio R ≡ ξ/L as a function of J at fixed K =
0.5. The inset shows that the data nicely collapse onto a single curve
when R is plotted W = (J − Jc )L1/νXY , with Jc = 0.37118 and νXY =
0.6717, confirming the XY nature of the transition.

R is monotonic, we can express W as a function of R using
Eq. (21). Thus, we can rewrite Eq. (18) as

χ (J, L) ≈ L−(d−2YQ )[Â(R) + O(L−ω )]. (23)

The data shown in Fig. 4 are consistent with Eq. (23) us-
ing the exponent reported in Eq. (19), i.e., d − 2YQ = κv =
1.961 82(2). Thus, the correlations of Qab

x behave as vector
correlations in the standard XY model.

A robust check that the transition belongs to the XY uni-
versality class can be obtained by comparing the asymptotic
behavior of U as a function of R in the present model with
the analogous data computed in the XY model. We show the
data in Fig. 5, together with the parametrization of the XY
curve, U = fXY (R), reported in Ref. [75]. The data for the
Z2-gauge N = 2 vector model appear to approach the XY
scaling curve as L increases. We observe some deviations,

FIG. 4. Scaling of the susceptibility χ along the K = 0.5 line:
plot of L−κv χ vs R = ξ/L, with κv = 3 − 2YV,XY = 1.961 82. Here,
YV,XY is the RG dimension of the vector field in the XY universality
class. The data approach an asymptotic scaling curve with increasing
L, thus supporting relation (19).

FIG. 5. The Binder parameter U as a function of R = ξ/L for
K = 0.5. The data appear to approach the universal scaling curve
(solid line) for the XY model obtained in Ref. [75]. The observed
deviations can be explained by the presence of scaling corrections:
In the inset, we report �U defined in Eq. (24) as a function of R,
using the XY leading scaling-correction exponent ωXY = 0.789.

especially for L = 8 and R ≈ 0.25, which apparently decrease
as L increases. To verify that these deviations can be inter-
preted as scaling corrections, we consider the quantity

�U (J, L) = LωXY {U (J, L) − fXY [R(J, L)]}. (24)

In the inset of Fig. 5, we report �U as a function of R,
using the expected XY correction-to-scaling exponent ωXY ≈
0.789. Data fall approximately onto a single curve as L in-
creases, providing evidence that the deviations in Fig. 5 are
due to scaling corrections. We remark that FSS curves depend
on boundary conditions. Since we use periodic boundary con-
ditions here, we compare the data with XY results with the
same boundary conditions (this is indeed the case for the curve
obtained in Ref. [75]).

We also performed simulations along the K = 0 line, close
to the critical transition at Jc = 0.793 05(7). The plots of R,
U , and χ are very similar to those reported in Figs. 3–5, so we
do not report them. Again, they confirm the general analysis
reported in Sec. III.

Finally, we performed simulations along the line K = 0.7.
Data suggest a first-order transition with Jc ≈ 0.25. The first-
order nature of the transition can be inferred from the behavior
of the Binder parameter U . As shown in Fig. 6, fixed-L data
have a pronounced maximum, which significantly increases
with increasing L. This is usually considered as evidence
of a first-order transition; see, for example, Ref. [110] and
references therein. To estimate Jc, we have determined the
position Jp(L) of the maximum of U for each size, and then we
have extrapolated the results to Jp(L) = Jc + a/L3. We obtain
the estimate Jc = 0.2520(3). While the first-order nature of
the transition appears quite clear, accurate estimates of the
transition point and latent heat would require more demanding
simulations, using more effective sampling algorithms, such
as those reported in Refs. [111,112]. We have not pursued this
study further.
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FIG. 6. The Binder parameter U vs R for K = 0.7. The data do
not show scaling, and the maximum of U significantly increases with
the size, as expected at a first-order transition.

B. The large-K DO-O transition line

We now discuss the critical behavior along the DO-O
transition line. We have performed simulations varying J
along the lines K = 1 and K = 0.8. These values of K are
larger than the value K� ≈ 0.75 corresponding to the meeting
point of the three transition lines (see Secs. III E and V).
Therefore, for both values of K , we are considering DO-O
transitions. In both cases, the FSS analyses show a contin-
uous XY transition where the operator Qab

x behaves as a
spin-two operator, in agreement with the arguments reported
in Sec. III F.

For K = 1, data are consistent with a continuous transi-
tion in the XY universality class. We can accurately estimate
the critical point from the analysis of R = ξ/L. Fits of R
to Eq. (21) using the XY exponent νXY = 0.6717 give Jc =
0.227 29(3). The corresponding scaling plot is shown in
Fig. 7. Scaling is excellent. We note that Jc(K = 1) is very
close to the critical value for K = ∞, i.e., [95] Jc(K = ∞) =
0.227 082 34(9). This indicates that the DO-O line J = Jc(K )
has a very weak dependence on K from K = ∞ to K = 1 (as
assumed in Sec. III E).

In Fig. 8, we report the Binder cumulant U against the ratio
R. We observe a nice scaling that confirms the continuous
nature of the transition. Note that in this case, we cannot
directly compare the results for K = 1 with the corresponding
scaling curve computed in the XY model with periodic bound-
ary conditions. Indeed, for K → ∞, the Z2-gauge model with
periodic boundary conditions is equivalent to an N-vector
model with fluctuating boundary conditions; see the discus-
sion in Ref. [75]. Therefore, to perform a correct comparison,
one should simulate an XY model with fluctuating bound-
ary conditions, to determine the XY curve that matches the
Z2-gauge data.

In Fig. 9, we show a scaling plot of the susceptibility
defined in Eq. (7). As discussed in Sec. III F, data should
scale according to Eq. (23), with exponent d − 2YQ = κt =
d − 2YT,XY = 0.5274(2). We observe an excellent scaling,
confirming the arguments of Sec. III F.

FIG. 7. Ratio R ≡ ξ/L vs W = (J − Jc )L1/νXY , with Jc =
0.227 29(3) and νXY = 0.6717. Results are for K = 1. Data show an
excellent collapse, confirming that the transition belongs to the XY
universality class.

Finally, we performed simulations along the line K = 0.8
on relatively small lattices. Data indicate the presence of a
continuous XY transition at Jc ≈ 0.229 (the relatively low pre-
cision on Jc is due to the small lattices considered), analogous
to the one observed for K = 1.. This is clearly demonstrated
by the plots of U versus R shown in the inset of Fig. 8. The
K = 0.8 data approach the same asymptotic curve obtained
for K = 1.

V. TRANSITIONS AT THE MEETING POINT

We now discuss the nature of the transitions close to the
point (K�, J�), where the transition lines meet; see Fig. 1. On
the basis of the arguments reported in Sec. III, the DD-O
transitions are of first order for any N � 3, while they may be
continuous for N = 2. On the other hand, for any N , we expect

FIG. 8. The Binder cumulant U as a function of R = ξ/L for
K = 1. The data appear to collapse onto an asymptotic curve. The
inset shows analogous data for K = 0.8, which appear to approach
the same asymptotic FSS curve.
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FIG. 9. Scaling of the susceptibility χ . We plot L−κt χ vs
R = ξ/L, with κt = 3 − YT,XY = 0.5274. The excellent collapse of
the data confirms the correctness of the predicted exponent κt ;
see Eq. (20).

DO-O and DD-DO transitions to be continuous for large K
and small J , respectively. Close to the meeting point, they
may be continuous or of first order, with the corresponding
presence of a tricritical point.

We now wish to estimate the position of the meeting point
(K�, J�) for N = 2. The results reported in Table I show that
the point [K = 0.5, J = 0.37 118(2)] belongs to the DD-O
line, while the point [K = 0.8, J ≈ 0.229] belongs to the DO-
O line. This allows us to bound J�: 0.371 > J� > 0.229. We
can then use the approximate formula (10) to obtain a bound
on K�: 0.724 < K� < 0.756. This estimate of K� allows us
to conclude that the first-order transition observed at K =
0.7, J = 0.2520(3) belongs to the DD-O line. Therefore, there
is a tricritical point at K = Kfo, 0.5 < Kfo < 0.7 on the DD-O
line, such that DD-O transitions are continuous for K < Kfo

and of first order in the opposite case. The results for K = 0.7
allow us to improve our estimate of J�, which should belong
to the interval [Jc(0.8), Jc(0.7)] = [0.229, 0.252]. In turn, we
can use this result to improve the estimate of K�. We obtain,
finally, the estimates

(K� ≈ 0.75, J� ≈ 0.24) for N = 2. (25)

To verify the accuracy of these arguments, we have applied
similar arguments to the Z2-gauge Higgs model. For the mul-
ticritical point, we obtain K� ≈ 0.75, in good agreement with
the accurate estimate K� = 0.7525(1); see Fig. 2.

Given that the DD-O transition line is of first order, the
nature of the meeting-point transition is controlled by the
competition of the N-vector order parameter driving the DO-
O transitions (the emerging order parameter discussed in
Sec. III C) and the nonlocal order parameter driving the Ising
topological transitions along the DD-DO transition line. We
are not able to define an effective model appropriate to de-
scribe the meeting-point transition. In general, two different
behaviors are possible. In one case, the DD-DO and DO-O
lines are continuous up to the meeting point, so that we obtain
what is usually called a bicritical point. Alternatively, the
continuous transitions may turn into first-order ones before

K

J

DD
DO

O

FIG. 10. Sketch of the phase diagram close to a first-order meet-
ing point. Thick and thin lines represent first-order and continuous
transitions, respectively.

the meeting point, as it occurs along the DD-O transition lines;
see Fig. 10. In this case, one would observe a discontinuous
behavior at the meeting point. Our numerical data do not allow
us to distinguish between the two scenarios. We only observe
that if the DO-O line eventually becomes of first order by
decreasing K , this should occur very close to the meeting
point.

It is interesting to observe that a first-order meeting point
is expected when the transitions are associated with one
N-vector parameter φ1 and one scalar order parameter φ2,
which are both local. Indeed, the corresponding LGW model
[113–115], with Hamiltonian

L = 1

2

∑
μ

[(∂μφ1)2 + (∂μφ2)2] + 1

2

(
r1φ

2
1 + r2φ

2
2

)
+u1

(
φ2

1

)2 + u2φ
4
2 + wφ2

1φ
2
2 , (26)

does not admit any fixed point for any N � 2 (see, e.g.,
Refs. [93,108,116,117]). Only the multicritical Z2 ⊕ Z2 LGW
theory, corresponding to N = 1, has a stable bicritical fixed
point belonging to the XY universality class. This effective
LGW model has been used to investigate the nature of the
transitions close to the meeting point in the Z2-gauge Higgs
model. In that case, however, duality allowed us to argue that
the nonlocal order parameter could be mapped by duality onto
a local one. Duality is missing here and therefore the relation
between the local LGW model and the present gauge model
is unclear.

VI. VECTOR CORRELATIONS IN THE PRESENCE
OF A STOCHASTIC GAUGE FIXING

In this section, we would like to come back to the question
of the appropriate order parameter for the DO-O transitions.
As discussed in Sec. III C, a correct LGW description requires
a vector order parameter, but this is apparently at odds with the
gauge invariance of the model. Indeed, the lattice vector field
sx is not gauge invariant and therefore its correlation functions
are trivial. In particular, its two-point function,

Gs(x, y) = 〈sx · sy〉, (27)
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trivially vanishes for x 
= y. This apparent puzzle can be
solved by showing that critical vector correlations can be
uncovered by an appropriate gauge fixing. For this purpose,
we implement a stochastic gauge fixing [87], which leaves
the gauge-invariant correlations invariant and allows us to un-
veil the critical vector modes that effectively drive the DO-O
transitions.

Because of the discrete nature of the gauge variables, stan-
dard gauge-fixing procedures cannot be applied. Therefore,
the idea is to average non-gauge-invariant quantities over all
possible gauge transformations, i.e.,

sx → ŝx = wxsx,

σx,μ → σ̂x,μ = wxσx,μwx+μ̂, (28)

using an appropriate weight for the Z2 site variables wx =
±1. A convenient choice is provided by the Gibbs weight
exp[−Hw(σ,w)], with the ancillary Hamiltonian

Hw = −γ
∑
x,μ

wxσx,μwx,μ, γ > 0, (29)

so that positive values of σ̂x,μ = wxσx,μwx+μ̂ are favored.
Correspondingly, we define a gauge-fixed two-point spin
function Ĝs as

Ĝs(x, y) = 〈[ŝx · ŝy]〉 =
∑

{s,σ } e−H (s,σ )[ŝx · ŝy]∑
{s,σ } e−H (s,σ )

, (30)

where ŝx = wxsx, H is the gauge-invariant Hamiltonian (2),
and

[ŝx · ŝy] =
∑

{w} e−Hw (σ,w)ŝx · ŝy∑
{w} e−Hw (σ,w)

. (31)

Here, [·] indicates the (quenched) average over the Z2 fields
with weight e−Hw , for fixed values of sx and σx,μ, while 〈·〉 is
the standard average over sx and σx,μ with the gauge-invariant
weight e−H .

Note that the resulting model with the added variables wx is
a quenched random-bond Ising model [118] (wx are the Ising
variables), with a particular choice of bond distribution, deter-
mined by the gauge-invariant average over the variables sx and
σx,μ of the Z2-gauge N-vector model. We recall that quenched
random-bond Ising models have several phases—disordered,
ferromagnetic, and glassy phases—depending on the temper-
ature, the amount of randomness of the bond distribution,
and its spatial correlations (see, e.g., Refs. [119–121]). In
particular, we expect the present model to undergo a quenched
transition for γ = γc(J, K ). The transition separates a disor-
dered phase for γ < γc(J, K ) from a large-γ phase, which,
a priori, can be ferromagnetic or glassy, depending on the
nature of the bond coupling.

A key point of the above procedure concerns the value of γ ,
which should be chosen such that the spins sx become critical
at the transition. For this purpose, γ must be large—more
precisely, it should satisfy γ > γc(J, K )—to ensure that the
variables wx are ordered, effectively favoring positive values
for the link variables σ̂x,μ = wxσx,μwx+μ̂. On the other hand,
for γ < γc(J, K ), we do not expect vector correlations to
become critical.

Quenched averages are computed as in standard simula-
tions of random quenched systems. We simulate the model

FIG. 11. Plot of L−κv χs vs R̂s = ξ̂s/L for K = 1, γ = 0.3. Here,
χ̂s and ξ̂s are defined in terms of Ĝs; see Eq. (30). We set κv = 3 −
2YV,XY = 1.961 82(2), where YV,XY is the RG dimension of the vector
field in the XY universality class.

with Hamiltonian H and we compute the gauge averages over
the wx variables for fixed values of sx and σx,μ (at fixed
disorder in the language of random systems), every Ns sweeps.
We use a standard Metropolis update. For each “disorder
realization,” we perform about 105 sweeps of the whole lat-
tice. After discarding approximately O(104) sweeps to ensure
thermalization, we perform approximately 102 measurements
(this is probably much more than needed, but it guarantees the
absence of any initialization bias).

In the following, we show that for sufficiently large values
of γ , along the DO-O transition line, the two-point function Ĝs

behaves as the vector correlation function in the XY model.
For this purpose, we define the susceptibility χ̂s and the
second-moment correlation length ξ̂s as in Eq. (7), using the
correlation function Ĝs. We also define the Binder parameter
associated with the spin variables ŝx,

Ûs = 〈[m2
2s]〉

〈[m2s]〉2
, m2s = 1

Ld

∑
x,y

ŝx · ŝy. (32)

We now show the results at the transition for K = 1. We first
verified that the model with K = 1 and J = Jc has a transi-
tion for γ = γc ≈ 0.22, which separates a disordered small-γ
phase from a ferromagnetically ordered large-γ phase. We
thus fixed γ = 0.3. To verify that such value corresponds to a
ferromagnetic ordered phase, we have considered the Binder
parameter for the overlap of the variables wx, which appears to
approach the value Uw = 1 as L → ∞, with inverse-volume
corrections, as expected for a ferromagnetic phase.

In Fig. 11, we show the results for the susceptibility χ̂s

for K = 1 and γ = 0.3. They demonstrate that it behaves as
the XY vector susceptibility. Indeed, we find that χ̂s ∼ Lκv

with κc = 3 − 2YV,XY = 2 − ηXY . This is also confirmed by
the plot of Ûs versus Rs ≡ ξs/L reported in Fig. 12. Indeed, the
data converge toward the corresponding XY universal curve.
These results are expected to hold for any value of γ , as long
as γ > γc ≈ 0.22 for K = 1.
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FIG. 12. The Binder parameter Ûs as a function of R̂s ≡ ξ̂s/L
for K = 1 and γ = 0.3. The data appear to approach the universal
scaling curve (solid line) for the XY model obtained in Ref. [75].

Along the small-K DD-O line, the data suggest a discon-
tinuous behavior of Ĝs for γ � 0.3. This result is consistent
with the general picture. Indeed, the results along the DO-O
line indicate that vector modes magnetize as J increases across
the DO-O line. Physically, we do not expect the gauge-fixing
procedure to give rise to additional transition lines in the O
phase. Therefore, vector modes should also magnetize as J
increases across the DD-O line. However, along the DD-O
line, the operator Qab

x is the order parameter which behaves as
a vector XY field, so there cannot be an additional emerging
critical vector field. Thus, Ĝs is discontinuous, but not critical.

We finally remark that analogous results are expected at the
O(N) continuous transitions along the DO-O transition line
for higher values of N . An exhaustive study of the stochastic
gauge fixing will be reported in Ref. [87], with further appli-
cations to Z2-gauge N-vector models, including the Z2-gauge
Higgs model.

VII. CONCLUSIONS

We have discussed some general properties of the phase
diagram and of the critical behavior of 3D lattice Z2-gauge
N-vector models. Their Hamiltonian, given by Eq. (2), is ob-
tained by minimally coupling N-component real site variables
with Z2-gauge link variables, with a global O(N) and local Z2-
gauge invariance. They represent paradigmatic models with
different phases characterized by the spontaneous breaking of
the global O(N) symmetry and by the different topological
properties of the Z2-gauge excitations.

The 3D Z2-gauge N-vector model presents three phases for
any N � 2, distinguished by the order/disorder of the spin
correlations and the order/disorder of the Z2-gauge correla-
tions; see Fig. 1. These phases are separated by three transition
lines.

(i) At small J , the small-K and large-K spin-disordered
phases are separated by a line of topological transitions. The

DD-DO continuous transitions belong to the Z2-gauge univer-
sality class for any N .

(ii) The transitions along the small-K DD-O line are of
first order for any N � 3. For N = 2, they are continuous,
belonging to the 3D XY universality class, for small K . They
turn into first-order ones as K increases, before reaching the
meeting point.

(iii) The transitions along the large-K DO-O line are
expected to be continuous for any N (at least for suffi-
ciently large K). These transitions belong to the O(N)-vector
universality class. It is important to note that these O(N)
transitions are quite peculiar since critical vector corre-
lations emerge only after an appropriate stochastic gauge
fixing (see Sec. VI), which is thermodynamically consis-
tent and local, and thus it allows us to apply standard RG
arguments to the stochastically gauge-fixed theory. These
transitions are often referred to as O(N )∗ transitions (see, e.g.,
Refs. [81,87]).

In this work, we mainly focus on models with N = 2.
At variance with what happens when N � 3, in this case,
the small-K DD-O transitions can be continuous—for larger
values of N , they are of first order. Interestingly, the small-
K DD-O transitions and the large-K DO-O transitions both
belong to the XY universality class. In spite of this, the critical
behavior along the two lines is different. Indeed, for small
values of K , the vector XY order parameter is gauge invariant.
Instead, for large values of K , the model has a non-gauge-
invariant order parameter, i.e., the spin sx, that emerges only
when an appropriate stochastic gauge fixing is introduced.
The different nature of the critical modes can be probed by
studying the correlations of the gauge-invariant operator Qab

x .
Along the small-K DD-O transition line, its RG dimension
YQ coincides with the RG dimension YV,XY = 0.519 088(22)
of the vector field in the XY universality class. On the other
hand, along the large-K DO-O line, since the order parameter
is the spin sx, Qab

x behaves as a tensor spin-2 operator. There-
fore, we predict YQ = YT,XY where YT,XY = 1.236 29(11),
where YT,XY is the spin-two RG dimension in the XY uni-
versality class. This different behavior is easily detected by
studying the size dependence of the corresponding suscepti-
bility, which diverges as χ ∼ L1.9618 along the small-K DD-O
transition line and as χ ∼ L0.5274 along the large-K DO-O
transition line.

To verify the previous predictions, we present FSS analyses
of MC simulations for N = 2; see Table I. They confirm the
general results presented above and, in particular, the two
different effective XY descriptions of the small-K DD-O and
large-K DO-O transition lines.
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